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A Green's-function theory is applied to a study of two-magnon (2M) Raman scattering in cubic

antiferromagnets in the ordered region. In addition to the first-order Hartree-Fock renorinalization of
the magnon energies together with 2M-interaction effects, a second-order theory gives additional

contributions to the magnon self-energies. In particular, damping terms arising at this order are
approximately evaluated for zone-boundary magnons, i,e., the ones relevant to the 2M Raman scattering

process. Using a second-order expression for the 2M R~m~n cross section, this magnon damping is st
to eliminate the discrepancies of first-order theories. Quantitative comparison with experimental 2M
Raman spectra y'ves a satisfactory agreement, both for the peak and the width of the spectra of
KNiF3 and RbMnF„at least in the greatest part of the ordered region. The use of a simplified theory
for the scattering cross section suggests the possibility of a simple estimation of zone-boundary magnon

damping directly from experimental 2M spectra.

I, INTRODUCTION

Two-magnon (2M) Raman scattering of light in

various antiferromagnetic materials has been re-
cently investigated in a number of papers, ' with
a satisfactory agreement between theory and ex-
periment only at low temperatures. The main
physical results of these investigations are: (i)
Only near-zone-boundary (Z. B.) magnons are
relevant to the scattering process, owing to the
sharp peaking of the magnon density of states in
this energy region; and (ii) it is necessary to con-
sider the interaction between the two magnons due
to the close proximity of the corresponding spin
deviations in real space. At higher temperatures
and even beyond the Neel point, experimental 2M
Raman spectra' show a decrease of the peak fre-
quency and of the over-all intensity of the spectrum
with a marked increase of its width.

A spin-wave approach to the finite temperature
spectra in the ordered region has been worked out

by means of Bose operators, with a diagrammatic
technique. A first-order theory, using the equa-
tion of motion of the Green's functions, has been
also performed. ~ Both treatments show that it is
possible to quantitatively explain the downward
shift of the Raman peak only with a Hartree-Fock
renormalization of magnon energies. However, as
discussed in Ref. 2, a first-order theory predicts
increasing amplitudes and smaller widths of the
spectrum at higher temperatures, in marked dis-
agreement with experiments. Even if a more prop-
er account of higher-order terms in the interaction
between light and the magnetic system improves
the theoretical results somewhat, it is clear that

first-order theory cannot explain at all the shape
(in particular, the width) of the 2M spectrum at
higher temperatures. This rather negative state-
ment is also confirmed by other first-order graphi-
cal approaches' which directly deal with spin
operators, although it must be mentioned that these
theories lead to a magnon-energy renormalization
proportional to the sublattice magnetization, in

disagreement with the persistence of the experi-
mental 2M spectra above the Neel temperature T„.

As we shall show later in detail, second-order
theory consistently leads to additional terms in the
magnon self-energies (second-order energy shift
and damping). Graphically, this corresponds to
consider second-order diagrams for one-magnon
propagators. Under the natural assumption that
the main feature which determines the width of the
Raman spectrum and its temperq, ture variation is
magnon damping, in Ref. 2 values of the latter
quantity for Z. B. magnons have been phenomeno-
logically fitted in order to give better agreement
with experimental high-temperature spectra. How-
ever, it was difficult to justify these figures with a
consistent calculation of Z. B. magnon damping:
e. g. , an estimate of this quantity using a linear
dispersion law led to values which are at best one
order of magnitude lower than the fitted ones.
Natoli and Ranninger could justify the fitted value
of the damping for KNiF3 at T = 0. 7T& in a semi-
phenomenological way, i. e. , using a scaling hy-
pothesis on the experimental damping in RbMnF,
measured with inelastic neutron diffraction at vari-
ous temperatures by Saunderson et al.

The format of our paper is as follows. In Sec.
II we review all first-order results for the inter-
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We shall take in the following a model of an anti-
ferromagnetic system describable in terms of a
nearest-neighbor intersublattice exchange Heisen-
berg Hamiltonian

X=/ZEST, ~ Sq,p p,

where the summation over j runs over the N sites
of sublattice a and the summation over 6 runs over
the z nearest neighbors of a given site. The pres-
ence of finite anisotropy terms does not alter most
of our results; in any case, in cubic antiferromag-
nets, which we shall examine explicitly in the fol-
lowing (in particular, in RbMnF3), anisotropy
terms are actually very small in comparison to
exchange terms.

Let us perform on X the usual Dyson-Maleev
transformation to Bose operators. Fourier trans-
forming the latter and diagonalizing the quadratic
part of the Hamiltonian yields an interacting mag-
non Hamiltonian:

K = const+2 Qp(asap+ PptPp}+ V, (2)

with

Zg
a+p-a'-p'

iY ~~p$ ~p

&&(&„,„,a',a',ap, a, , + I„,pp P,
'

Pp PpP,

+I,,', pp a',a;P,' P,), (3)

where n&, p~ and n~, p~ are magnon destruction and
creation operators and

".= JS«I -y p)"',

acting magnon Hamiltonian and for the interaction
between light and magnons. In Sec. III a second-
order calculation of the 2M Green's function rele-
vant for Stokes scattering is carried out. This
leads to second-order magnon self-energies and
to higher-order corrections for the 2M interaction.
The imaginary part of the magnon self-energy
leads to magnon damping. We evaluate the latter
for Z. B. magnons in Sec. IV and Appendix B using
various approximation schemes for the magnon
density of states. Numerical values have been ob-
tained for cubic antiferromagnets with the perov-
skite structure (KNiF„RbMnF,). In Sec. V the
Raman spectra at various temperatures in the or-
dered region are computed and successfully com-
pared with experimental features of 2M spectra
(peak frequency, width) in KNiF, and RbMnF, .
Finally, a simple model is worked out which gives
a satisfactory behavior of the Raman peak and width
versus temperature.

II. REUIEW OF FIRST-ORDER THEORY OF TWO-MAGNON
RAMAN SCATTERING

aa'p pp' aa'& pp'

j.= ypp p QaQapVpVpp + ~ yaQaVapVpVpp

1
+ & ypQ, QapVpPpp

leg
aa' pp' yp-p' a a' p p' ya-a' a a' p p'

+yp pQaVapQpVpp +y~ppVatlapVp14pp

+y, (u,v,.upup, +v,u, ,vpvp, )

+yp(u u upvp +v v vpup ~ ) (6)

with

1 1 1/2

2 j»»+2

2 1
21/2

1 P e s.a

z 6

In writing down Eqs. (2) and (3) we have implicit-
ly made two approximat'ons. First, we have ne-
glected the so-called "Oguchi corrections ", which
arise in the normal ordering of V, i. e. , the part
of K containing four operators. In three-dimen-
sional cubic antiferromagnets that we will consider
in the following, this amounts to neglecting a cor-
rection at most of 4% in the magnon energies. The
second approximation consists of neglecting all the
operators which have zero expectation values in the
representation of noninteracting magnons.

This is exact in first-order theory (Hartree-
Fock approximation} but corresponds to neglect
possible "three-one" (confluence and splitting)
damping mechanisms. Another approximation is to
neglect every kinematical correction in the calcu-
lation of the average values of the physical quanti-
ties. Although the effect of kinematical interaction
is not as clear in antiferromagnets as in ferromag-
nets, there is strong evidence from neutron inelas-
tic scattering experiments that they are probably
not important at least until 0. 95T~. Thus in almost
all the ordered region we can use an unrestricted
boson representation of spin operators.

The simplest way to get a first-order renormal-
ization of the magnon energies is to make a "mean-
potential-energy" approximation in the last term
of Eq. (3). This amounts to substituting for every
product Q, tn and P~P its average value, to be self-
consistently determined (Hartree-Fock approxima-
tion). For instance,

Proceeding in this way we finally obtain after some
algebra the Hartree-Fock temperature-dependent
magnon frequencies
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1.0 written as

M =Z Z (/) 6S/, ' S/, 5 p, (14)

0.9—

0.8—

where y, depends on the symmetry of the scattering
mode and on the amplitudes and polarization vec-
tors of the incident- and scattered-light electric
fields. Introducing the Fourier transform

@,=Z e'"'v), =&' (16}

07—
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FIG. 1. Hartree-Fock renormalization factors for
KNiF3 and RbMnF3 as a function of relative temperature
T/Tz. The following values of the physical constants
have been used: for KNiF3, J= 71 cm, T~ = 253 'K, S = 1,
z=6; for RbMnF3, J=4. 7 cm, TN=82. 6 K, S= ~, z=6.

it is easily seen that in our antiferromagnets only
the I'3 mode is relevant for the scattering process,
and for this mode 4&0=$6(I()6=0. Let us now per-
form on M a Dyson-Maleev transformation to Bose
operators, followed by a Fourier transform of the
latter and a transformation on the quadratic part of
M. This procedure is completely analogous to the
one previously used for the system Hamiltonian 3C,
the only difference being the presence of 4» instead
of the Fourier transform of the exchange integral.
Higher-order terms in M containing four Bose
operators can be again treated in a Hartree-Fock
approximation. Focusing our attention only on the
processes which involve either the creation or the
destruction of two magnons, we finally have

where the Hartree-Fock renormalization factor is
given by the implicit equation

M=n(T) SZ C,(Q+v'„)(apP,+a~~Ppt). (16)

and

a (T) = 1 —
& S, N

Z II,(a',n, ),

(atng (PtP ) (ea(r)oP/ffer I)-1

(12)

(13)

A straightforward application of van Hove theo-
rem gives for the scattering cross section an ex-
pression proportional to

K((d)= „/r r limIm((M; M))e „,«, (17)
1

The renormalization factor n(T) has been computed
numerically by us for KNiF3 and RbMnF, as a func-
tion of T/Tpf, where T„is the experitnental Neel
temperature. Results are plotted in Fig. 1 togeth-
er with experimental data concerning these com-
pounds.

Let us now consider explicitly the interaction
between light and the magnetic system, whichis re-
sponsible for 2M Raman scattering. It is generally
assumed' that for the simple antiferromagnets
which we are considering, this interaction can be

where we have introduced the time Fourier trans-
form ((M; M))e of the retarded Zubarev Green's
function defined in the usual notation by

((M(t); M)) = —ia(t) ([M(t), M]) . (18)

In Eq. (17) Im denotes the imaginary part and (d is
the frequency shift of the scattered light. If we
limit ourselves to scattering processes which in-
volve the creation of two magnons (Stokes scatter-
ing: (d &0}, substitution of Eq. (16) into Eq. (17)
gives

K((d) = „//ter n'(T)S'limIm Z @,C',.(u,'+v,')(ap, + )(v( Papnp), .P,.))e „,&,1-e " ~,-p+

~'()')~'g~) ~™ir f f'(& ~ .')(4 4) ((u.)).; u( ))( &&,=..;.I,1 —e" N 6 P+ (f~Ie
(19)

where, in the last member, we have introduced,
following Ref. 2, the symmetrization factor f»
=(cosk„a—cosk,a} for the I's mode. The constant
C contains all the polarization dependence of this

scattering mode, together with the incident- and
scattered-light electric fields.

The problem is now reduced to the calculation of
the "two-Particle" Green's function ((n„P„;np. Pp))e.
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As it is well known, writing down the equation of
motion for this quantity introduces higher-order
Green's functions, and an approximate solution can
be obtained only with suitable decoupling proce-
dures. As we will show in Appendix A, at least in
the case of first- and second-order decouplings,

this procedure completely corresponds to summing
up to infinite order classes of selected Feynman
diagrams in an approach which uses one- and two-
magnon propagators.

The exact equation of motion for ((n»P»; a~», P t, &&s

has the form

(. . .)«,,p„., p„»,='
( (, ,), )p. ..( '—* or;;„((.,p„., p„»,

+~ ——~ I»,- -k((I» ~ kk+ k ~ »k }(( k»;Pa, »f)»&&s
C PQ

+(I .k krk+I, k kr»)((c(»p»pkr p ., n»r p»r»s

+ I» ~ kpr
~ ((Bqr P prPkfkr +kr P»r»E + Ikrkr qr»((QkrBprQ»Pqrr O»r P»r»E ) ' (20)

First-order theory decouples the higher-order
Green's functions which appear in the curly brack-
ets of Eq. (20) with a Hartree-Fock approximation
similar to that already used in the renormalization
of one-magnon energies. One obtains

(E —2Q») ((n»pk; o(»~, p»t, &)» = —(2n»+ 1}&»»,

with diagram techniques, can be further simplified
if one notes that, owing to the sharp peaking of the
magnon density of states in the zone-boundary re-
gion, a negligible error is made if we take u~+v~
-1. In this case LO-L, -L~ and we have

Z((d)= „)»r o (T)S ——lm . (24)
C z z 1 L()(E)

rq

L (E) = ——~ fk(zp»+pp») (23)

Equation (22), which was first obtained in Ref. 2

+ — 2n, +1 I ~
~ (y P (y~jgq E

P

(21)
where the statistical averages n» = (akta»& are to be
determined self-consistently according to Eqs. (12)
and (13). The first-order-theory result expressed
by Eq. (21) yields, of course, a Hartree-Fock re-
normalization of one-magnon energies (0»- A»).
However, because we deal with a two-particle
Green's function, we obtain also additional terms
which take into account the interaction between the
created magnons at first order. These terms are
present even at T = 0 (where n~= 0), where they give
the magnon-interaction effect first investigated by
Elliott and Thorpe. '

Starting from Eq. (21) it is not difficult to obtain
a closed expression for the quantity K((d), which is
proportional to the 2M Stokes cross section.
Some details of the calculations and of the connec-
tion with the diagrammatic approach are given in
Appendix A. The final result becomes

((( )= r rr (T)p (
—)—

Lz+ z J(L,L, —L(pLz)&Im
1 —z J(Lo+Lz) —q J (L&L& -LppLz) '

(22)
where

This completes the first-order-theory review in
this section. While theoretical 2M spectra pre-
dicted by Eq. (24} are in good agreement with ex-
periments for the temperature dependence of the
Stokes peak, no agreement at all is obtained for the
width of the spectrum. As a matter of fact, first-
order theory gives widths that, at best, are essen-
tially constant at increasing temperatures, while
experimental spectra indicate a marked increase
of these widths, which is particularly evident in
the temperature range beyond 0. 5T&. As we will
show in Secs. III-V, these features can be ac-
counted for only in a second-order theory, which
considers also magnon damping.

III. SECOND-ORDER THEORY

Second-order theory delays to a later stage any
decoupling approximation of the infinite hierarchy
for the equations of motion of the Green's function.
While a formal correspondence with diagrammatic
approaches remains also in this ease, the calcula-
tions become very cumbersome. It what follows
we shall omit all the unessential details.

Let us start from Eq. (20), which is exact, and
let us write the equations of motion for all the high-
er-order Green's function in the curly brackets.
Of course this introduces even more complicated
Green's functions which, however, can be decou-
pled. For these we use a decoupling procedure in-
troduced by Balcar' in the ferromagnetic case.
To clarify this procedure, let us consider a par-
ticular higher-order Green's function appearing in
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the right-hand side of Eq. (20), e. g. , the first one
((o]po]p.o(;p„np.ptp. ))z. We can split it in diagonal
and off-diagonal parts. The diagonal part has been
considered in the first-order theory and corre-
sponds to the decoupling

+6, ,«~, &p,
'

o(p ~ &p))z).

When we write down in second-order theory the
exact equation of motion for the above-mentioned

Green's function, we need not bother to consider
the information already contained in the diagonal
part. The nondiagonal part gives (i) terms which
renormalize the frequencies of the magnon modes
into (((]Itpap, e,,pp; olp, pp, )), (ii) terms which can be
twice decoupled in order to give contributions pro-
portional to „p,. pr2 and (iii) higher-order terms
which can be neglected in this second-order ap-
proximation. After some tedious algebraic manip-
ulations, the second-order approximation for this
Green's function gives

(E + Ap —Qpr —0 ~ —Qp) ((C(pQp c( rrPEI' Qp P)I~))z = prp pr ~ (Iprp rp+ I rp prp +I r)2 prp+Iprp rp)

&&[np(np. +n, , +1) —np. n;] ((npP„; o.r„.PE,))z ——6pp p. ..(Ipp, ,p[np(np. +np+1) —npnp]

(((z,.P,.; o(E.P p.))z+I,".
p, p.p(np(n, , +np+ I}—n, ,np)((np, Pp, ; np. P p.))z] . (26)

If we introduce this result into Eq. (20} and compare with the first-order-theory [Eq. (21)], we easily
recognize the first term in the right-hand side of Eq. (26) as one giving a second-order contribution to
magnon self-energies, while the second term represents a higher-order correction to the Elliott-Thorpe
interaction between the magnons. Treating, in a similar way, all the higher-order Green s functions ap-
pearing in Eq. (20) and substituting the results in the same equation, we finally obtain a second-order ex-
pression for the Green's function ((op]6p; ap, PE, ))z.

(2 —20 —2Z (E)]((rr 2;'rrr. pr. )) =—(2 ~ 1)2 . ~ (- —)(2 1)EI ((2 2; rr ll ))
P

J 2

+P-P -q q ~ PP PP ~ kq kP, Pq Pq pkP j P Pzq k

np(np. +np+1) —np. np np. (np+np+1) —npnp

EiG, 0,, II,. 9-, E+G,, -G,-D,, -D,
E21 I A A A

~g Sp (S +'Plk+ 1) —R t+Ippr pprIErp prp + ~ ~ g ((c(pPpr (zprPpr))z I (27)+ Pz P q' k

where the second-order contribution to the magnon self-energy is given by

Jz np(np. + n, , + 1) —np. n, ,Ep(E)= ~ 6p+pp' 'g --g g g' ( p ' pp'+ p ~ pp'}
a'5 P' + p p' q'

A (A Err

x OltX fMO CO np. (n&+ nq, +1') -n~n, .
( ...2,,1, ...„

II...,...I,....,) '„„'-—
„
I„.„.I...,.,j. (22)

The E dependence of second-order self-energy
causes the appearance of damping terms together
with additional magnon energy shifts. In general,
the latter lead to a k-dependent renormalization
factor. For temperatures not too close to T„,the
damping constant turns out to be practically con-
stant in the Z. B. frequency region (see Appendix
B). According to the Kramers-Kronig relations,
the second-order energy shift in this region should
be rather small. This conclusion is supported by
the Raman-peak experimental data, which are in

good agreement with the first-order Hartree-Fock
renormalization. Furthermore, for RbMnF3 the
neutron scattering data (Ref. 9) are consistent with
a Z. B. magnon renormalization, which coincides
within experimental errors with the Hartree-Fock
renormalization, giving another evidence of the
smallness of second-order shifts. Thus we shall
focus our attention on damping terms, which surely
must be essential in any explanation of the 2M
spectra widths. An analytic continuation of Zp(E}
in the complex plane gives for these damping terms
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(i. e. , imaginary part of the self-energy) for k-
wave-vector magnons

JzF (A )=&( —„ZM(k,p', r)np. (np. +1)Akin+1
x(nk + I)5(Ak+Ap, —Ap, .„—Ak, ), (29)

where the momentum Kronecker 6 has been elimi-
nated by introducing the momentum transfer r =k
—q '= p

' —p and where we have replaced in the final
result E with 2flk (which again is consistent at not-
too-high temperatures). In Eq. (29) M(k, p', r }is
defined by

ja8
kp p r j n(a-r), (p'~)p' ' (a-r)a, p'(p'-r)

raa yaa+ (~ k(kw) ~ -D'(-D'+r) +' -D'(k-rk k(-D'+r )}
7aa

&" (-P +r)k, (Am) P' + (0 i')its( P +Y) P'

(k-r)-D', (-D'+r&k+I(-p'+r)-D', (0 r&k ) '

(30)
As it stands, and within the above-mentioned ap-
proximations, Eq. (29) gives directly the damping
constant for magnons with wave vector k and re-
normalized Hartree-Fock energies N~. Similar
expressions for I', (A, ) have been given in Refs. 2
and 11. However, only the damping behavior of
small-k magnons has been analyzed in detail, while
in the case of 2M Raman scattering the important
contribution comes from near-zone-boundary mag-
nons. Simple extrapolations of the small-k be-
havior have been tried using an approximate linear
dispersion law (and consequently a Debye-like den-
sity of states) but they give damping constants
which are too small (at least one order of magni-
tude) for explaining the temperature behavior of
the widths of 2M Raman spectra. In Sec. IV we
shall give an approximate evaluation of I'~ for Z. B.
magnons which seems to be more consistent and
in better agreement with experimental data.

To conclude this section, let us return to Eqs.
(27) and (28) which give the main result of second-
order theory for 2M Stokes scattering. The pres-
ence of a second-order contribution to two-magnon
interaction [last term in Eq. (27)] greatly compli-
cates all further calculations and, in particular, it
does not lead to a closed simple expression for the
summation in Eq. (19). The physical effect of the
last term in Eq. (27) is to give space- and time-
dependent polarization effects which modify the
simple "ladder" result 1 —JI 0 at the denominator
of Eq. (24), possibly giving an effective (k, E) de-
pendence to the exchange integral. In order to
keep the theory to a reasonable degree of mathe-
matical simplicity, we shall neglect in the follow-
ing the presence of this second-order contribution.
It is difficult to give an accurate justification of
this approximation: physically, perhaps, we may
argue that in the temperature range considered

[&-2 ,A-»,'(&)](( (kP; c(,' P,')&

1 - Jz
=—(2nk+1}0k k. + ——(2n + 1}

x Z I;,'„(((k,p„(k,', p,',)), . (31)

It is clear that we obtain for the 2M Stokes cross
section a result which is formaQy similar to Eq.
(22} of first-order theory [or its simplified ver-
sion, Eq. (24)] but with the new quantities

which through the second-order self-energy part,
directly contain magnon damping contributions to
the 2M cross section.

IU. ZONE-BOUNDARY MAGNON DAMPING ESTIMATE

As in the first-order case, the k summation in

Eq. (32) strongly weighs zone-boundary magnons.
Therefore we can evaluate one-magnon damping
Fk(Gk) as given by Eq. (29}only for magnons with
A~- JSz.

At not -too-low temperatures, a small amount of
anisotropy is sufficient to make thermal numbers
of zone-boundary magnons not substantially differ-
ent from the population of small-wave-vector
modes. As the density of magnon states is sharply
peaked in a narrow energy range near the Z. B.
region, magnons in this region will be more effec-
tive in the damping process. Thus we can limit
ourselves in Eq. (29) to consider only those modes
p' whose energy is sufficiently near to the zone-
boundary value. On the other hand, k magnons are
just in this region, and the energy-conservation
expressed by the 6 function can then be satisfied
only if r is such that also 0&. „andA~„are in the
Z. B. region. A slight error is then introduced if
we take n~-n~, -.n~. -n~.~. The complicated quan-
tity M(k, p', r) which appears in Eqs. (29}and (30)

here, this approximation is not a bad one. Actual-
ly, any interaction between a single magnon and
the entire bath of thermal-excited magnons be-
comes more likely than a more or less complicated
interaction between the magnons created by the
light electric field. This justification is partially
supported by a flat-band calculation of this second-
order effect, whose contribution turns out to be a
factor I/z smaller than the second-order contribu-
tion to one-magnon self-energy. This result may
suggest the possibility that also in the general case
the neglected terms should become important only
in the neighborhood of the critical region, but
clearly here the entire spin-wave approach breaks
down.

Therefore we are left with the simple second-
order result
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can now be evaluated in this limit, taking into ac-
count the definitions (5) and (6) and the fact that in
the Z. B. region u-1, v-0. The relative damping
&(0»)/JSz of a magnon in the Z. B. energy region
can therefore be approximated as

T("»)z.s. v &»(&»+1)
O'Sz S~ n (T)

&& ~Z y„Z5(e»+z».—e,.„—e»,),
(33)

where the reduced variable a', = 0, /JSz has been
introduced.

In Appendix B we give an approximate evaluation
of the numerical term in the square brackets in
Eq. (33). The results of these calculations for the
damping constant of a Z. B. magnon (with energy
JSz) are shown in Fig. 2 for KNIF» and RbMnF».
Qualitatively we can a,ssert that these magnons are
very-mell-defined excitations, at least until tem-
peratures of the order 0. ST&. In RbMnF3 neutron
inelastic scattering data have been recently reported
by Saunderson et c/. In particular, damping con-
stants have been measured at various temperatures
for magnons in the [001] direction. These experi-
mental results for Z. B. magnons are plotted in
Fig. 2. As mentioned in Ref. 9, the resolution
power of the spectrometer introduces a systematic
error which limits the accuracy of the measure-
ments, especially at low temperatures where ob-
served damping does not go to zero at T-0. How-
ever, we note that the over-all agreement with our
theoretical estimates might not be as good as it
appears: for instance, the Z. B. magnon energy in
the [001] direction is slightly less than the maxi-
mum value JSz.

V. TYCHO-MAGNON RAMAN CROSS SECTION IN
ANTIFERROMAGNETIC PEROVSKITES

If we take into account in the second-order ex-
pression for ((n»P»; nt». Pt».))z [as given by Eqs. (27)
and (28)] only the influence of one-magnon damping,
we can easily obtain a closed expression for the
quantity K(&o) proportional to the 2M Stokes cross
section. This expression is formally analogous to

0.20

0.1 5—

N
0.10—

0.05—

0
0 0.2 0.4 0.6

T/TN
0.8 1.0

FIG. 2. Temperature dependence of relative zone-
boundary magnon damping, as calculated by Eqs. (33)
and (B2) for KNiF3 and RbMnF3. Dots refer to the
experimental values of the half-widths of zone-boundary
magnons in the [001) direction, as reported for RbMnF&
in Ref. 9.

Eq. {22), with the only difference being that the
quantities L (E) are now given by

cAa

k 0 A'

Even here it is a good approximation to replace the
quantities L (E) with L()(E), obtaining again Eq.
(24). Evaluation of the imaginary part finally gives

K(v)= (
—CJK'

S(( )"() KK( )P, (KS( )I' I
Here R(&o) and S((d) are the real and the imaginary
part of Lo((d), respectively. The last quantity can
be put in the following form, which is more suitable
for numerical calculations:

coth[n(T)E/4KzT] 1 g f»5(@ @z)
D ~ —(yE+i2I'q N g

3 x coth[»(JSz/KzT„)n(t)(x/t)]
~C [3(1—z»)i »] —C g3(1 —z») I»]

vJSz (1 —z ) (d/2JSz —n(t)z+iy»

+ 2C»$3(1 —2)'"]], (36)

where I'» refers only to Z. B. magnons (again, a
good approximation due to the sharp peaking of the

summation over the Brillouin zone). In the last
member we have introduced reduced variables
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FIG. 3. Some computed two-magnon spectra in KNiF3
versus relative frequency at various temperatures.

C~~(y) = f d~ cos(yr) J~(r}J,(7')J„(r),
and have been calculated and reported by many
authors.

We have calculated the expression in curly
brackets in Eq. (35), which is proportional to the
2M Stokes cross section, in the case of KNiF3 and
RbMnF~. These computed spectra are presented
in Figs. 3 and 4, using the estimated values of

(37}

x=E/2JSz, y„'=I'~/J'Sz, and t = T/T„. The quanti-
ties C~~ are defined by means of Bessel functions
as

FIG. 5. Theoretical and experimental peak positions
of two-magnon spectra as a function of temperature in
KNiF3 and RbMnF3. Here and in the following figures,
the full curves have been obtained by a direct numerical
evaluation of Eq. (36), whereas the dashed curves refer
to the simplified model mentioned at the end of Sec. V.
The experimental data for KNiF~ and RbMnF3 are taken
from Refs. 2 and 13, respectively.

damping for zone-boundary magnons. The tem-
perature variation of the relative peak frequency
and of the full width at half-maximum of the spectra
are plotted in Figs. 5-7 (solid line) together with
the available experimental data for KNiF& and
RbMnF3

The comparison between theoretical and experi-
mental peak frequencies (in terms of the zero-
temperature peak frequency) gives a fair agree-
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FIG. 4. Some computed two-magnon spectra inRbMnF3
versus relative frequency at various temperatures.
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FIG. 6. Theoretical and experimental full widths at
half-maximum of the two-magnon spectrum in KNiF3 as
a function of temperature.
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FIG. 7. Theoretical and experimental full widths at
half-maximum of the two-magnon spectrum in RbMnF3
as a function of temperature.

ment, particularly in the case of RbMnF3 in most
of the ordered region. As we stated before, this
supports the physical assumption that Hartree-Fock
renormalization of one-magnon energies is the
main factor responsible for the decreasing of the
2M peak frequencies with increasing temperatures.
Magnon "ladder" interactions further slightly de-
crease the peak frequencies by the presence of the
factor 2n~+1 in the corresponding term in Eq. (31).
Figures 6 and 7 show a marked increase of the
calculated full widths at half-maximum (solid line)
of 2M spectra beyond T-O. 5T&. This is essential-
ly due to the introduction of one-magnon damping.
In the case of KNiF, the over-all comparison be-
tween theory and available experimental data is
satisfactory, with some discrepancies as T- T„,

probably due to our approximations in the calcula-
tion of zone-boundary magnon damping. The few
published experimental data for the full width at
half-maximum in RbMnF3 do not evidently allow a
meaningful comparison, although a gross similarity
of the temperature increase of the full width can
be noted. '

The dashed lines in Figs. 5-V are the result of
a simplified semiphenomenological theory whose
essential points are the following. At zero tem-
perature an Ising flat-band approximation predicts
a 2M Raman peak at a frequency 2JSz —J (of course
with a 0-function-shaped spectrum}. Even if this
model may be not too bad owing to the sharp peak-
ing of the density of magnon states in the Z. B. re-
gion, actual 2M spectra comprise a band of magnon
frequencies in this region. Then, at T = 0, a rea-
sonable approximation for the 2M spectra of Hei-
senberg-type antiferromagnets may consist in tak-
ing an average magnon frequency (0) in this energy
range and an effective bandwidth 4 chosen in such
a way to reproduce (after having allowed for mag-
non interactions) both the T = 0 experimental data
for the peak and the full width at half-maximum of
the 2M Raman spectrum. Clearly, in this fitting
procedure we lose any minor structure of the spec-
trum (e. g. , any slope discontinuities due to critical
points in the Brillouin zone). After these assump-
tions, it is now possible to obtain a simple analyt-
ical solution for the 2M Stokes cross section at
finite temperatures, taking into a,ccount that (1/N)
x gf f~ = 1 for I'; scattering, and introducing mag-
non damping I'E ~ calculated in the same way as
before. The final result is a scattering cross sec-
tion proportional to

z. = n(T)6 +2I'z s
l, e "~ sr ((g -[2o.(T)(Q) -Z(2(n) +1)]j'+(n(T)6+2I' } (38)

where n is the magnon population at (0), i. e. , a
Lorentz-shaped spectrum peaked at a frequency

~~~(T) = 2(A)ot(T) —J(2(n)+ 1), (39)

with a full width at half-maximum (FWHM) given by

WpvsM(T} = 2Q (T)6 + 4Fz (40)

Equations (39) and (40) are represented (dashed
lines) in Figs. 5-7 after having fitted &u ~(0) and
4 to the experimental values for KNiF3 and RbMnF3
at zero temperature. It can be seen that the re-
sults do not differ very much from the "exact"
computed values and from most of the experimental
data, thus confirming the essential validity of this
simple model over most of the ordered region. In
this temperature range Eqs. (39) and (40) may give

directly, in a 2M Raman scattering experiment,
reasonable order of magnitude values for zone-
boundary magnon damping.

VI. CONCLUSION

In this paper we have employed the equation-
of-motion method of the retarded Green's functions
in order to calculate the two-magnon Raman scat-
tering for a Heisenberg antiferromagnet at tem-
peratures below T~. The first-order decoupling,
which takes into account the "ladder" interaction
between magnons, gives a satisfactory description
of the behavior of the Raman peak for cubic struc-
tures, like KNiF3 and RbMnF3.

In order to calculate the width of the Raman
spectrum, we have delayed to the second order the
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decoupling in the Green's-function hierarchy, re-
taining only the terms which give the one-magnon
lifetime. With some approximations we have esti-
mated the Z. B. damping and we have computed the
Raman spectrum, determining the peak position
and the full width at half-maximum. The good
agreement between theoretical values and experi-
mental data shows that at low temperatures (as far
as T-O. 5T„)the width of the Raman spectrum is
caused by band and "ladder" effects, while for
higher temperatures the finite lifetime of the rnag-
nons is the most important reason of the broadening
of the Raman spectrum.

Finally, we have derived an approximate expres-
sion for the Raman spectrum which gives the be-
havior of the peak and the width in agreement with
the experimental data. We suggest that, using this
expression, it is possible to obtain directly, with
a 2M Raman experiment, reasonable order-of-
magnitude values for zone-boundary magnon damp-
lIlg.
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APPENDIX A

For the sake of simplicity we put

g(E) —=
f7

~ fafa. (u) +va)(ue+v, , )G», (E),
C ~ 2 2 2

%P
(A1)

approximation, there is a formal equivalence be-
tween the diagrammatic and equation-of-motion
approaches. Taking into account the definition of

I»» and the symmetry properties of the coeffi-
cients y(, and f„it is possible to derive Eq. (22)
with some lengthly algebraic calculations.

Equations (A4} and (A5) are, of course, no longer
valid in a second-order theory, as it is easily
shown comparing Eqs. (27) and (A2}. However, if
we neglect the last term in Eq. (27), which is re-
sponsible for higher-order 2M interactions, we ar-
rive at equations formally analogous to (A4) and

(A5), the only difference being that instead of
Hartree-Fock one-magnon frequencies we have
magnon second-order self -energies. Graphically,
this procedure would correspond to take two-parti-
cle Green's functions, in which one-magnon Har-
tree-Fock propagators are dressed with second-
order diagrams easily recognizable from Eq. (28).

APPENDIX B

Here we give an approximate evaluation of the
square-bracketed term in the damping expression
of Eq. (33). We approximate the relative density
of states by two rectangles. The first rectangle
[amplitude p„energy interval (0, y)] corresponds
to low- and intermediate-energy magnons, while
the second one [amplitude pz, energy interva. l

(y, 1)) refers to magnons in a suitably defined
"zone-boundary region. " The parameters p„p2,
and y can be separately determined by the three
conditions:

1f p(e)« = pi y+ pa(1 - V) = 1,
0

and we write again the first-order equation (21) as

(E —2Q~)G», ———(2n„+l)5~ ~,
1

k kk'

N
2nk+1 I,,'» G„:. A2

With the definition

A~(E) =- 2w ~ 2 f„(u~a,+v )G~~(E»},
2n + ] k' k' k' kk'

Eqs. (Al) and (A2) can be written

(A3)

(A4)

These equations correspond to Eqs. (52) and
(54) of Ref. 2 in a first-order theory, i. e. , to a
Bethe-Salpeter and vertex equations in a ladder ap-
proximation. Therefore, at least at this level of

The quantities E and I' can be exactly calculated
and in the case of simple cubic antiferromagnets
are 0. 903 and +z, respectively. Thus from Eqs.
(Bl}we obtain p, = 0. 0856, pz = 7. 4 and y = 0. 875.
The fact that p, » p& indicates the sharp peaking of
this approximate density of states in a narrow
Z. B. region.

Let us now consider the square-bracketed term
of Eq. (33) for the Z. B. magnon damping. The
quantity 1/N g 8(fg+ ei, —f~ „—t~ „)can be ap-
proximated with the density of states p2 in the zone-
boundary region (y, 1) because all the energies in
the argument of the 5 function have been taken in
this region. The remaining summation over r is
consequently restricted only to the modes such that
a~, „and ck „arein the Z. B. region. Most of
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these modes correspond to low- I r I values or to
low energies. Taking into account only these
modes, this summation gives p, (y —o y ). Substi-
tution of numerical values finally yields

Taking into account that the four frequencies in the 5

functionarenearthe Z. B. energyregion, we have

I' z s v no(n, + 1)
JSz S a(T)

I'z s z n, (n„+1)
JSz '

S Ql (T)
(B2) 6 2

x — df t„(1—e„)'~'Coo)3(1—t„)'']

r, , 1 . a(T) JSz' = 0. 324 Sza(T) sinh
2K T (B3)

which is plotted in Fig. 2 for KNiF3 and RbMnF3.
In order to test the validity of our result we have
estimated the square-bracketed term of Eq. (33)
by using the relative exact density of states. '

Then the relative zone-boundary magnon damping
can be also written (eo = 1) »yo Cooo(3(1 —to „)'], (B4)

where the integration should be performed on the
values of &„such that E~

„

is near the Z. B. energy
region. Simple analytical approximations for &~

„

have given numerical values of the square-bracketed
term of Eq. (B4), which have the same order of
magnitude as the previous estimate.
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