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Low-temperature measurements of magnetic susceptibility, magnetization, and specific heat have been
made on single-crystal and polycrystal samples of Tb(OH);. The experimental techniques and methods
of analysis were similar to those used previously to study isostructural Gd(OH);. The results are
consistent with earlier reports that Th(OH); is a highly anisotropic ferromagnet resembling a
three-dimensional Ising model, but a detailed analysis revealed an interesting range dependence of the
effective spin-spin interactions. Estimates of the interactions between first-, second- and third-nearest
neighbors were made from measurements at temperatures high and low compared with the Curie
temperature (7, = 3.72 4 0.01 K), using asymptotically exact series expansions correct to second order,
and for both the first- and second-nearest neighbors an unusual cancellation between the magnetic dipole
and “exchange” interactions was found. As a result of this cancellation, the net interaction between
second-nearest neighbors becomes comparable to that between the nearest neighbors, but both are
reduced in absolute magnitude so that they become comparable to the long-range dipole interactions
between more distant neighbors. Some consequences of this competition on the cooperative properties
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are discussed.

I. INTRODUCTION

In a previous paper, ! to be referred to as I, we
outlined how measurements of susceptibility and
magnetic specific heat could be combined with as-
ymptotically exact calculations to give information
about the interactions between the magnetic ions in
the Heisenberg-like antiferromagnet Gd(OH);. We
now report equally successful determination of the
nondipolar interactions in the highly anisotropic
isostructural ferromagnet Tb(OH),.

Previous magnetic, ° optical, **° and thermal ex-
periments® have shown that the low-temperature
properties of the Tb* ions in this system can be
described to a very good approximation as an Ising
system, and preliminary estimates of the effective
spin-spin interactions have recently been ob-
tained. ® In the present paper we shall refine
these estimates and we shall examine in more de-
tail the conditions which make Th(OH); one of the
most interesting Ising-like systems known. ® 0 In
particular it will be shown that each Tb® ion can
be represented quite precisely by an effective spin
S’ = %, with effective spin-spin interactions of form
P{;S};S;; and a Zeeman term given by g,up Sz H,,
where g, is the g factor in the direction parallel to
the hexagonal crystal ¢ axis. Estimates of possible
off-diagonal spin-spin and Zeeman interactions will
show that all such terms should be quite negligible,
so that the form of the Hamiltonian is very close to
that of a simple Ising model. On the other hand,
the interaction parameters Pj; will turn out to have
competing contributions from dipolar and nondipo-
lar mechanisms, with the result that the rvange de-
pendence will be quite different from the kind of
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nearest-neighbor Ising model usually studied.

The detailed analysis of the interactions is made
possible by three special circumstances: First,
the Ising-like form makes it possible to specify
each pair interaction by a single parameter. Sec-
ond, the hydroxide structure is such that all sites
are magnetically equivalent, so that all pairs of a
given type (e.g., nearest neighbor) can be de-
scribed by one parameter. Third, the separation
between nearest and next-nearest neighbors is sig-
nificantly smaller than that of the third and more
distant neighbors, so that we would expect only two
significant nondipolar interactions. These consid-
erations are the same as those invoked previously
for the analysis of Gd(OH), ! except for the specific
reason which limits each pair interaction to a sin-
gle parameter. In the previous case this arose
from the extreme isotropy of the S state of the
Gd*, while in the present case it arises from the
extreme anisotropy of the Tb* ions in the particu-
lar crystal field of the hydroxides. As before, we
shall check the simplifying approximations by the
internal consistency of the entire analysis.

In particular, we shall be able to show that the
nondipolar contributions to the third- and more-
distant-neighbor interactions must be quite small,
so that these neighbors are only coupled by rela-
tively weak magnetic dipole forces. However, as
in the case of Gd(OH)s, it will turn out that these
weak interactions are really quite important for
the cooperative properties, although for quite a
different reason. In the Gd(OH); case the second-
nearest-neighbor interactions were found to be rel-
atively strong, but their effect canceled to first
order because of the particular symmetry of the
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antifervomagnetically ovdeved state, and this en-
hanced the importance of the more-distant-neigh-
bor interactions in the establishment of long-range
order. In the present case, on the other hand, we
shall find cancellations in the contrvibutions to the
individual paiv intevactions for both the nearest
and next-nearest neighbors, which are thereby
significantly weakened, and made comparable to
the more-distant-neighbor interactions. More-
over, the effect of the long-range interactions in
this system is enhanced, since Tb(OH); orders
ferromagnetically with long thin domains along the
¢ axis for which the cumulative dipole sum is a
maximum,

Tb(OH), is thus of interest as a system which
has the simple Ising form for the interactions but
a rarge dependence which is more complicated than
that of the usual near-neighbor models. In the
present paper we shall be concerned mainly with
the specification of the terms in the interaction
Hamiltonian but we shall also present experimental
data which may be of interest for comparison with
subsequent calculations of the cooperative behavior.

In Sec. IT we present a short description of struc-
ture of Tb(OH); and the samples used, followed in
Sec. III by a discussion of the Hamiltonian and a
number of minor complications and corrections.
Theoretical expressions relating the parameters
in the microscopic Hamiltonian to measurable high-
and low-temperature expansion coefficients of the
susceptibility, magnetization, and specific heat are
given in Sec. IV, and the experimental techniques
are summarized briefly in Sec. V. The experi-
mental results are described in Sec. VI and sum-
marized in three tables (Tables III-V). The anal-
ysis to determine the effective spin-spin interac-
tion parameters is given in Sec. VII, together with
a brief discussion of some of the consequences of
the unusual competitions which are found. The re-
sults are summarized in Table VI and the conclu-
sions are discussed in Sec. VIII.

II. Tb(OH); STRUCTURE AND SAMPLES
A. Structure

The hexagonal crystal structure of Th(OH); is
identical to that of Gd(OH); which has been de-
scribed previously (see Sec. ITA of I). The mag-
netic cation sublattice is shown in Fig. 1, which
also gives several near-neighbor distances corre-
sponding to Tb(OH),. The lattice constants used
arec=3.57+0.01 A anda=6.28+0.01 A as re-
ported by Klevtsov and Sheina. ' These were
also verified to within+ 0. 01 A from our own mea-
surements. 1°

B. Samples

The Tb(OH); single crystals and microscrystal-
line powder samples used in this work were pre-
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pared in this laboratory using a hydrothermal pro-
cess, the details of which are given elsewhere. **
The single crystals were generally about 1-10 mg
in weight, in the form of hexagonal transparent
prisms, parallel to the ¢ axis (typically 10x0. 3
x0.3 mm). Spectroscopic analysis confirmed neg-
ligible chemical impurities (<0. 1%), and x-ray dif-
fraction checked for other phases, and in particu-
lar for the absence of the oxyhydroxide TbOOH in
the microscrystalline samples (<2%).

Altogether six different samples were used for
the experiments reported in this paper and these
are described in Table I. The table also includes
the corresponding demagnetizing factors, whose
definitions and uses were explained in I (Secs. I B
and III B1). Quite accurate estimates of the small
demagnetizing factors for samples II and III could
be obtained in the present case from measurements
of the susceptibility in the ferromagnetic state, as
described in Sec. IV G of this paper.

Samples I-IV were aligned by eye with an accu-
racy of about 3°. This corresponded to an uncer-
tainty in the Curie constant of not more than + 0. 3%,
and a possible error in higher-order terms in the
susceptibility which was estimated to be quite neg-
ligible compared with other experimental errors.
The alignment error in the measurement of the
magnetization parallel to the ¢ axis was similarly
estimated to be small (<0.2%) compared to other
errors. For the measurement of the much smaller
magnetization perpendicular to the c-axis align-
ment was more critical, but the appropriate orien-
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FIG. 1. Arrangement of Tb® ions in Tb(OH);. The
successive neighbors and their distances (in A) from the
reference ion are as follows: (0) reference ion; (1) near-
est neighbor (1x), 3.57 (=c¢); (2) next-nearest neighbor
(2n), 4.04; (3) third nearest neighbor (3n), 6.28 (=a);

(4) fourth nearest neighbor (4n), 6.47; (5) fifth nearest
neighbor (57), 7.14. One may note especially the rela-
tively small distances between the nearest and next-near-
est neighbors compared with the distance between the
other neighbors.
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tation could be found with negligible error (<0.2°)
by rotating the magnet after the sample was aligned
approximately.

The powder samples used in the calorimetric
measurements initially consisted of about 15-g
powder mixed with about 6-g Apiezon N grease to
improve thermal conductivity (sample V), but this
introduced a significant uncertainty (about 3% at
10 K) due to the relatively large correction for the
specific heat of the grease. In the later experi-
ments a much larger powder sample (~ 70 g) was
used (sample VI), and by careful mixing it was
possible to reduce the amount of grease to less
than 5 g while still preserving homogeneity and
good heat contact. The larger sample also signifi-
cantly reduced the relative importance of the cor-
rections due to the thermometer, heater, and sam-
ple holder.

III. Tb(OH); HAMILTONIAN
A. Effective-Spin Approximation

The low-lying levels of the Tb* ion in the hy-
droxide lattice have been studied by optical spec-
troscopy. #*° A crystal-field analysis showed that
the ground state is actually two singlet states, the
symmetric and antisymmetric combinations of
nearly pure |"Fg, J,=+6) with a small admixture
of |"Fg, J,=0), and in the absence of other inter-
actions these are split by a small amount (€;>~0. 4
K). % The energy of the first-excited crystal-
field state E, is about 170 K, and there is thus a
wide range of conditions such that €q << %/, T < E,,
where 7¢’ denotes the size®® of other interactions
(spin-spin, Zeeman, etc.). Under these conditions

we can represent each Tb* ion by an effective spin
S’=13, as is customary for systems with a well
separated Kramers doublet ground state. * We
shall show that this representation is in fact valid
also for T comparable to or less than €, provided
3’ remains much larger than €,. (See Sec. I C4).

The linear Zeeman interaction can then be writ-
ten as

> o -
HKz=ppHe g+ 8, (1)

where the g tensor reflects crystal-field anisot-
ropy and pg =1 ugl denotes the Bohr magneton.

In the hexagonal symmetry of our present system,
the g tensor is axially symmetric with two princi-
pal components, g, along the hexagonal ¢ axis and
£, perpendicular to the ¢ axis. Under the assump-
tion of a pure |J,=z 6) ground doublet, one obtains
g,=18 and g,=0, and allowing for the small |J,=0)
crystal-field admixture and the deviation from
pure Russell-Saunders coupling one can find a
more precise estimate® g,=17.87+0.05 and g,=0.
It should be noted that g, is zero to a very high de-
gree of approximation and that the lowest-order
splitting which will be produced by a field perpen-
dicular to the ¢ axis will arise from third-order
effects proportional to H3,

These predictions are in good accord with the
experimental results. From the magnetic mea-
surements discussed in this paper we estimate g,
=18.0+0.2 and g,<1 (see Sec. VIF), whereas op-
tical measurements gave g,=17.7+0.2., We shall
therefore use the more accurate values estimated
from the crystal-field analysis for all further cal-
culations, and in particular for estimating the
magnetic dipole-dipole interactions.

TABLE I. Summary of experiments and samples.

No. of Demagnetizing
Sample Type of Temperature single Total Length (mm)/ factor
no. measurements region (K) crystals weight Diameter (mm) N2
I High-field
magnetization 1.1-4,2 0.8 mg 3/0.4 0.3+0,1"
I Low-field
magnetization 1.1-4,2 1,0 mg 4/0,2 0.099 +0.010°
il Low-frequency
susceptibility 13.8~-20 10 12.8 mg 7/0.64 0.22 £0,01°¢
v High-frequency
susceptibility 4,5-16 2.1 mg 16.5/0.3 0.015®
\% Specific heat 0.7=-17 polycrystalline 15¢g
VI Specific heat 4-15 polycrystalline 70 ¢g

2In units in which N for a sphere is -g-‘lr.

bAs estimated from ellipsoids of the same length to diameter ratio.
¢ As found from isothermal susceptibility measurements below T¢: Ny=1/xp with x7 in emu/cm?,
dTotal diameter of the sample with the crystals laid side by side in a bundle.
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B. Ising-Model Approximation

The extreme anisotropy of the g tensor immedi-
ately shows that the magnetic dipole-dipole cou-
pling can be written

R?}p=D§1 2t S:.f ’ (2)

with D, =g% ud (%, - 32%,)/7},, where 7,; and z,; de-
note relative positions of ions ¢ and j. This has
the desired Ising form and since g,=0 there will
be no other terms due to magnetic dipole-dipole
coupling.

The form of the contribution of other interaction
mechanisms is not so obvious. Any interaction
which is bilinear in vector operators on the two
sites will have a form in terms of the effective-
spin operators similar to that of the magnetic di-
pole coupling and hence may be written

30'3}’“‘“"=K§j Ltsij ’ (3)

but the only physical mechanism known from first
principles to be of this kind is isotropic exchange
between the real spins (J E; '§,). There is no rea-
son to believe that this is the dominant nondipolar
interaction in the present case.® More compli-
cated mechanisms such as anisotropic exchange,
electric multipole coupling, or virtual-phonon ex-
change can generally have matrix elements which
are off diagonal between the two effective-spin
states, and these could give rise to operators of
the form Si; S;.

Fortunately, however, such terms can be esti-
mated to be very small in the present case. If we
consider the most general form for an interaction
between two magnetic ions characterized by angu-
lar momenta J, and J,, we can always express
it>?" phenomenologically by an operator of the
form

3= 2 JoE O () O W) (4)

n,
mym?

where the O,(,,")(J) are normalized spherical tensor
(Racah) operators as defined by Smith and Thorn-
ley. ® If such an operator acts on states which are
built up from single electron states characterized
by angular momenta /, and I,, only terms with »
=2l +1and n'= 2I,+ 1 will have nonzero matrix
elements®!® and this effectively truncates the ex-
pansion. In the present case the single electron
states are well described by pure f states (I;=1,
=3) and this leads ton,n’=< 7.

If we now consider an operator of this form act-
ing on the particular doublet ground state which we
have described by S.=+3, we see that off-diagonal
terms will only occur to the extent that there is an
admixture into the pure |'Fg, J,=+6) states. This
admixture canbe estimated from the complete crys-
tal-field analysis which shows that the amplitude of

|oo

the |"Fg, J,=0) component, ag is about 0.044,
with all other admixtures identically zero or neg-
ligibly small. The only terms in Eq. (4) which can
give off-diagonal matrix elements must therefore
involve m,m’=0 or + 6.

For nearest neighbors there are additional re-
strictions due to the threefold axis of symmetry
and horizontal reflection plane which result in the
condition m +m’=0. The only term which will have
an off-diagonal matrix element will therefore be
JE8 0 (7,) 0 (7 2), and the order of magnitude of
the corresponding matrix element will be a2J&°
~0.002J%8. If we make the reasonable assump-
tion that the coefficient J5° will be comparable in
magnitude to (or smaller than) the coefficient of
the terms which result in diagonal matrix elements
(e.g., JY), we see that the off-diagonal terms will
be less than 0.2% of the Ising terms for the near-
est neighbors.

For next-nearest-neighbor pairs the symmetry
is lower, and additional terms of the form

80 08(,) 08 (J,) will be allowed. These will
have off-diagonal matrix elements of the order of
agd 85~ 0.04 J § which we may again estimate to be
a small fraction of the Ising-like terms. Moreover,
terms of this kind will appear in the effective-spin
Hamiltonian as Si; S;; which do not contribute to the
energy of the ferromagnetic state in first order.

We can conclude, therefore, that the off-diagonal
contributions from all sources will be extremely
small, so that the effective spin-spin interaction
can very precisely be described by the Ising form

o= g}P”o,oj+%g,,u3HZi;o, , (5)

where we have changed from S,;=+ 3 to 0;=+1 to
conform to the usual Ising-model notation and we
have also included the Zeeman term corresponding
to an applied field along the ¢ axis. The interac-
tion parameters P;; are given by

Pyj=Ki+Dy (6)
with the dipolar interaction
D“=igﬁ ﬂg("’?j— 32?1)/7’?1 . (7)

We would expect that the nondipolar contributions
K,;; would be significantly larger for nearest-neigh-
bor and next-nearest-neighbor pairs, so that we
can specify the complete interaction Hamiltonian
by just two parameters K, and K,, plus the mag-
netic dipole contribution calculated from the g value
and lattice parameters [Eq. (7)].2°

To check this assumption we shall include in the
analysis a third adjustable parameter K; to repre-
sent possible nondipolar coupling between third-
nearest neighbors, and we shall see that K, will in
fact turn out to be very small, as we would expect.
The over-all consistency of the analysis with only
two adjustable parameters will also confirm that
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there are no significant non-Ising terms which we
have neglected, although it is hard to see where
these could in fact come from. Even so, it is im-
portant to bear in mind that the theory of higher-
order interactions is in such a poor state for pre-
dicting absolute magnitudes that our estimates of
the non-Ising terms could well be off by quite a
large factor.?"? [t is comforting therefore that
the extreme anisotropy of the Tb® ground state in
the hydroxides eliminates the possibility of most
contributions identically and reduces the remain-
ing ones by very large factors. In other systems
which are claimed to be Ising-like, such an ex-
treme reduction is not always certain and the pos-
sibility of sizeable non-Ising terms always exists.

C. Minor Complications and Corrections

In addition to the electronic properties expressed
in Egs. (5)-(7), there are several minor compli-
cations which must be considered before theoreti-
cal expressions calculated using Eq. (5) can be
related to the experimental results. The proce-
dure outlined here is quite similar to a discussion
for the Ising-like antiferromagnet dysprosium alu-
minum garnet (DAG), and we shall frequently re-
fer to the analysis given for that system, %

1. Excited Electronic States

Some of the experiments reported later extended
up to temperatures where effects from the excited
states might not be negligible. The Schottky spe-
cific heat due to population of the excited state at
E, was estimated as described in Ref. 22 (Sec.
IIC1) and subtracted from all the calorimetric
specific-heat measurements. 2 The maximum
contribution was about 2% of the total specific heat
at the highest temperature, 17 K. 2

There is also a small contribution to the sus-
ceptibility due to the population of the first-excited
state, but even at the highest temperatures of our
measurements (25 K) the effect was less than 0. 1%
and thus completely negligible.

2. Van Vieck Paramagnetism and Diamagnetism

Some small contributions to the magnetic sus-
ceptibility result from a term in the Hamiltonian
quadratic in the field. This arises from admix-
tures of excited electronic states? and there is
also a small negative contribution due to diamag-
netism which can be neglected here.? The only
significant additional magnetic moment is due to
the Van Vleck paramagnetism for a field H applied
perpendicular to the hexagonal ¢ axis,

m'_'XJV}VHy (8)

and using the crystal-field eigenfunctions deter-
mined spectroscopically, % one can estimate xiv
=5,9x10"2 emu/mole. This compares favorably

with the experimental value yyy = (6.8+ 1.1)x 10" emu/
mole which we shall determine in (Sec. VIF). For
field parallel to the ¢ axis no significant Van Vleck
contribution is predicted and none is found experi-
mentally. ¥

3. Nuclear Effects

Naturally occurring terbium is isotopically pure
100% '**Tb, which has nuclear spinI=3.2® The
corresponding hyperfine structure contributes to
the total specific heat and magnetization, and these
effects must be removed to isolate the intrinsic
electronic properties. Although no detailed study
of the hyperfine interactions has been made on
Tb(OH);, we can use the experimental results from
other Tb compounds following the procedure in
Ref. 22 (Sec. IIC4). The spin Hamiltonian de-
scribing the hyperfine interaction for an ion in an
axially symmetric crystalline electric field is
given by®

Wnyp=ASI,+ B(S{L+ S)L)+ Q- 31U+ 1)] , (9

where the constants A and B are approximately
proportional to the corresponding g values. 33!
For Tb(OH);, £,=0, and one can therefore neglect
B. A canbe determined from measured values of
A/g, for terbium ethyl sulfate, 2 and we get A
=0.304 K. An experimental value for the quadru-
pole constant @ is not available, but is expected to
be small as found in related systems?®’3 and will
be neglected here.

For a system which is Ising-like, the hyperfine
contribution to the partition function can be calcu-
lated independently of the electronic interactions. *®
In particular, using the high-temperature expan~
sion given by Bleaney®* for the specific heat, one
gets

(C/R)uyp=S"(S"+ 1)I (I + 1) A%/9T?=b,,,/T? (10)

correct to order 1/T4, since one can easily show
that term in 1/T2 is identically zero, %
Substituting values, this gives

(C/R )uyp= (0. 029+ 0.001)/T?, (11)

where the error limits include estimated uncertain-
ties in the extrapolation procedure and the neglect
of the quadrupole contribution.

As will be shown in Sec. VIB, this hyperfine
specific heat starts to dominate the specific heat
due to the electronic spins below about 1 K, and it
would be satisfying to verify Eq. (11) experimen-
tally. In Sec. IVD we will introduce an expres-
sion for the electronic contribution containing one
parameter, and this, together with a possible hy-
perfine contribution of the form of Eq. (10), will
be fitted to the experimental data. The result
gives by,,=0.032+ 0.003 K% in reasonable agree-
ment with the calculated value [Eq. (11)]. 3
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Using the same approximation to estimate nuclear
effects on magnetic properties, one can readily
show3? that there is no contribution to any order
from the AS,'I, term, the only finite contribution
coming from the usually neglected direct interac-

tion of the nuclear moment with the applied field:
(12)

However, this interaction is exceedingly small and
its effect may be safely neglected at all but the low-
est temperatures.

The simple separation of nuclear and electronic
contributions to the thermodynamic properties is
valid only for systems which are completely Ising-
like, but this should be an excellent approximation
for Tb(OH); and we would therefore expect that any
neglected cross terms would be extremely small.

-

¥ ouer =&k I -H .

4. Ground-State-Splitting Effects

Another effect which must be removed to isolate
the intrinsic Ising-like properties of the electronic
spin system is the contribution from the ground-
state splitting €, due to the crystal field (Sec. IITA).
The accurate computation of this effect for “high”
(T> T,) and “low” (T < T.) temperatures is fairly
simple as it may be accounted for by constructing
an effective-spin Hamiltonian®

-’}Ccf=€os; . (13)

In particular, using the “high”-temperature expan-
sion for the specific heat which is given in Sec.
IVA1, one gets

(C/R).4= €5/4T%~ (0. 04+ 0. 01)/T? (14)

correct to order 1/72 (since the terms in 1/7T3 are
identically zero). This contribution corresponds
to about 4% of the magnetic specific heat, and it
can be allowed for with negligible uncertainty.

The “high’-temperature isothermal susceptibility
x7 will also contain a small effect due to the split-
ting given by¥

(1/x)et ~€3/12X T ~(4.4+0.8)x10°Y/ T

(emu/mole)-t, (15)

The effect from 3C; on the low-temperature prop-
erties of Tb(OH); can be estimated in the limit of
T - 0. Inthis range the excitation spectrum of the
crystal can be characterized by a single energy
gap 4, (see Sec. IVC), with 4,=9.0+0.2 K. Ad-
ditional terms of the form of Eq. (13) will have no
first-order effect on this spectrum and the second-
order shift will only be €3/24,~9%10"® K, which is
negligible compared with other uncertainties in the
present experiments.

At intermediate temperatures the effect of the
small crystal-field effect is more difficult to as-
sess. Intuitively, it would seem likely that an ef-
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fect which is small at both high and low tempera-
tures will also be small in the critical region. The
problem is formally the same as that of an Ising
model in a transverse magnetic field which has re-
cently been discussed by Elliott et al. *® who found
strong indications that the critical behavior is rel-
atively insensitive to a transverse field, and espe-
cially a very weak one. In particular, they con-
cluded that the critical exponents may be identically
the same as those of an Ising model in zero field,
so that the only effect of the field would be to pro-
duce a small shift in the actual critical tempera-
ture. In any case, in the present study we are pri-
marily concerned with the determination of the in-
teractions and for this we can restrict our analysis
to the two regions in which asymptotically ex-
act estimates of the crystal-field effect can be
made.

5. Phonon Effects

A detailed discussion of the lattice contribution
C, to the total specific heat C, of several rare-
earth hydroxides was given in I (Appendix B). An
analysis similar to that used for Gd(OH); gave an
estimate of C;/R=(3.8+0.2)x10°°T3 for Th(OH),
in general agreement with direct calorimetric mea-
surements! on diamagnetic La(OH),. At tempera-
tures below 6 K this contribution amounted to less
than 20% of the total with an uncertainty less than
1%, which was comparable to the error in the mea-
surement of C,. In this range estimates of C,

— C; thus provided a good measure of the magnetic
specific heat Cy and an accurate check on the val-
ues obtained by the high-frequency method (see
Sec. VIC). At higher temperatures the lattice
contribution becomes rapidly dominant and much
more reliable values of C, can be obtained from
the high-frequency method which is independent of
C. (see Sec. VIC).

IV. ASYMPTOTICALLY EXACT THEORIES

The method used to obtain values for the nondi-
polar interactions K;; in our established form for
the effective spin-spin Hamiltonian in Eq. (5) in-
volves the use of “high” -temperature expansion for
the susceptibility and “high” - and “low” -temperature
expansions for the specific heat. An independent
check is provided by the total internal energy and
by a comparison with optical absorption measure-
ments. The scale of high and low is set by the en-
ergies kpT, K;, (~kpTc), and g,upH, and the var-
ious expansions which we shall present are asymp-
totically exact for different temperature and field
regions determined by T high and low compared
with T, and T high and low compared with g,uzH/
kp. A quite detailed discussion along these lines
has been presented for a similar Ising antiferro-
magnet in Ref. 22.
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TABLE II. Dipolar and nondipolar interaction sums.

Single-center sums?

Double-center sums™¢

Triple-center sums®¢

Er‘g:?Kyi'jDije,f

by = ;z (KK 2Dri)p
A= 12>:k(K DseDridp
Bo3= IZ;“D 15D12Dri

Ogy = p};), (KK KDy,
Ogy = D%, (K 4K 4Dy Dy )
Oy3= P%:), (KyyDspDy Dy
Opg = j;;»DuD/kDmDu

2The sum z is taken over all distinct pairs of ions ¢ and j with ion ¢ fixed as center and j

running over all remaining ions.
®The sum
ning over all’ remaining ions.

is taken over all distinct triangles with ion 7 fixed as center and j and 2 run-

¢Subscript p denotes sums where a cyclic permutation of the coordinates is taken.

4The sum
and ! running over all remaining ions.

®Dy;=4glul (1-328/71)/7%;.

is taken over all distinct quadrangles with ion ¢ fixed as center and j, &,

f The shape dependence of the sum X, =§‘D” can be incorporated using a demagnetizing

factor as discussed in Sec. IV A 2,

A. High-Temperature Zero-Field Specific Heat and Susceptibility

The high-temperature expansion in powers of
1/T for zero field is well known, ¥~*! and only a
summary of the calculations for our particular
system is given in Secs. IVA1 and IV A 2, #

1. Specific Heat

The magnetic specific heat per spin in zero field
can be written as a high-temperature expansion of
the form

Cy_$Ca_C2,Cs, (16)

where C,, C;, ..., are related to sums of products
of the interaction constants in the interaction Ham-
iltonian [Eq. (5)]. Specifically,

1
Co=5 20 Py, (17)

where the sum is taken over all distinct combina-
tions of two ions with one ion ¢ fixed as the center
and j running over all the remaining ions. Simi-
larly,

Cs==2 2y Py PPy, (18)

where the sum is taken over all distinct combina-
tions of three ions with one ion ¢ fixed as the cen-
ter and j and 2 running over all the remaining
ions. Finally,

where the first sum is taken over all distinct com-
binations of four ions with one ion ¢ fixed as the
center and j, 2, and ! running over all the remain-
ing ions. The last sum is defined as for C; in Eq.
17).

Expressing the P’s in terms of the dipolar and
nondipolar contributions [Eq. (6)] we find,

Co=K2+ 3K3+ 3K3+ 351+ 3 ¢, (20)
Cy=—- 6(3K K3+ B6KZK 4+ 2K3)
— 24, - 24, 24y, (21)
C,=3(12K2K3+ 12K3+ 12K §+ 12K | K5 K 3+ 12K3K3
+ 108K 2K 3+ Ogy+ Oy + Oyg+ Tog)
- 3 (2K} + 6K 3+ BK5+ 424, + 625+ 42 15+ Zyy), (22)

where Z,,, 4,, and 0,,are sums containing the
dipolar interactions which are given explicitly in
Table II. These sums are similar to correspond-
ing expressions for Gd(OH); and the technique used
to evaluate them (using Yale IBM 7090-7094 and
IBM 370/155) has already been explained in I (Ap-
pendix A). All the computer sums in C, and C,
were checked indirectly against the corresponding
sums for Gd(OH); which in turn has been checked
against published results for isostructural GdCl,. 4
Substituting for the g value and lattice parameters

1 given in Secs. ITA and IITA and evaluating the sums
= P, P,P,P,;-5 4
€4 31>§z HEJRTRITHT D ; Py (19) we finally obtain
J
C,=K3%+3K%+ 3K%— (4.35+ 0. 04)K , + (1. 864+ 0. 019)K,+ (1. 208+ 0. 012)K 3+ 5. 60+ 0. 11, (23)

Cy=- 18K,K% - 36K2K,—12K3+ (1.639+ 0. 016)K2— (4. 25+ 0. 04)K, K, + (30. 8+ 0, 3)K2
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— (2.54+0.03)K,Ky— (33.1£0. 3)K,K5— (9. 070, 09)K2— (9. 03+ 0. 18)K,

-(4.27+0.08)K,~ (8.56+0.17)K3+17.4+0.2, (24)

C,=3[12K5K3+ 12K3+ 12K+ T2K | K5 K3+ 12K K3+ 108K3 K35 - (0. 324+ 0. 003)K 3+ (14. 09+ 0. 14)K3
+(14.84+ 0, 15)K3 - (2.65+0. 03)K3 K%~ (45.6 £ 0. 5)K, K5+ (1. 939+ 0. 019)K3 K,
- (42.8+0.4)K K3+ (52.2+ 0. 5)K, K, K- (89. 3+ 0. 9)K2K 4+ (112. 1+ 1. 1)K, K2
+(1.84+0, 13)K5+ (79 2)K3+ (83+ 3)K3+ (31.6+0. 9)K, K, + (6.7+0.6) K, K,
+(13.82 1. 3)K, K4+ (2.42+ 0. 17)K, - (23. 6+ 1. 2)K,+ (1250+ 60)K 5 — (2. 23+ 0. 15)]
- 3[2KH 6K+ 6K3— (17.49+0, 18)K3+(7.50+ 0.08)K 3+ (4.82+6.05)K 3
+(57.34+ 0, 12)K3+ (3. 52+ 0. 07)K3+ (1. 45+ 0. 03)K3— (83.6+ 2. 5)K,
+(0.73+£0.02)K,+ (0. 194+ 0. 006)K,+ 45.8+1.8] ,  (25)

where we have included in C, the small crystal-
field and hyperfine contributions which accounts for
only about 7% of the total (Secs. IIIC3 and IIIC 4),
The error limits are the over-all accuracy esti-
mated from the g value, lattice constants, and deter-
mination of the sums themselves. These expressions
will be combined in Sec. VIIwith a similar expansion
for the susceptibility to yield values for the three non-
dipolar interaction parameters K,, K,, and K.

2. Susceptibility

The high-temperature expansion for the parallel
isothermal susceptibility in zero field is most con-
veniently written as*!

X7(0)=A/(T - 6+B,/T+B3/T%...) . (26)

Here X is the Curie constant, and if x +(0) is ex-
pressed in emu/mole, we calculate A=Nyg2u2/
4kp=29,95+0. 17 emuK/mole using g,= 17. 87
+0.05 (Sec. IIIA). We will occasionally also ex-
press x(0) in emu/cm?® with the corresponding
Curie constant \,=)/V, where V,is the gram
atomic volume. V,can be calculated from the lat-
tice constants givenin Sec. II A which give V;=36. 7

+0. 4 cm® and therefore A, = 0.816 +0.010 (emu K/cm?®).

The first three coefficients which depend on the
interactions in Eq. (26) are

6=- ;P”, (27)
Ba=}PP§,, (28)
2
By=~22 Py Py Py+321 P, (29)

k243 i

with the summation convention as defined in Sec.
IVA1l. Comparing Eqs. (28) and (17) we see that

B,=2C,, (30)
J

which will later prove to be a useful check of our
analysis of the experimental results.

Furthermore, comparing Eqs. (29) and (18), we
see that

B3=C3+§"2P‘8‘I. (31)

It is important to note carefully the definition of
the parameter 6 in Eqs. (26) and (27) which is here
the first term in an exact high-temperature expan-
sion, in contrast to the more usual “Curie-Weiss
6” which is used to fit experimental data in the
molecular-field approximation. As T -, the two
&’s become the same, but the more precise defini-
tion of 6 given in Eq. (27) makes it possible to re-
late this quantity to other parameters without any
uncertainties due to statistical approximations.

Expressing the P’s in terms of dipolar and non-
dipolar contributions, we find

6= = 2 (K, + 3K+ 3K3) - Zo, (32)
and
By=Cy+4(K}+ 3K3+ 3K3)+ 5 (325, + 32 5+ o), (33)

where the dipolar sums Z,, are again given in Ta-
ble II. In contrast to the other dipole sums, Zg,
in 6 is shape dependent and it was convenient to
calculate it for all ions within a series of spheres
of increasing radii (up to 100 ;\), and estimating
the limiting value as R-=, The shape dependence
could be incorporated using a demagnetizing factor
N, as discussed in I [Eq. (5a)]. Substituting for the
dipole interactions, the final values for 6 and B,
were thus found to be
6=— (K +3K,+ 3K3)+(2.26+0.02)— (N, —4m),,

(34)
where X,=0.816 (emuK/cm?®), as given above, and

By=Cg+3(K}+ 3K3+ 3K3) - (8.74+ 0. 09)K%+ (3.75+ 0. 04)K3+ (2. 41+ 0. 02)K2+ (19. 1+ 0. 4)K,

+(1.17+£0.02)K,+(0.48+0.01)K;— 13.8+0.4, (35)
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where the error limits are determined as for the
specific-heat coefficients in Sec. IVA 1.

For the comparison of different experimental
results we shall correct all 6 values to a common
shape which in the present case is most conve-
niently chosen to be an infinitely long and thin
shape with N,=0. The corresponding value will
be denoted by 6%

B. High-Temperature and Low-Magnetic-Field Magnetization

In connection with the high-frequency specific-
heat measurements (Sec. VD), we will need an
approximation for the magnetization M(H,T) as a
function of field and temperature for g, ugH/kg <T
and T> T,. As explained in I, an adequate approx-
imation for M can be written under these conditions
in the convenient form*®

_ AH _ T H? )
“T-6+B,/T-B, /T’ 3R(T-6+78,/4T)} (6

M

which corresponds to the leading terms of a more
complete expression obtained previously. ?> Here
R =Ngykg denotes the molar gas constant and the
other symbols are the same as those used in the
low-field expression [Eqs. (26)- (29)].

C. Low-Temperature Specific Heat

In an Ising system, excitations of the fully or-
dered state (T—~ 0) take the form of localized spin
flips. * These excitations may therefore be ac-
curately described in terms of a simple energy gap
4Ap and there is corresponding low-temperature
specific heat of the form

C A-\2 er/T
°-(%) T+ AT (37

Not surprisingly, this has the same form as the
low-temperature tail of a Schottky specific-heat
anomaly of a two-level system, but in contrast to
the latter it is strictly valid only in the limit 7/4,
- 0. At higher temperatures multiple spin flips be-
come important and a more complex expression
must be used. The method of extracting A, from
measurements of finite temperatures has been out-
lined in Ref. 22 and we shall discuss it further in
Sec. VIB.

The energy gap of an Ising system can also be
obtained from an estimate of the internal energy in
the fully ordered state, which can be obtained by
integrating the specific heat?? (see Sec. VID). If
we denote the energy per spin at 7=0 K by Uy/R
and choose the energy of the fully disordered state
as zero, we can readily show that

-~ Uy/R=%8, . (38)

The energy can also be related to the interactions
defined in Eq. (5):

Uy _1
_Fo?jz P , (39)

and comparing Eqs. (27), (28), and (39) we see that

A£g=26", (40)

where we have chosen the value of 6 appropriate to
zero demagnetizing factor to reflect the fact that
the ordered state will take the form of domains
which minimize the magnetostatic energy. Strict-
ly speaking, we should also allow for additional
contributions to the total energy from domain walls
and residual magnetostatic surface energies, but
rough estimates show that these effects will be neg-
ligible in the present case.

The three equations (38)-(40) provide convenient
cross checks of both the experimental results and
the method of analysis and we shall see later (Sec.
VIH) that very satisfactory consistency is in fact
obtained.

D. Low-Temperature High-Field Magnetization

The low-temperature magnetization for an Ising
system has been discussed in Ref. 22, where it
was shown that

M= Mgtanh [(g, ugH/ kg +A,)/2T) (41)

with My=2 Nopupg,. Inthe case of g, ugH/kg> 4,
this expression reduces to the simple expression
for the Brillouin function for S’=3%, and for Th(OH),
this simplification holds to within 0. 3% for H>"7 kG
and T<2.5 K, It is therefore possible to obtain a
value for M,, and hence the g value, by measuring
M at high fields, and taking the asymptotic value for
M/tanh (g, ugH/2kgT). In a general case one
should also consider the temperature-independent
contribution to M, but for Tb(OH), this was shown
earlier to be negligible (Sec. IIIC 2).

V. EXPERIMENTAL METHODS

The apparatus and experimental methods were
essentially the same as those used previously for
the study of Gd(OH);, and details may be found in
I and also in Refs, 47-50. We shall therefore
summarize here only those details which are pecu-
liar to our present study of Tb(OH)s.

A. Specific-Heat Measurements

Two different techniques were used to estimate
the magnetic specific heat Cy. One was to use the
standard electrical heat-pulse method?” to deter-
mine the total specific heat C; and to allow for a
lattice contribution C; estimated from an analysis
of the high-temperature variation of Cr=Cy+C;.
In the present case C, could only be estimated
with an uncertainty of about 5% (see I, Appendix
A), and it was therefore possible to deduce C, only
in regions where the lattice correction was not too
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large. This condition was well satisfied below
about 5 K where C; was less than 3% of C,, but at
higher temperatures the ratio between C, and C,
increased rapidly (roughly as 7°). Thus, at 12 K
C. accounted for 90% of the total, resulting in a
50% uncertainty in Cy. For our quantitative analy-
sis we therefore used the calorimetric measure-
ments only below about 10 K. In this range the
uncertainty due to the corrections for the calori-
meter and the grease used to promote thermal con-
tact was also small (see Sec. IIB), and we esti-
mate an over-all accuracy in our final values of
Cy from 2 to 20% in the temperature range 4-10 K,

To measure Cy at higher temperatures we used
the high-frequency method of Casimir and du
Pré. 48495452 1 this one measures the field depen-
dence of the adiabatic magnetic susceptibility xg(H),
which is directly related to C, by a thermodynamic
expression involving only derivatives of M with re-
spect to T and H. In the present case, these de-
rivatives could be estimated with adequate accu-
racy from the theoretical expression given in Eq.
(36) and the main problem revolved around mea-
suring xs(H). In particular, it was necessary to
establish at the outset the conditions under which
the measuring frequency f would satisfy the con-
dition

1/7gy <2mf<1/Tgg, (42)

where Tg and 74 are the spin-lattice and spin-
spin relaxation times.

The first of these inequalities, 1/7g < 27f, can
generally be assured by varying the temperature,
since 7y, is always a strong function of tempera-
ture, becoming quite long (~msec) at helium tem-
peratures. This was confirmed in the present case
by rough theoretical estimates based on the ap-
proximations given by Orbach, ® using available
crystal-field parameters. Details of the calcula-
tion are given elsewhere, 3 but the results showed
clearly that g should be longer than about 9x 103
sec at 5 K, with a dominant Raman process vary-
ing approximately as 7g ~ 70077 sec. For experi-
mentally convenient frequencies in the range 2-4
MHz, this corresponds to a maximum temperature
of about 30 K below which Eq. (42) should be well
satisfied. This was confirmed by the final mea-
surements of C, which gave a smooth variation up
to about 20 K, where there was an abrupt kink
which we interpret as the breakdown of the first
inequality in Eq. (42).%

The second inequality, 1/7g¢> 27f, is more dif-
ficult to test. The general order of magnitude of
spin-spin relaxation times is 10-1°-10-!2 sec, es-
sentially independent of temperature, and we might
therefore expect that a measuring frequency in the
range 2—-4 MHz would easily satisfy Eq. (42).
However, in an extremely anisotropic system such
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as Th(OH), the “flip-flop” terms which are gener-
ally responsible for spin-spin relaxation®® are very
small (see Sec. III B), and we must therefore ex-
pect significantly longer times for 7g. Under
these conditions it is very difficult to estimate 7g
theoretically, but we can fortunately test for the
inequality in Eq. (42) empirically in two different
ways.

One is to compare values of the zero-field sus-
ceptibility as estimated from the measured fre-
quency shifts and the filling factor of the rf coil
with values measured at lower frequencies (Sec.
VIE) or calculated theoretically, **° Agreement
between these estimates indicates that the spins
come into internal equilibrium in times short com-
pared to the measuring rate, as required by the
relaxation condition [Eq. (42)]. In the present ex-
periments, such agreement was in fact found to
within the estimated uncertainty of the calculated
filling factor (~20%).

An independent confirmation of Eq. (42) was
provided by the agreement of the observed field
dependence of the rf susceptibility with that pre-
dicted by the Casimir-du Pré theory, ** %52 and
also by the quantitative agreement between the in-
ferred values of Cy and those estimated from the
total specific heat. This test should be quite sen-
sitive, since 7g is generally a strong function of
field, 5 and if spin-spin relaxation were affecting
the susceptibility measurements, one would ex-
pect a marked effect in the observed field depen-
dence. %57

We may conclude from all this that measuring
frequencies in the range 2—4 MHz do satisfy both
relaxation conditions specified in Eq. (42) for all
temperatures below 20 K, so that measurements
of the real part of the susceptibility x'(H) should
correspond to the thermodynamically defined adi-
abatic susceptibility x s(H). *®

The magnetic specific heat per spin is then re-
lated to the field dependence of x'(H) by*5%,52,58

D (0 /rol] (SR
(43)

where x7(0) and x;(H) denote the isothermal sus-
ceptibilities 8M/8H)p y.oand (0M/8H)p, 4, respec-
tively. Using the expression for M given in Eq.
(36) which is adequate for the range of H and T of
the present measurements, we find

CM(HéT)Ie:%(T— 9+BZ}T+B3/’I€)3(1 _ETL%)Z

N T(T -6+ B,/ T)
x7(H, T)(l +E7’(H, T)m):

(44)
where
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x (©) 1]" 45)

X (H)
and the other parameters have been defined in Egs.
(26) and (36). Values of the parameters A, 6, B,,
and B; were estimated experimentally as discussed
in Sec, VIE, and the values used in the final analy-
sis are listed in Table IV.

As discussed in I, C,(H, T) is generally field de-
pendent and it is convenient to extract the zero-
field value C,(0, T) which is most directly related
to the spin-spin interactions [Eq. (16)]. For this
we could in principle extrapolate measurements in
“large” fields, but it was here more convenient to
limit the measuring fields so that the field depen-
dence was practically negligible. To estimate the
field dependence we used the theoretical relation
given in I (Sec. IV A) together with Eq. (36):

v(H,T)=H

Cy(0, )T® C,(H, T)T? (B,+3By/T)(\/R)H?

R R (T-0+By/T+By/TR ’

(46)

which is correct to second order in H. In the
present experiments it was possible to limit H so
that the last term in Eq. (46) was always less than
0.2% of first term, so that the field dependence
was in fact negligible.?® From Eq. (44) we see that
7(H, T) is then only a function of T, 7(T), which
could thus be determined simply from plots of x'(0)/
X' (H) vs HZ,

At the lowest temperatures (T<5 K) it is pos-
sible that our simplified treatment is no longer
adequate and that higher-order terms in H and the
interactions should be included. However, in this
range the total specific-heat measurement provided
an entirely satisfactory estimate of C,, and a di-
rect comparison of both methods over the region
of overlap 4. 5-10 K gave very satisfactory agree-
ment, as will be seen in Sec. VIC.

B. Isothermal Susceptibility Measurements

Susceptibility measurements were performed at
liquid-hydrogen temperatures (13.9-20.0 K) using
audio-frequency inductance method of McKim and
Wolf®® (see also I, Sec. IVB). The limit of detec-
tion of the apparatus was 10°7 emu, corresponding
to a relative accuracy of + 0.1%, in the tempera-
ture dependence of xr(0) for the particular sample
(I1I) which was used (see Table I). The tempera-
ture was determined from the vapor pressure
above the liquid with an estimated accuracy of
about + 0.01 K, so that the over-all accuracy of the
xr(0) vs T variation was better than +0.2%. The
absolute accuracy, which also involves the calibra-
tion of the apparatus and the weight of the sample,
was estimated to be about + 1%.

Additional estimates of the isothermal suscepti-
bility were obtained from the high-frequency mea-
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surements in zero applied field. As discussed in
Sec. V A there was strong evidence that spin-spin
relaxation was faster than the measuring frequen-
cies of 2—4 MHz, and under this condition the zero-
field susceptibility is equal to the isothermal sus-
ceptibility, even though, as in our case, the spin-
lattice relaxation may be much slower. This is
simply because s (H)— xp(H) as H~ 0.

Details of the apparatus and the methods for al-
lowing for the dielectric contribution to the mea-
sured frequency shifts have been given else-
where. **%° For the small single crystals used in
the present experiments it was difficult to obtain
an accurate estimate of the effective filling factor
of the rf coil (better than 20%), and only relative
measurements of the susceptibility were therefore
made., However, these could readily be normalized
(to within 1%) by comparing them with the low-fre-
quency measurements made in the other apparatus.
Since the high-frequency apparatus incorporated an
independent temperature-control system, it was
thus possible to extend the isothermal susceptibility
measurements outside the liquid-hydrogen range
covered by the low-frequency apparatus. The ac-
curacy of the temperature measurements in this
system was estimated to be about + 0,01-0,08 K
over the range 4. 5-25 K, respectively, and the
relative accuracy of the susceptibility measure-
ments was about + 3%. No measurements were
made at higher temperatures because of contribu-
tions to the susceptibility due to the population of
the first-excited state (Sec. IIIC1).

C. High-Field Magnetization Measurements

Measurements of the magnetic moment parallel
to the ¢ axis were carried out in fields up to 14 kOe
at temperatures between 1.1 and 4.2 K using a vi-
brating-sample magnetometer®® as described else-
where. %" The limit of detection was about 2x10*
emu, corresponding to about 0.1% of the saturation
moment of our Tb(OH); sample, However, the ab-
solute accuracy which depends on calibration was
again lower, and it was estimated to be about
+1%.

Measurements were also made with the field per-
pendicular to the ¢ axis, and for these a very small
moment (~#; of the parallel moment) was found.

As a result of this, very careful alignment of the
magnetic field was required and this was achieved
by rotating the magnet, as discussed previously
(Sec. IIB). With proper adjustment (x 0.2°) no
significant additional error in M, was incurred.
However, the much smaller values of A, resulted
in less accurate measurements, and the typical
scatter was about + 10%. No attempt was made to
study the angular dependence of M, in the plane
perpendicular to the ¢ axis since the anisotropy
would be expected to be extremely small,
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D. Low-Field Magnetization Measurements

To study the low-field temperature dependence
of the magnetization, especially in the vicinity of
the critical point (7, =3. 7 K) additional measure-
ments were made using a ballistic method. The
apparatus was essentially the same as that used
for the ac susceptibility measurements, *° using a
moving sample and a compensated pair of pickup
coils inside the Dewar. Static magnetic fields up
to 900 Oe were provided by an external solenoid.
The voltage pulse resulting from the motion of the
magnetized sample from one secondary to the other
was measured either with a ballistic galvanometer
(Tinsley 4789) or with an integrating digital volt-
meter (Dymec 2401 C). The former was more
sensitive (+ 6x10°° emu)® and was used for small
moments (up to 0. 05 emu), while the latter had a
sensitivity of only + 5x10°* emu ® but was much
more convenient for measuring larger moments.

Calibration of both measuring systems was car-
ried out using manganous ammonium sulphate, 5°
and the estimated absolute accuracy was about
+0.5%. Temperatures were measured from the
vapor pressure of liquid helium outside the sam-
ple space, which was filled with low-pressure heli-
um gas for thermal contact. The estimated accu-
racy of the temperature measurements in the re-
gion 1,2-4,2 K varied from about 0. 02 to 0. 005 K,
respectively.

VI. EXPERIMENTAL RESULTS
A. Analysis in Terms of Characteristic Parameters

In this section we shall present various experi-
mental results in such a way that we can readily
extract the different characteristic parameters
which describe the magnetic and thermal properties
of Tb(OH);. These parameters are of three kinds?:
(i) single-ion parameters which characterize the
interactions of individual Tb®* ions with their im-
mediate environment, (ii) collective parameters
which describe the effect of spin-spin interactions
in regions well removed from cooperative phase
transitions, and (iii) critical parameters which
characterize the phase transitions themselves.

In the present work we have concentrated mainly
on (i) and (ii), since these can be studied more eas-
ily with available samples, but one would hope that
subsequent experiments will give equally detailed
information on the cooperative properties and a
comparison with the predictions of the appropriate
Ising model. Some of the difficulties of making
critical-point measurements on Th(OH), will be
reviewed in Sec. VIG, but we shall first extract
four single-ion parameters (Mg, A, X3y, and by,)
and eight collective parameters (6°, B,, B;, C,,
C;, C4 Ag, and U,) using the theoretical expres-
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sions given in Sec. IV, Several of these param-
eters can be related to one another, providing tests
of both the theoretical approximations and the ex-
perimental technique. The results of all the pa-
rameters will be summarized in Sec. VIH and a
final set of four basic independent parameters 6%,
C;, C3, and C, will be established. This set will
then be used in Sec. VII for the determination of
the nondipolar interactions.

B. Magnetic Specific Heat from Calorimetric Measurements

The results of the total specific-heat measure-
ments corrected for the calorimeter and grease
contributions are shown as the filled circles in
Fig. 2. The corresponding magnetic specific heat
was estimated by subtracting a lattice contribution
determined from the usual plot of C;T%/R vs T®
which gave C,/R=(3.8x0.2)x10-57%, Some of the
uncertainties inherent in this procedure were dis-
cussed in I (Appendix B), and the present error
limit is based on a comparison with the range of
results obtained for some of the other hydroxides.
The corresponding uncertainty in the estimated
magnetic specific heat becomes relatively small
below about 7 K, but at higher temperatures the
error on C, increases rapidly. The estimates of
C, in this range were therefore only used to check
on the consistency of the high-frequency measure-
ments, as discussed in Sec. VIC.

The low-temperature results showed a fairly

2.0 T T T
T T T
2 -
15| -
C/R
C/R \
I+ -
1o _
L
_Te= 3.72:0.02K
0.5|- 35 36 3738 39
T(K)
a
_______ D
o 1
0 5 T O i5

FIG. 2. Specific heat of Tb(OH)3; from calorimetric
measurements. Closed circles (curve a), total specific
heat Cy/R, as measured. Broken line (curve b), mag-
netic specific heat Cy/R obtained by subtracting an es-
timated lattice contribution C;/R=3.8x10"°T%, The
temperature of the A peak was estimated at T¢=3.72
+0,02 K (see expanded scale insert). The rise in the
specific heat with decreasing temperature for T<1K is
due to hyperfine interactions.
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sharp peak at 3,72+ 0.02 K which we shall inter-
pret as the ferromagnetic Curie point 7 (see Sec.
VIG). A more detailed study of the peak revealed
a significant amount of “rounding” (~0.02 K) which
is of course not surprising in view of the polycrys-
talline nature of the present samples. No attempt
was therefore made to investigate the shape of the
specific-heat curve in the vicinity of T.

At even lower temperatures a rounded minimum
was observed, and this may readily be explained
by the sum of a hyperfine contribution [Eq. (11)]
and a spin-spin contribution of the form of Eq.
(37). To obtain the best experimental values for
buyp and A, the raw data were fitted to an expres-
sion of the form
Cy_b AgX  AO/KT
—R;‘-'= +(F%)_(1+e"0/”)2 (47)
using a computer least-squares fitting program,
for several choices of the number of experimental
points to be fitted. Since a spin-spin term of the
form of Eq. (47) is valid only in the limit of 7/4,
- 0 we would expect a small systematic variation
in the effective value of Ay as fewer higher-tem-
perature points are included in the fit, and by ex-
trapolating the results to 7=0 K one can thus es-
timate the true gap parameter A, This procedure
was discussed in some detail in Ref. 22. The re-
sults of this analysis gave

buyp = 0. 032+ 0, 003 K? (48)
and
4,=8.520.5K, (49)

where the errors reflect uncertainties due to the

T(K
7()

(]

29 ] 10

10
-1

approximations in the analysis as well as experi-
mental errors. The value of b, is in quite good
agreement with the calculated value [Eq. (11)] and
the estimate of A is in fair agreement with pre-
vious optical determinations® and also with other
estimates to be discussed later in this section.

C. High-Frequency Specific-Heat Measurements

Measurements of the field dependence of the adi-
abatic susceptibility, x’(H)/x’(0), were performed
at 27 different temperatures between 4.5 and 16 K,
The maximum field chosen at each temperature
was kept so low that the field dependence of C, es-
timated using Eq. (46) was always <0,2%. Under
these conditions 7(H, T) ~#(T) and could be deter-
mined to an accuracy of about + 0. 2% at the highest
temperatures, increasing to about + 1% for the low-
est temperatures. The zero-field specific heat,

Cy (0, T) was found using Eq. (44), estimating the
expansion parameters 6, B;, and B, iteratively,

as will be discussed in Sec. VII. The values
finally adopted were 6=4.51x0. 10 K [corrected to
the shape of the high-frequency sample (Sec.
IVA2)], B,=2.0+0.2K? and B;=1.4+0.6 K°,

The final results are shown in Fig. 3 with a plot

of C4(0, T)T%/R vs 1/T. The error bars represent
the combined uncertainties resulting from the val-
ues of A, §°, B,, and B; which were used in the
analysis, aswellas experimental errors in estimat-
ing (7). As one can see, the data become increas-
ingly more accurate for higher temperatures. The
large increase in the errors for the lowest temper-
atures is primarily due to the uncertainty in our
estimate of 8° (see Sec. VIE) and the experimental
determination of 7(T).

FIG. 3. High-tempera-
ture magnetic specific heat
for Tb(OH), as determined

-n
5N

o 1 1 1

CuT7R =1.0040.10 +(1.620.8)/T + (7£2)/T?

from high-frequency sus-
ceptibility measurements
L (filled circles) and calori-
metric measurements (tri-
angles). The results are

4 plotted as CyT*/R vs 1/T
to identify the first three
terms in the high-tempera-
ture expansion CyT?*/R=C,
+Cy/T+Cy/T?. The solid
line and broken lines indi-
h cate the high-temperature
fit with error limits for C,
=1.00+0,10K? C3=1.6
+0,8K%, and C4=7+2K%
These were found from the
high-temperature asymp-

(0] 0.05 0.l10 0.15
1/T(K™)

totic behavior of the self-
consistent fitting procedure
described in the text.

0.20 0.25
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Figure 3 also includes the calorimetric esti-
mates of C,, and it can be seen that they provide
an excellent complement to the high-frequency
measurements, The relatively close agreement
between the two methods at the lowest tempera-
tures (T<7K) is in fact very sensitive to the ade-
quacy of the correction terms used in Eq. (44),
since 6, B,, and B; enter into the specific-heat
analysis to the third power, whereas they only enter
linearly into the more usual analysis of suscepti-
bility measurements.®” At higher temperatures,
the correction terms become less important and
we may therefore rely on the high-frequency mea-
surements with even better confidence.

To estimate values of the leading high-tempera-
ture expansion coefficients [Eq. (16)] we fitted the
combined high-frequency results between 4.5 and
16 K and the calorimetric data between 4.5 and 10
K iteratively to an expression of the form

CuT?/R=Cy+Cy/T+C,/ T2, (50)

truncating the series arbitrarily at the third term,
but using several choices of the number of experi-
mental points to eliminate the effect from higher-
order terms. This is discussed in detail in Sec.
VIIA. The results of this analysis gave a limiting
set of values

C,=1.00+0.10 K?,
C3=1.60+0.8 K3, (51)
C4=7i2 K‘,

where the increasing error limits on the higher-
order terms reflect the uncertainty due to unknown
higher-order terms.

The curve representing Eq. (50) in Fig. 3 clear-
ly shows the asymptotic behavior of the fit at high
temperatures. The increased discrepancy towards
the lowest temperatures is readily explained by
omission of higher-order terms in the expansion
and can be removed by empirically adding one ex-
tra term

C5=60+40 K5, (52)

This value cannot be regarded as significant, but
it does provide an estimate of the higher-order
terms at temperatures where it is customary to
assume only a significant 1/72 specific heat.

The parameters C,;, C3;, and C, combined with
an experimental value for 6 are sufficient to allow
an unambiguous determination of the nondipolar in-
teraction, as will be discussed in Sec. VII.

D. Entropy and Internal Energy of the Magnetic System

The internal energy U,(T)/R and entropy S,(T)/R
are important thermodynamic quantities which will
serve as useful checks on the analysis and the mea-
surements. These could be determineddirectly from
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the magnetic specific heat, using the relationships
Su(T)/R= [ (C*/RT)dT , (53)
Uu(T)/R=~ [ (Cif*/R)dT , (54)

where the scales have been chosen so that S,(T)/
R=0for T=0K and U,(T)/R=0 for T=w, Ci
represents the purely magnetic part related to the
ionic interactions, obtained by subtracting from C,
the contributions from the crystal-field and hyper-
fine interactions (Sec. IIIC).

We will eventually want to consider S,(<)/R and
Uy (0)/R, and integrations of C,/R over all temper-
atures are therefore needed. ® These are conve-
niently divided into three major sections. (a) T
~ T¢; the major contribution to the integrals comes
from the range T=1.3-5 K, where C, is accurate-
ly known from the calorimetric measurements, as
shown in Fig. 2. (b) T> T4 for T>5 K the as-
ymptotic series given by Eqs. (16), (51), and (52)
represents C, adequately and the integrations to
infinity could be performed analytically, % (c) T
< T3 similarly, for T<1.3 K the asymptotic
form given by Eqs, (37) and (49) can be integrated
analytically to give the extrapolations to 7=0 K,
Combining these contributions we finally estimate

Sy(=)/R=0.68+0,06 , (55)

in excellent agreement with the value In2 =0, 693
expected for a system with effective spin §’' =1,
and

Uy(0)/R=-2.3+0.2K , (56)

which is also in good agreement with other esti-
mates, as will be discussed in Sec. VIG.

E. High-Temperature Zero-Field Susceptibility

The isothermal zero-field susceptibility was

measured by two methods as described in Sec.

V B. Both sets of data were corrected for shape

to correspond to an infinite needle according to

Eq. (5b) of I and the results are shown in Fig. 4,

in which (x,7)! is plotted as a function of 1/7.

One can see that the results do not fall on a

straight line as would be the case if a simple Curie-
Weiss law described the data.

To find the best value of 6 in Eq. (26) we followed
an iterative procedure similar to that previously
used in Ref. 1. An approximate value of B,=2.2
+0.3 K? was estimated from the low-temperature
curvature in Fig, 4, and a modified susceptibility
function defined to first order by (%7 7)!= (xp 7)™
- B,/\T® was plotted as a function of 1/7. This
gave a much straighter curve from which a better
high-temperature asymptote could be estimated.

To improve the analysis one step further we may
note a special relation for the case of an Ising sys-
tem between the susceptibility parameter B, and
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FIG. 4. High-tempera-
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ture susceptibility of Tb
Tb(OH);, corrected for
shape to an infinite needle.
The solid circles show the
E high-frequency results and
the crosses the low-frequen-
cy results plotted as 1/x,T
vs 1/T. To estimate the

i high-temperature asymp-
tote, the results are also
plotted (open circles) as
1/X1T=1/x 7T = (1/N(By/T?
+By/T%) vs 1/T with B,
=2.0 K%, By=1.4 K3, and
A =29,9 emu K/mole (see
text). The fitted full line
corresponds to 1/x pT
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the leading term of the specific-heat expansion C,
[Eq. (30)]. Using the final value of C,=1.00+ 0. 10
K2 estimated in Sec. VIA we can therefore obtain
a better estimate®® for B,=2.0+0.2 K% Further-
more, using Eq. (35) and the final iterated set of
interaction parameters (Sec. VII), we can obtain
an estimate for By: B;=1.4x0.6 K® and we are
thus able to calculate an improved susceptibility

function
1 1 1(B, B
wT T (@ ) (57)

which should be a much better approximation to (1
- 6°/T)/x. The results are shown as the open cir-
cles in Fig. 4. It can be seen that a high-temper-
ature asymptote can now be drawn with little uncer-
tainty and we finally estimate

2=30.1+0.3 emuK/mole
and
6°=4,51+0.10 K,

The small curvature for 1/7>0. 15 K-! is presum-
ably due to the higher-order terms in the series
but these should have little effect in the range 0. 05
>1/T>0.07 K-! used to estimate the asymptote,
The error limits given above reflect our estimate
of the corresponding uncertainty together with the
errors in B, and the absolute calibration. The con-
sistency of these results with other experiments
will be discussed in Sec. VIH.

Low-frequency susceptibility measurements were
also made below the ordering temperature and a
number of striking nonlinear and irreversible ef-
fects were found. These effects are believed to be
due to domain motion processes and they have been
discussed elsewhere, %

A =@ -6%/T)/\ with 6°
=4,51%+ 0,10 K and A
=30.1+ 0,3 emu K/mole,

F. Low-Temperature High-Field Magnetization

The magnetization as a function of applied field
parallel and perpendicular to the crystal ¢ axis
for four temperatures between 1.1 and 4.2 K is
shown in Fig. 5. The most striking features of
these results are the rapid initial rise and large
saturation magnetization for M,, and the much
smaller, almost temperature-independent, linear
variation of M,,

The high-field saturation of M, was analyzed to
obtain a value for M, as outlined in Sec. IVD [Eq.
(41)):

My=(4.95+0, 04)x 10* emu/mole,

which can also be expressed as (9.0+0.1)uz/Tb
ion, Using the value V=36, 7+ 0.4 cm® for the g
atomic volume this can also be written

My=1349+ 20 emu/cm?,

which may be compared with the saturation mag-
netization of more common ferromagnets such as
nickel and iron:

M(Ni) =485 emu/cm?
and
M(Fe)=1707 emu/cm?,

In marked contrast, the magnetization perpen-
dicular to the ¢ axis was more than 50 times small-
er, even the highest fields, and consistent with an
identically zero temperature-dependent contribu-
tion, as predicted by crystal-field theory (Sec.
INC2). The entire observed M, is therefore con-
sistent with a second-order Van Vleck paramag-
netism, and fitting all the data we estimate

Xvv=(6.8+1,1)x10% emu/mole,
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FIG. 5. High-field magnetization of Tb(OH); parallel
and perpendicular to the ¢ axis at four temperatures be-
tween 1.1 and 4.2 K. Note the expanded scale for M, on
the right-hand ordinate. The high-field values for M,
correspond to a saturation magnetization M= (4.95 +0.04)
x10% emu/mole which is equivalent to (9.0£0.1)upg/ion.
The results for M, correspond to a field- and tempera~
ture-independent susceptibility xyy= (6.8 +1.1) X102
emu/mole, which is consistent with the calculated Van
Vleck paramagnetism.

in reasonable agreement with the calculated value
X4y =5.9%10"2 emu/mole (Sec. IIIC2),

These results are therefore also consistent with
a value g, =0, which we expect from the crystal-
field analysis (Sec. II A), and a simple calculation
shows that one must have g, <1 to stay within the
error limits indicated above. This relatively large
uncertainty on g, should not really be interpreted
as indicating that g, might in fact be finite, but
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more of a measure of the difficulty of estimating
a small transverse component in the presence of
a much larger g,.

As would be expected, measurements of the
paramagnetic moments (M, and M,) were complete-
ly reversible at the higher temperatures, but some
hysteresis was found for M, at the lowest tempera-
tures. However, the effects were extremely small,
rising to a maximum coercive field of 6 Oe at 1.1
K, and thus of no consequence to the present study.

G. Low-Field Magnetization near T

Additional low-field magnetization measurements
were made to study the nature of the cooperative
transition near 3.7 K. The results of these mea-
surements are shown in Fig. 6, where we have
plotted M, as a function of the applied field. ®# At
first it was hoped that these measurements would
yield values of the critical exponents 8 and 7% as
well as an estimate T, but as we shall see only
qualitative information could be obtained with the
samples available at this time.

The analysis was made following the work of
Kouvel and Fisher, ® and as a first step this in-
volved plotting isotherms of M2 as a function of
H/M,.%"®® The results of such a plot are shown in
Fig. 7. Extrapolating the isotherms to H=0 we
then find the initial susceptibility x,(0) and the re-
sults for this are shown in Fig. 8.

It can be seen that x,(0) tends to a constant val-
ue, characteristic of a ferromagnetic system whose
susceptibility is limited by a demagnetizing field,
and from the asymptotic value we can extract the
effective demagnetizing factor for our particular
sample. The value found was N,=0.099+0. 010 (in
units for which a sphere is 4 ), and it can be seen
that our sample was in fact quite a good approxi-

L T T T
Mo=1349 emu/cm® ]
H; =0 H; =100 Oe H; =200 Oe LI7K
/ / |.79
/ o 2,207k
/ > / 2.627H4 FIG. 6. Low-field vari-
| i / y / 3.002K | ation of M, for Tb(OH); as
000 / / 3.301K a function of applied mag-
M 7% M"’f—" ) netic field, for several
" y/ F /3.499K temperatures near T¢.

(em?)

Dashed lines of constant
internal field are shown
for H;=0, 100, and 200

Oe. The high-field satura-
tion magnetization M;=1349
emu/cm? is indicated by
the horizontal broken line.

500 /_~38I7K / .
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mation to an infinite needle, However, this was
really not an advantage since it made the suscepti-
bility more sensitive to other limiting factors such
as inhomogeneities due to the nonellipsoidal sam-
ple shape., Evidence for some problem of this kind
can be seen in Fig. 8, which shows a gradual transi-
tion ranging from about 3. 60 to 3. 75 K which is al-
most certainly not an intrinsic property of Th(OH);.
Under these conditions it is clearly impossible
to extract a precise value for T, and to proceed
with the kind of more detailed analysis outlined by
Kouvel and Fisher. % However, we can estimate
an approximate value for 7,=3,72+0.01 K from
the “knee” of the curve in Fig. 8, and this is in ex-
cellent agreement with the earlier estimate derived
from the zero-field specific-heat measurements.
We may also note another interesting feature of
the xz! curve in that it appears to approach a
straight line only a short distance above T, with
a slope almost equal to that of the high-tempera-
ture Curie-law asymptote. One may speculate that
this unusual behavior is related to the competition
between the near-neighbor interactions and the
consequent importance of the long-range dipolar
interactions, and we shall discuss this question
further in Sec. VIIB. From a practical point of
view it implies an extremely short temperature
interval in which we might hope to study the as-
ymptlotic critical behavior, and it would seem that
it will be very difficult to determine the critical
exponent 7y in this system. But before any such
study can be undertaken, the cause of the appar-
ently spurius rounding in the vicinity of T will have
to be removed, and this presumably will have to
await much larger samples which can be shaped
into proper ellipsoids.
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Evidence of the problems caused by the nonellip-
soidal shape of the present samples can also be
seen in the isotherms for T'< T in Fig. 7. Instead
of starting at a finite value M,(7T) at the ideal field
for technical saturation (H,=N,M,), and increasing
slowly for higher fields, all the isotherms show a
gradual variation which extends over a range of 10
to 100% of the ideal saturating field, and it is clear-
ly impossible to estimate the true spontaneous
magnetization. In absolute terms the effect is
quite small, since N, itself is so small, but it still
vitiates completely any attempt to determine the
critical exponent 8. Even so, the general form of
the results for T< T leaves no doubt that Tb(OH),
orders ferromagnetically, and from the extreme
anisotropy we can be sure that it must be a simple
collinear state with all spins parallel to the ¢ axis.
This feature might ultimately prove to be very use-
ful in resolving the complications due to the domain
structure, and of course it greatly simplifies any
theoretical discussion of the ordered state.

H. Summary of Characteristic Parameters

The parameters determined in Secs. VIB-G are
summarized in Tables III and IV. For complete-
ness we have also included a number of related pa-
rameters taken from the literature. There are a
number of possible cross checks between the pa-
rameters which have already been discussed. X
and M, can be related to g,, using the expressions
for x and M, given in connection with Eqs. (26) and
(41), and we see from Table III that the consistency
between the three experimental determinations and
the theoretical calculation is very good.

We can similarly relate A, Uy/R, and 6~ using
Eqs. (38) and (40), and comparing the values given

T T T T
ISk /k"’/—r’H I79K"
f/ (H/My)min,= Nu
——*
: —  2.627K
1
3.002K
1o} //// . FIG. 7. Variation of M2
M2 as a function of H/M, for
" 3.301K Tb(OH); in the vicinity of
3.448K T For T<3.72K, H/M,
'05(!-"1% reaches a minimum value
cm 3.550K sk 0.099 +0.010 which we in-
51 l 3.650K - terpret as the effective de-
i g-_’,?g 'é magnetizing factor N, for
= 3. 720K our particular sample.
) 4‘5
' /‘551}
Y
0 ke 1 1 1
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TABLE III. Single-ion and crystallographic parame-~
ters for Th(OH);.

Parameter Value Method of Determination
Fa 18,0£0,2 Saturation magnetization®
17.9£0.2 Curie constant*
17.710,2 Optical absorption®
17.87 £0.05 Crystal-field calculation®
Fa 0 Crystal-field calculation®
<1 Low-T, high-H magnetization®
A (emuK/mole) 30.1+0.3 High-T susceptibility*

M, (emu/mole)

(4.95+0.04)x10%

Low-T, high~H magnetization®

X¥v (emu/mole) (6.8+1,1)x102 Low-T, high-H magnetization®
a (&) 6.28 £0,01 e
¢ (&) 3.57+0.01 X-ray diffraction
V, (em®) 36.7+0.4 Calculated from x-ray
structure
by (K 0.029 0. 001 Calculated from EPR results®
0,032 +0,003 Low-T, zero-field specific
heat*
®p (K) 183 £3 Estimated from high-T
specific heat™®
€ (K) 0.4x0.1 Crystal-field calculations®
E; (K) 170.0 0.2 Optical absorption®

2This work.

b Reference 4.

¢Reference 11,

dEquation (11).

® ®p is defined in terms of only the Tb* ions, using
C1/R=234(T/®p)°.

! Reference 14,

€Reference 4.

in Table IV we see that the consistency is again
very good, Taking a weighted mean of the different
results we can estimate the “best” experimental
value which will be used in Sec. VIIA for the de-
termination of the nondipolar spin-spin interactions.
These values are given in Table V, together with the
corresponding best estimates of C;, C;, and C,,

and the best value for g, which was used to calcu-
late the dipolar interactions.

VIL. EFFECTIVE SPIN-SPIN INTERACTIONS IN Tb(OH),

A. Determination of Nondipolar Interactions

The four parameters 8%, C,, C; and C, listed in
Table V are more than sufficient to determine the
three unknown parameters K,;, K,, and K; with
which we have characterized the nondipolar inter-
actions., As discussed in Sec. III B, we would
really expect significant nondipolar interactions
only between nearest and next-nearest neighbors
(characterized by K, and K;), but we include K;
in our analysis to allow for the possibility of a
small but finite interaction between third-nearest
neighbors. The results will show that Kj; is in fact
extremely small, and we shall infer from this that
other more distant neighbors will interact even
more weakly.

An argument of this kind must be used with care
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since it might be possible for the contributions of
several more distant neighbors to cancel, but we
can fortunately rule this out in the present case on
both theoretical and experimental evidence. The
theoretical argument simply recognizes the fact
that all of the most likely nondipolar interaction
mechanisms fall off monotonically at large dis-
tances and any oscillatory behavior such as is
found in metals is thus very unlikely. The experi-
mental evidence is also only qualitative but it would
seem quite unlikely that several more-distant-
neighbor interactions could contribute to C, which
is a sum of squares of the individual interactions,
without exceeding the rather small observed value.
We can therefore be fairly confident in the present
case that the three parameters K;, K,, and K; are
sufficient to describe the nondipolar interactions.

To determine the corresponding values we can
fit Eqs. (23)-(25) and (32) to the experimental re-
sults, but this cannot be done in a straightforward
way since the analysis of the experiments them-
selves requires knowledge of some of the higher-
order expansion coefficients. These must first be
estimated either empirically or theoretically and to
accomplish this, we used an iterative computer
procedure.

The basic input parameters for the analysis were
6%, C3, C;, and C,, and in the first iteration ap-
proximate values of these were obtained from the
experimental data by assuming the higher-order
terms B,, B;, Cs, Cg, etc., to be negligible., Sub-

TABLE IV. Collective parameters for Tb(OH); deter-
mined from asymptotically exact theory.

Parameter Value Method of determination

4, (K) 8.5+0.5 Low-T, zero-field specific heat*
9.210.3 Optical absorption®

- Uy/R (K) 2,3+0,2 Integrated specific heat?

6% (K) 4,510,10 High-7, high- and low-frequency

susceptibility™®

B, (K?) 2,2+0,3 High~T, high~frequency susceptibility®
2.0x0,2¢ High-T, high-frequency specific heat®®

B, (K9 1.4x0.6 Reference f

c, (KY 1.00£0.10°  Fitted to high-T C, measurements®

C; (K% 1.6+0.8 Fitted to high-T C, measurements®

c, (KY) T+2 Fitted to high-T Cy measurements®

#This work.

PReference 5.

¢Analysis of 1/x T using iteratively estimated values
of Bz and B3 (Sec. VI A)-

%See note added in proof (Ref. 62a).

®Using Eq. (30).

f Calculated fron Eq. (35) using iteratively fitted X’s.

€Includes a small contribution 0,07 K? from the hyper-
fine interaction [Eq. (11)] and the ground-state splitting
[Eq. (14)].



8 MAGNETIC AND THERMAL PROPERTIES OF Tb(OH),

TABLE V. Final set of characteristic parameters used
for analysis of the interactions.

Parameter Value Method of Determination

6% (K) 4,51+0,10 Weighted mean of the values found
from 6%, 4y, and Uy/R in Table IV?

C, (KY 1.00+0.10°  High-T C, measurements

Cy (K 1.6+0,8 High-T Cy measurements

Cy (KY 72 High-T Cy measurements

£ 17.87 £0.05 Weighted mean of crystal-field

calculation and values found from M,,
A, and optical spectra.®

2Using Eqs. (38) and (40).

bIncludes a small contribution 0,07 K? from the hyper-
fine interaction [Eq. (11)] and the ground-state splitting
[Eq. (14)].

¢ Using the expressions given in relation to Eqs. (26)
and (41).

stituting these results into Eqs. (23)-(25) and (34)
yielded first-order approximations for K;, K,, and
K;, and these could then be used in Eqs. (30) and
(35) to estimate values for B, and B;. Using these
with Eq. (57) in the analysis of 1/xT next gave an
improved value for 6, as described in Sec. VIE,
and substituting this together with the previous es-
timates of B, and B; into Eq. (44) resulted in a
more accurate determination of the high-frequency
specific heat for the start of the next and more dif-
ficult part of the iteration procedure.

This involved the determination of the parame-
ters C,, C3, and C4 from the measured C,. To a
first approximation these parameters could be es-
timated by fitting C, to Eq. (50) and neglecting the
higher-order terms C;/T%, C¢/T%, etc., but for an
accurate analysis the effect of these terms may be
quite significant. Unfortunately, the calculation of
the higher-order specific-heat parameters in terms
of the K’s is prohibitively difficult, and a simple
iterative procedure similar to that used to estimate
6" was therefore not possible., Instead, a strictly
empirical approach was used, relying on the fact
that the higher-order terms would affect the lower-
temperature results more than the higher-tempera-
ture results, Thus by reanalyzing the data with
successively fewer and fewer low-temperature
points, one would expect to find results which
would tend systematically to asymptotic values
valid at high temperatures, and this was indeed
found,

In the first fit, all of the data points between 4.5
and 16 K were included but, as we might expect,
the over-all fit was poor and the standard devia-
tions on the final K’s were quite large. Succes-
sively omitting data points below 7, 8, 9, and 10
K improved the standard deviations significantly,
while the fitted K’s varied only slightly, with a
clear trend towards a well-defined final set of val-
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ues. Omitting even more of the data points in-
creased the standard deviations again, but without
changing the final K’s significantly. We could thus
conclude that the effect of the higher-order terms
had been eliminated to a good approximation, so
that the fitted values of C,, C3, and C, gave a true
measure of the asymptotic behavior.

The values of C,, C;, C4, and 6 obtained in this
way could now be used as starting values for the
next iteration cycle until a consistent set of param-
eters was obtained, In practice, the convergence
was very rapid, showing that the various correc-
tion terms could be estimated with adequate accu-
racy.

The whole fitting procedure described above is
illustrated schematically in Fig. 9, and it was
carried out in practice using the Yale IBM 377/155

computer, The final set of fitted values for the ex-
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FIG. 8. Variation of x7(0) as a function of tempera-
ture near T for Tb(OH);. The insert shows details of
the curve very close to T¢, which is estimated to be
3.72+0.01K. The reason for the apparent rounding is
not clear but it is probably due to the nonellipsoidal sam-
ple shape. The broken line represents the slope of the
asymptotic high-temperature Curie-Weiss law 1/x=1.225
(emuK/cm?! for purposes of comparison. Note, how-
ever, that the actual Curie-Weiss line would come con-
siderably further to the right since 6 for this particular
sample was about 4,43 K.
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pansion coefficients is shown in Table V which in-
cludes estimated error limits to allow for uncer-
tainties in the experiments and the lattice sum, as
well as the effect of truncating the susceptibility
and specific-heat series.

The corresponding final values of the nondipolar
interactions were

Ky=1.65+0.13 K,
Kp=-0,43:0.10 K,
Ky=0.07+0,10 K.

The error limits given here indicaté the maximum
ranges of values over which simultaneous solutions
can be obtained consistent with the uncertainties in
6%, C,, Cs, and C, given in Table V. The ranges
are of course not independent, and the most prob-
able values of the K’s will fall well within these
limits. We see therefore that the nondipolar inter-
actions can be determined with very good accuracy,
and we also see that K; is very small as we had
suspected. These results are somewhat different
from the preliminary values previously reported. ’
The reason for the difference may be found in the
increased accuracy of the new measurements and
also the fact that the more detailed analysis® has
enabled us to choose between two sets of solutions
which were previously indistinguishable.

The present solution also rules out large non-
Ising interactions between any of the neighbors
since these would contribute additional terms to C,
which would all be necessarily positive, while the
total must remain constant at the experimentally
determined value. In fact, the non-Ising terms
will almost certainly be very close to zero since
the known crystal-field ground state allows only
very-high-order off-diagonal terms, which are
likely to be small, as discussed in Sec. III B.

It is quite instructive to examine a graphical so-
lution of the K’s as we did in the case of Gd(OH),.!
This is shown in Fig. 10 where we have plotted the
expressions for 6%, C,, C3;, and C, given in Egs.

(23)-(25) and (34) as a function of K, and K,, put-
ting K;=0.07 K and using the “experimental” val-
ues given in Table V. It can be seen that all four
experimental bands overlap within a small range

of K; and K,, where point P indicates the final com-
puter fit,

B. Comparison of Dipolar and Nondipolar Interactions

The fact that Th(OH); is an almost ideal Ising
system is of course central to a discussion of the
ordered state. The spins are strongly constrained
to lie along the ¢ axis and thus any sort of canted
ordered spin arrangement is ruled out. An un-
canted ferromagnetic ordered state is in fact also
consistent with the direct measurements of the
magnetization for 7< T, (Sec. VIG), and with re-
cent neutron diffraction experiments. % In the case
of Tb(OH), it is therefore natural to discuss the in-
teractions in terms of the contributions to the in-
teraction energy of a spin in this observed ferro-
magnetic ground state. In Table VI we list the dif-
ferent contributions for successive neighbors, and
cumulative totals for successive shells of neigh-
bors.

It can be seen that there are some remarkable
near cancellations between several of the terms,
In particular the strong nearest-neighbor magnetic
dipole interaction D, is partly canceled by K,
while the relatively weak D, is dominated by a
somewhat stronger K, which is ferromagnetic in
sign. It one looks at the contributions to the total
energy from the different shells of neighbors it is
apparent that no one shell is really dominant,
Moreover, it is clear that the many far-neighbor
magnetic dipole interactions will also combine to
give a very significant total contribution to the en-
ergy of the ferromagnstic ground state. This con-
tribution is largest for a long thin domain, and in
that case it even exceeds the energy due to the near
neighbors by a factor of more than 2. This sug-
gests that the domains will be clusters of long
chains parallel to the ¢ axis.
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FIG. 10. Graphical so-
lution for the nondipolar in-
teraction constants K; and

K2 7’

(K) /
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T
.
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\ %™ =4.5120.10 K
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K, from the high-tempera-
ture series-expansion coef-
ficients assuming K;=0,07
K. (The curves would not
change significantly if we
would set K3=0.) The
bands in the figure include
. all of the solutions within
the error limits of the ex-
pansion coefficients given
in Table V as determined
from Eq. (23) for C;=1.00
+0,10K?% Eq. (24) for C,
=1.6+0,8K% Eq. (25) for
C4=7+2K% and Eq. (34)
for 6°=4,51+0,10K. The
region of simultaneous
overlap corresponds to the
computer solution K;=1.65
E +0,13K and K,=—10,43
+0,10K, as indicated by
point P, The fact that the

ol

K, (K)

In view of the competition between the dipolar

and nondipolar interactions for the nearest-neigh-
bors, we might expect some unusual effects near
the Curie point, where the effect of the long-range

interactions will decrease.

In particular, it might

be possible for the system to develop quite com-
plex short-range-order clusters reflecting the bal-
ance between the interactions, in contrast to a nor-
mal ferromagnet in which the correlations fall off

monotonically with distance.

The existence of os-

indicated error limits
around P exceed the appar-
ent region of overlap is due
to the fixed value K3=0.07
K for which this figure was
drawn,

cillatory pair correlations has recently been es-
tablished for some one- and two-dimensional Ising
lattices with competing interactions. ™" If calcu-
lations could be extended to three-dimensional sys-
tems, Th(OH); would serve as a good test system
which could readily be studied by neutron scatter-
ing techniques.

We are now also in a position to see why the sus-
ceptibility might show the unusual behavior which
was found in the region just above T (see Fig. 8).

TABLE VI. Dipolar and nondipolar interactions in Tb(OH);.
Dipole Sum of contributions to
Distance interaction Nondipolar Total contribution energy per spin from all
Order of No. of from energy per energy per to energy of one spin neighbors up to and
neighbor neighbors  origin pair® pair® from n; neighbors including the jth shell
j n oy (&) D,/kp (K) Ki/kp (K) $n,(D,+K,)/kp) (K) 2 3D, +K})/kp] (K)
1 2 3.57 —-2.187 1.65 —0.54 -0.54
2 6 4.04 0.313 -0.43 -0.35 -0.89
3 6 6.28 0.201 0.07 0.81 -0.08
4 6 6.47 —~0.194 —-0.58 -0.66
5 2 7.14 -0.273 -0.27 -0.93
11 12 9.76 0.0481 0.29 -0.65
Total for all neighbors® -2.26

%Signs relative to the observed ferromagnetic ground state.

bCalculated for an infinitely long domain.
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It the ferromagnetic ordering is really dominated
by many small contributions from the more-dis-
tant neighbors, we would in fact expect mean-field-
like behavior over a wider temperature range than
usual, with deviations only very close to T.

However, this simple idea must not be taken too
literally since we must note that the slope of the
X7i- T curve is not really the same as that of the
high- temperature asymptote [x3*= (7 - 4. 51)/x]
which, moreover, is significantly further to the
right than the broken line shown in Fig. 8. The ap-
parent linear behavior of X3 in the range 3. 8-4. 2
K must not therefore be taken to imply that the high-
temperature asymptote has already been reached
and it may in fact just be a complicated artifact of
the various competing interactions. Clearly, some
further theoretical work is called for, and we may
hope that the detailed information which we have
been able to extract about the interactions in this
particular material will act as a spur for a re-
newed study of systems with both long- and short-
range interactions.

VIII. SUMMARY AND CONCLUSIONS

The principal conclusion of this paper is that
Tb(OH), is an unusual example of a ferromagnetic
Ising model. The Curie temperature is 3.72 K and
the spin alignment is along the ¢ axis of the hexag-
onal crystal structure.

The anisotropic form of the effective spin-spin
interactions was established by a theoretical anal-
ysis based on previously established crystal-field
eigenstates of the individual Tb®* ions. Estimates
of possible non-Ising showed that these should all
be extremely small and this conclusion was sup-
ported by the final analysis of the experimental re-
sults.

The magnitudes of the individual spin-spin inter-
actions were determined from an analysis of mag-
netic and thermal measurements in regions of tem-
perature and field where asymptotically exact se-
ries expansions could be applied. From an exami-
nation of the crystal structure it seemed reasonable

SKJELTORP,
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at the outset to assume that nondipolar interactions
(exchange, electric multipole, etc.) should be much
larger for the first- and second-nearest neighbors
than the more distant neighbors, and this conclu-
sion was confirmed by the final analysis. Values
of the nondipolar interactions for the first, second,
and third neighbors, K,, are summarized in Table
VI (column 5), and it can be seen that X; is in fact
about 20 times smaller than K;. (The error limits
allow a range of 10 to = for the ratio X;/K;.)

As usual, there is no explanation for either the
sizes or signs of the nondipolar interaction param-
eters, which stand as a well-defined challenge to
first-principles calculations of different interac-
tion mechanisms,

The total spin-spin interactions may be found by
adding the corresponding contributions of magnetic
dipole-dipole coupling D, calculated from the ex-
perimental g value and crystal structure. The re-
sults are given in Table VI (column 6) and it can
be seen that there are remarkable cancellations
between the two contributions for both the nearest
and next-nearest neighbors. As a result, no one
type of neighbor really dominates the cooperative
properties and several of the near-neighbor inter-
actions become comparable with the cumulative
effects of the more-distant-neighbor interactions.

Thus, while Tb(OH); is an almost ideal Ising
system from the point of view of the S,; S,; form of
the interactions, it is quite different from the us-
ual Ising models in the vange dependence of its in-
dividual pair interactions. If the present theoret-
ical calculations could be extended to simulate the
effect of competition between several types of in-
teractions, Tb(OH), would serve as a most attrac-
tive test system.
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