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It is shown that the antiferromagnetic spherical model reveals its high-spin-dimensionality character
much more directly than the usual ferromagnetic model. The introduction of a staggered ordering field
requires a second spherical field. The phase boundary of the model is compared with that expected for
antiferromagnetic isotropic n -vector systems. The results indicate that a tricritical point is unlikely to

exist in spherical models.

I. INTRODUCTION

The spherical model (SM) was introduced by
Berlin and Kac! as an exactly soluble model for a
ferromagnet. The spins of the model are real
scalars that can take all values subject to an over-
all spherical constraint. Historically, the scalar
character of the spins caused the SM to be regarded
as a model for an Ising-type system. Only recent-
ly has it been realized?? that the SM can in fact be
considered as the limit of infinite-spin dimen-
sionality (# =«). For this reason the SM might
well be regarded as closer to a (classical) Heisen-
berg model (z=3) than to an Ising model (z=1).
For a one-dimensional lattice this can be explicitly
demonstrated.* The differences between the
various ferromagnetic n-vector models are mainly
of a quantitative nature. However, in the antifer-
romagnetic case there is a qualitative difference
between the scalar Ising model and the other high-
er-n isotropic models. This has its origin in the
fact that in the presence of a uniform magnetic
field the spontaneous sublattice magnetization tends
to set itself orthogonal to this field as soon as
n=2. This is the so-called “spin-flip” phenomenon.
We expect, therefore, to find more direct evidence
of the high-spin-dimensionality character in the
antiferromagnetic SM than in the corresponding
ferromagnetic model.

The antiferromagnetic SM has been studied®'® in
the literature, and Mazo® reported that at 7=0 the
value of the critical field was twice as high as to
be expected for the corresponding Ising model.
This paper appeared long before the n =~ character
of the SM was recognized and no satisfactory ex-
planation was given. We find that this doubling of
the critical field value at T=0 is, in fact, quite
common to all the » =2 vector models.

Even more anomalous behavior is found when one
introduces a staggered field H'. This is a field
with alternating signs on the two sublattices, and
is the field which is conjugate to the spontaneous
(staggered) magnetization in an antiferromagnet.”’
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For a true scalar model one would expect: (i) The
transition is destroyed as soon as H'#0. (ii) Be-
low the critical temperature the staggered mag-
netization tends, in the limit '~ 0, to a “spon-
taneous” value different from zero. We will find
that neither of these expectations is borne out for
the antiferromagnetic spherical model.

The outline of the paper is as follows. In Sec.
II we calculate the phase boundary in the (H, H', T)
space of an antiferromagnetic SM and show ex-
plicitly the validity of the statements just made.
However, we demonstrate that the spin-spin cor-
relation functions do exhibit a long-range order be-
low the critical temperature and a corresponding
order parameter is identified. This order param-
eter has in general, however, no relationship to a
spontaneous magnetization. Various critical ex-
ponents, describing the behavior of the system
near the phase boundary, are obtained. In par-
ticular, it is found that the susceptibilities (with
respect to H and H’) remain finite at the phase
boundary. We discuss this fact in connection with
the long-range order of the correlation functions.

In Sec. III we compare the shape of the phase
boundary for the antiferromagnetic SM with that
predicted by a mean-field approximation to the n-
vector models. It is found that these boundaries
are quite similar for » =2 and become equal in the
limit n—- <, The main distinction that then re-
mains between the ©-vector model and the antifer-
romagnetic SM is that the former has a sponta-
neous magnetizationin adirectionorthogonal to the
field, whereas the latter has, as a consequence of
the scalar character forced upon it, no sponta-
neous magnetization.

In Sec. 1V, following Riedel and Wegner, ® we
generalize the SM and allow the spins to be vectors
in a plane. The phase boundary and all averages
of spin components along the field are exactly the
same as found for the scalar SM but, as anticipated,
the order parameter can now be identified with
the spontaneous (staggered) magnetization orthog-
onal to the field.
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II. MODEL

The spins of the model will be localized on a
cubic lattice; as usual for an antiferromagnet, it
is convenient to consider this lattice as the union
of two sublattices A and B, every A site being sur-
rounded by neighboring B sites and vice versa.
The energy of a given spin configuration {03} is
given by

E{o;} =IZI‘ dJi,j010;-H z:_) oj
"

_H'(_E oj- 2 0;) y o (2.1)
JEA JEB
where H is the uniform magnetic field and H' rep-
resents the staggered field which is’ the ordering
field for the antiferromagnetic transition. In the
case of nearest-neighbor interactions, Ji,j differs
from zero only if i€ A and j is one of the B sites
neighboring i. We will find it convenient to suppose
more generally
J7,;=Ji.j=0 if ic A and je B,

2.2
i,7=0 otherwise. (2.2)
Note that our sign convention is the opposite of that
normally adopted; thus positive values of J rep-
resent antiferromagnetic coupling.

The spherical model replaces the N constraints
o5=%1 of the corresponding Ising model by an
over-all “spherical” constraint

Z} c? =N. (2.3)
The properties of the SM can, when sufficient care
is taken, ® also be obtained from the so-called
“mean spherical model” (MSM) which is a grand
canonical version of the SM first presented by
Lewis and Wannier. ! In the MSM a Gaussian
weight function with a spherical field z is intro-
duced and z is determined so that

<Z}) of.>=N.

In the case of a translational-invariant interac-
tion this implies (o) =1 for all sites j. This
translational invariance is the main reason why the
introduction!! of the so-called “m-spherical
models, ” in which the spherical constraint is re-
placed by m independent spherical constraints on
m sublattices, does not alter the properties of the
model. In the present case, however, the trans-
lational symmetry is broken by the staggered
field H' and if we still want to require that the
mean-square spin at every site is unity, we must
introduce two spherical constraints, namely,

22 04=3N, 25 %=:N.
j€B

jea !

(2.4)

(2.5)
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In the MSM this corresponds to the introduction of
two spherical fields z, and z 3 determined by the
two conditions

(D ot)-tw, <z;&>=;w.
jea ! jes !
The equivalence of A sites, resp B sites, among
themselves leads again to the conclusion (0$)=1
for all j. As is to be expected, we will find z,=25
when H'=0.

The free-energy density of the model is now
given by

(2.6)

f=- kjsT 1n[f r]Idoi exp (- BE{o;}

—z, D -z, Z)@)J, 2.7)

jea 3 j€B
in which z, and z5 are to be determined by (2. 6)

and B=1/k5zT. As usual we introduce Fourier-
transformed variables

S-= N2 ) gtk d g,
* i y (2.8)

(Byy koyy k) =20N"Y3(11,,1,).

X"y vz
When we invoke periodic boundary conditions, the
argument of the exponent in (2. 7) takes the form

7:_‘1 [- B (k) -%(ZA"'ZB)]S;Sf -2 (ZA_ZB)SiS;_;
k

+NYV2pHS, + NV 2pH'S..  (2.9)

In this expression
> 1 o
J®)==27e iy,
2 ; i
zingl 7=(m, m, 7) is the wave vector that minimizes
J(k). Note that in view of (2.2) we have

JE®) = -JF -K).

(2.10)

(2.11)

The calculation of the free energy is now essential-
ly reduced to the diagonalization of the 2 X2 qua-
dratic forms constituting (2.9). When, in the ther-
modynamic limit, we replace the resulting sum
over k by an integral we find

%kBT e -2 21
f=—W f dkln{n [ZAZB"' BT (k)]}

+ B4z 25— 48T 200) " HHE[BI(0) - 5 (2 4+ 25 )]

+HH (2, —2z5)+H'?[ - BIO0) -t (z,+25)]},

. (2.12)
in which the integration over k is to be performed
over half a Brillouin zone.

The spherical constraints (2. 6) are obtained by
differentiating the sum over E, leading to (2.12) in
the thermodynamic limit, with respect to z4 and
zg. For large N we again replace the resulting
sum by an integral omitting, as usual,® the term
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representing the lowest eigenvalue since it may
make a macroscopic contribution. This yields
asymptotically

1 - 2g
1~ —3 fdk —_——
(27) 2425 - BAT2(R)

+L2N;ﬁjz—(o—)+(M+M')z, (2.13)

and
1= &y 2720

2,425 =B 2(K)

1 24 ne

T 2N 2,25 FT0) + (M= MY

Here M and M’ are, respectively, the uniform and
staggered magnetization defined by

(2.14)

MEN'”2<SO>=—(%> , (2.15)

Byzyre

M'EN'1/2<S;>=-(£§7)B . (2.16)
"A"'B

These quantities could, of course, be expressed in
terms of z,, z5, H, and H'.
that it is more convenient to consider M and M’ as
independent variables. It is easily verified that H
and H’ are then given by

BH=[28T(0)+ 24425 M+ (24— 25)M', (2.17)

BH'=(2 ,—25) M+ [z 4+ 25— 2BF(0)] M’.  (2.18)
The integrals in (2. 13) and (2. 14) can be ex-
pressed in terms of the basic integral

Wi Wfff

The analytic properties of this 1ntegra1 depend
mainly on the small-k behavxor of J (k) and are
well known both for short-! and long-range®? in-
teractions. At this point we remark only that in
lattice dimension three and higher, the integral
remams bounded asy -»J(O) Upon using the re-
lation J (k):— J @- k) we can alternatively write

56 (2.19)

/2
Wi(y)= “(2n )3 J:;[‘ZJ. dk z z(k)

It follows then by inspection that (2. 13) and (2. 14)
take the form

(2. 20)

1= 3k 5T (/2 4)"/2 Wy(kpT2 Y/ 22L/?)
U SIS —
2N z 25— B2T%(0)
1=%ksT(zA/zB)uzWs(kBTz,lA/zzlls/z)

+(M+M"E, (2.21)

It turns out, however,

1 Z4

—_— -M' 2'
YIN 2,25 P0R0)T MM

(2.22)

All these equations are valid as long as the qua-
dratic form (2. 9) remains negative definite. This
imposes on z 4 and z5 the restriction

Z p%p > Ba:}z(o) »

In the usual! spherical model the transition is
brought about by the fact that below the critical
temperature the field z, which is a solution to the
“saddle-point equation” [the analog of our equa-
tions (2. 21) and (2. 22)], sticks at the limit of its
definition range. In much the same manner we will
find a region of values of H, H’, and T in which
the spherical fields z 4 and z 5 stick on the hyper-
bola z 4z = B2T%(0). We will refer to this region
as the ordered region. This region is separated
by a critical surface or phase boundary from the
rest of the (H,H’, T) space where regular solutions
to the spherical-constraint equations are found.

We want to analyze the properties of the model
in the ordered region. In that case, the product
2 42 becomes, in the thermodynamic limit, asymp-
totically equal to F27%(0). In this limit we intro-
duce the parameter A >0 by writing

2,=28J(0), z5=1"BJ(0).

24,25>0,

(2.23)

(2.24)

In addition, we introduce a parameter which de-
termines the rate at which z 4z ; - 8?J(0) approaches

zero as the thermodynamic limit is taken. Specif-
ically, we define P by
z, 2
U BN Zaegm A0 X 2.2)
or, equivalently,
1 Ra
VBN z4z,- £TH0) T (2.28)

Inserting these relations in (2. 21) and (2. 22) shows
that the spherical constraint in the ordered region
can be written

1= (T/To+x%)N"1s (M + M')? (2.27)

1= (T/To+x®)\+ (M - M')?. (2. 28)
Here T, is defined by

W, (7 (0))= 2/kT,. (2. 29)

It will become clear that T is the critical tempera-
ture in zero field. In the case of nearest-neighbor
interactions with coupling J, its value is fixed by
kTy/J ~3.957. Finally, on using (2. 24), we notice
that Eqs. (2.17) and (2. 18), determining H and H'
in the ordered region, can be written in the form

H/J(0)=2+ A+ XYM+ (A =AYHM?, (2. 30)

H'/J(0)= (A= XYM+ v+ X"1= 2)M” . (2.31)
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We show now that the parameter P plays the role
of an order parameter. To this end we calculate
the Fourier transforms of the three relevant spin-
spin correlation functions of the model, which are
the correlation function for the sublattice A, g4,,
for the sublattice B, gy, and between the sub-
lattices, g,5. We recall from (2. 9) that the only
off-diagonal interaction terms are of the form
S;S}.;. 1t follows readily that

Zaak)= 3((Sg +S7-2» - 3 (Se+S7-2)°
%ZB

:—-——————ZAZB _#rR) (2. 32)

£55(K) =3 (St - 5703 - 3 (Sg- Sz.0*

%ZA
:"——v :
Zp%p — [ (k)

(2.33)
- 2
gan(k)= 3(Sp)-3(S3p) - 3(Se)?+ 3 (Sap)®
- 3BIk) .
R AZp— BT (k)
In the ordered region, where the relations (2. 25)

or (2. 26) defining x2 apply, we find for k=0 the
results

(2. 34)

)‘gAA(O): )\'lgBB(O): —gAB(O) ~x2N .

In lattice space this means that the correlations,

in the limit of large distances, approach a constant
which is proportional to x2. We conclude that all
these correlation functions indeed exhibit long-
range order in the ordered region and identify x

as the corresponding order parameter. We stress,
however, that when H #0, one cannot obtain the val-
ue of x from the value of the staggered magnetiza-
tion in the limit H’ - 0, the latter value being zero
as stated already in Sec. I.

Furthermore, we will find that the staggered
susceptibility x’ remains finite, when H # 0, through-
out the ordered region and on the phase boundary.
This fact, which in view of the long-range order of
the correlation functions might at first sight seem
puzzling, can be understood when one notices that
it is only the susceptibility (or fluctuation) at con-
stant fields which is directly connected to the long-
range behavior of the correlation functions. In
the present case we find from (2. 12) that the stag-
gered susceptibility sy in the MSM, which is the
susceptibility calculated at constant spherical
fields, is given by

, __(azf ) _B[ZB:}(O)+ZA+ZB]
Xusu=~\G7), ..~ dzaz5- FI0)]
Using the relations (2. 32)-(2. 34), we find that it
is indeed this susceptibility which directly reflects
the long-range behavior of the correlation func-
tions through the relation

(2. 35)

(2. 36)
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Xbsu=Lim Bl5844(0)+ 3820 (8)+£.4a (k)] (2.37)

We conclude that xjsy is infinite throughout the
ordered region. The susceptibility in the spheri-
cal model, where the sum of the squares of the
spins is held fixed, can be obtained by allowing
for the H' dependence of z, and z5. One has

vt M B2, M 3zp
X = Xmusmt azA oH' + azB oH' .

(2. 38)

From (2.17) and (2. 18) one can show that aM’/az ,
and 8M'/8z 5 also diverge in the ordered region in
such a way as to yield a finite value for x’, as will
be found later.

Before we go on to calculate M’ and x’ in the
ordered region, we want to find the phase boundary
which demarcates this region. At a given value of
X the value of M and M’ on the phase boundary can
be found by setting the order parameter x equal
to 0 in (2. 27) and (2. 28). Using the result in (2. 30)
and (2. 31), we find that H and H’ on the phase
boundary are given by

H/J(0)=+(1+)) (1= t/2M)Y2: (14 27H)(1 = 1) 2,

(2. 39)
H'/JO)=+(x = 1) (1= /02 (1= XY (1= 1x)/2,

(2. 40)
in which the same combination of + and - signs is
to be chosen in both equations, while ¢ is the re-
duced temperature, t=T/T,.

Consider now a fixed value of £ <1. We can then
regard \ as a parameter that runs from ¢ to ¢%;
Eqs. (2. 39) and (2. 40) hence describe a smooth
curve in the H, H' plane which represents the phase
boundary (or critical line) in this plane at a tem-
perature T=tT, Note that A= 1 implies H’' =0,
which means that the spherical fields are equal
in zero staggered field.

In Fig. 1 the phase boundaries are drawn for
several values of £, The boundary clearly lies
symmetrically in the four quadrants. For {# 0
a closed region is obtained inside which x #0.
When T - 0 the boundary tends asymptotically to
infinity along the line H'=H - 2J (0). It is evident
from Fig. 1 that there are transitions even when
H' #0.

To calculate the staggered magnetization M’ in
the ordered region, we first eliminate x% from
(2.27) and (2. 28), which yields

Mo 1= M+ M2 - (M =-M'). (2. 41)
Note further that (2. 30) and (2. 31) imply
A\=(H+H')/(H-H'). (2. 42)

When we use this relation in (2. 43) and eliminate
M’ with the help of (2. 30), we find the staggered
magnetization in the ordered region (H # 0) to be
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j’ ©) FIG. 1. Phase boundary
i A of the antiferromagnetic
SM at fixed temperature
] T=tT,, where T, is the
' zero-field critical tempera-
ture.
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[¢] — 0
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H/J(0)
. H2H' 1 H from inside the ordered region. Suppose the val-
M’ =4J(0) EY (2. 43) ues of H and H' are fixed. At the critical tem-

HE-H®? "4 J(0) °

Note that inside the ordered region, M’ does not
depend on the temperature. It is obvious from
this formula that when H #0, there is no sponta-
neous magnetization, i.e., limy .o M’=0. Further,
it is also clear that the staggered susceptibility
X'=98M'/8H' does not diverge inside the ordered
region provided H # 0.

Figure 2 presents a sketch of M’ vs H' at T
= 3Ty for several values of H. With the help of the
formulas [(2. 39) and (2. 40)] for the phase boundary,
one also finds the critical values of M’ at this
boundary as a function of H’. The resultant curve
is represented by a dotted line. Beyond this line
the expression for M’ deviates from that found in
the ordered region. We will see later, however,
that M’ is still continuous with, for dimensions
d =4, a continuous first-order derivative at this
point. In addition, the critical value of M’, when
one approaches the point H, H' = 0 along the phase
boundary, tends to the value (1-¢)*2, This is
exactly the value of the order parameter in zero
fields. When H=0, one does therefore obtain the
order parameter as a spontaneous staggered mag-
netization in the limit H’ -~ 0, as illustrated in
Fig. 2. This confirms what was anticipated in
Sec. I; at H=0 there is no “spin-flip” phenomenon
in the n-vector models and consequently one does
not expect the SM to exhibit an anomalous behavior
in this case.

To discuss the behavior of the model near the
phase boundary we first ask how the order param-
eter x vanishes on approach of the phase boundary

perature, where x=0, we have from (2. 27)

1=[To(H,H')/ToX '+ M+ M), (2.44)
while at lower temperatures
1= (T/To+ x5 X" (M + M")?, (2. 45)

with the same value of M and M’ since, in the
ordered region, the magnetizations do not depend
on the temperature. Subtracting the two equations
yield

8
x= (M ) . (2. 486)
Ty
The critical exponent 8 has the value 8= 3, which
is the value normally found in all spherical models.
Next we calculate the behavior of M and M’ on
approach of the phase boundary from outside the
ordered region. In this case the product z 4z5 will
no longer equal B%7(0). It is then convenient to in-
troduce the auxiliary parameter ¢ by

z,=¢08T(0), zp=tN'BF(0), ¢>1. (2.47)

Note that for ¢ - 1 the phase boundary is approached.
The original spherical-constraint equations [(2. 21)
and (2. 22)] then read

1= sk, TN W(T(0)8)+ (M +M')?,
1= sk TAW(T(0)g)+ (M - M')2.

(2. 48)
(2. 49)

Note that, if £ >1, the terms proportional to N™!
drop out in the thermodynamic limit. The rela-
tions (2. 17) and (2. 18) determining H and H’ are
now given by
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FIG. 2. Staggered magnetization M’ as function of the
staggered field H’ at a temperature T=%T). Curves
corresponding to several values of the uniform field H
are shown. The dashed lines represent the analytic con-
tinuation of M’ from the ordered region. The dotted line
gives the critical values of M’ on the phase boundary, T
=37,

H/J(0)= 2+ Er+ XYM+ Er—-gx )M, (2. 50)
H'JJ(0) = =X HY M+ (Erx+eX = 2)M7. (2.51)

Consider again fixed values of H and H’ on the
phase boundary. Suppose the temperature is
raised a small amount € above the critical tem-
perature T (H,H’) corresponding to H and H’. The
variables £, A, M, and M’ will then deviate from
their values 1, Ay, My, and Mj at the critical tem-
perature by amounts that we denote by, respective-
ly, A¢, Ax, AM, and AM’. To calculate A, AM,
and AM’ in terms of A, we eliminate the term
with W in (2. 50) and (2. 51) to obtain

A=At A+ M) =N =M1, (2. 52)

Equations (2. 50)—(2. 53) are equally valid at the
critical temperature as at higher temperatures.
Using this fact and retaining only terms linear in
the deviations from the critical values we find, for
H#0,

?
AM=- [xo(Mg— M) (HM o+ H'Mb)™! (ﬁ) }Ag ,
by

a
(2. 53)
’ 2 2 -1 oH
aM =[:)\0(M0‘M6)(HM0+H'M'0) (?7\) ]Al,
T (2. 54)
AN=GAC. (2. 55)

Here G is a constant that we need not specify
further. The symbols (8H/8)\)M and (aH’/a)\),m
stand for the derivatives of the expressions (2. 39)
and (2. 40), respectively, defining the phase bound-

| o

ary. It follows that there is no first-order con-
tribution in A to AM or AM’ when the H or H'
axis, respectively, happens to be parallel to the
phase boundary. At these special points, M or
M’ have a singularity which is even weaker than
what will be found at the other points of the phase
boundary. This phenomenon is expected from a
general geometrical study*® of many-component
systems. It might appear from (2. 53) and (2. 54)
that the point at which My=Mj is also special. Cal-
culation of (8H’/¢'M)Xo and (&)H/%»\),\0 shows, how-
ever, that both derivatives contain a factor (M3

- M) so that a finite proportionality factor is
found also in this case.

To find the dependence of AM and AM’ on the
distance € from the critical temperature, we re-
turn to (2.49). The function W is known to behave
for {~1 as

W(J(0)t)= (2/ks To)(1 - DALY @ 1eet)  (2.56)

in which, for short-range interactions, a=-1
when the lattice dimension d=3, a=0 (logarith-
matic) whend=4, and =0 whend= 5. Further,
D denotes a constant. When we apply this, to-
gether with the results (2. 53)-(2. 55), to Eq. (2. 52)
we find

1=2o(To+ €) ToH(1 =D’ ALY YY)y (Mo— ME)?, (2. 57)

in which the terms linear in A¢, arising from A,
M, and M’, are incorporated in the constant D’
when d = 5. At the critical temperature we have
from (2. 28), with x=0,

1=2gT,/To+ (Mo—Mp). (2. 58)
Subtracting the two equations we find
€=TCD'A§1/(1-°')+"' (2.59)

We conclude, then, that when H #0 and the phase
boundary does not happen to be parallel to either
the H or H’ axis, AM and AM’ are, approaching
the phase boundary from outside the ordered re-
gion, in leading order given by

AM =AM’ ~¢et*, (2. 60)

Here €=T - T (H, H') and the values of a are given
above. An analogous result was found by Mazo®
for AM at H' =0 and d=3. When we compare the
present result with the corresponding behavior of
the energy? in the spherical model, we see that both
M and M’ behave as energylike variables on ap-
proach of the phase boundary (H #0). This agrees
again with the general predictions of Griffiths and
Wheeler, ' since both H and H’ are fields which
have their axes in the plane of the ordered region
(which would normally have been the coexistence
region). In particular, it follows for a three-di-
mensional lattice that the susceptibilities y and

x’ (like C,) remain finite and are continuous across
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the phase boundary (H #0).

In closing this section we want to come back to
the significance of the special choice (2. 2) that was
made for the interaction. A more general inter-
action, that includes also intrasublattice couplings
will in no way alter the main conclusions. The
formulas will be somewhat more complicated. The
equation for the phase boundary which presently de-
pends only on the interaction through the constants
J(0) and Ty, will depend on further details of the in-
teraction. In addition, the staggered magnetization
will depend also on the temperature in the ordered
region.

III. ISOTROPIC n-VECTOR MODELS

In this section we want to compare the shape of
the phase boundary previously calculated with that
of an antiferromagnetic isotropic-spin model, with
spin dimensionality » = 2. The similarity that we
want to demonstrate is already clear in the mean-
field (MF) approximation, to which we confine our-
selves.

The MF approximation does not alter the main
qualitative results of Sec. II. To see this note
first that the MF approximation can be obtained by
rescaling the potential so that it becomes infinite-
ly weak and infinitely long ranged.!* Then recall
that the details of the potential entered gnly in
(2.31) and (2. 32) through the constants J(0), which
is not altered by the rescaling, and through T,

In the MF approximation we have therefore only to
replace T, by its mean-field value

To=2J(0)/k. (3.1)

Consider now an isotropic-spin model with ener-
gy

_ E -, > z , z z
E= nJ;,;o,-o;—nHEO;—nH(E o7 - Eo; .

%1 7 Tea jeB
(8.2)
Here 7 is an n-dimensional vector subject to the
restraint o‘? =1. All other symbols have the same
meaning as in (2. 1). The couplings are “renor-
malized” with a factor » to facilitate the compari-
son between different » values.

The results of the MF approximation applied to
this model are as follows. (The detailed deriva-
tions can be found in the Appendix.) There is a
region where two phases with different signs for
the spontaneous staggered magnetization coexist.
The spontaneous magnetization is in a direction
orthogonal to the applied fields H and H’. The
boundary of the coexistence region, the critical
surface, is given by

H/J(0)=+S ,(\)(1+X)£S5(0) (1+ 7Y, (3.3)
H'/J(0)=£S,00 (A= )£Sz(\) (1=,  (3.4)
in which S 4(A) and Sz(2) are the sublattice mag-
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netization in the z direction. At the critical sur-

face they satisfy

L, S,)
_tn/2 _ s .
A= T pa NS ) (8.9)
L, tnxtSy)
S =—"LZ—.FL . 3.6
B In/z-l(t A ISB) ( )

Here I, denotes the Bessel function of imaginary
argument and ¢ is the reduced temperature, ¢
=1kT/3 (0)=T/T,. Positive solutions exist if ¢ <1
and t <A<l

The shape of the critical surface can easily be
obtained, by graphical methods, from these equa-
tions. Figure 3 shows the phase boundary in the
(H,H') plane at t=0.5for n=2,3, and ». We see
that the shape of the critical line is quite similar
to that of the transition line of Sec. II. The co-
existence region shrinks with increasing » and
converges toward the n =« result. This =« re-
sult is, in fact, identical to the phase boundary
found in Sec. II. In order to show this we use the
relation?

lim I 0(an) 2a

n=c In/z-1(0m) - 1+[1+ (ZQ)W ’

On substitution in (3. 5) and (3. 6) one obtains two
equations which can easily be solved with the result

Sa=[1-t/N]V2, Sp=(1-tn)'2, (3.8)

3.7)

Inserting these results into (3. 3) and (3. 4) shows
that the critical fields at n = © satisfy equations that
are identical to (2. 31) and (2. 32).

Finally we note that for all » = 2 the critical fields
in the ground state may be found by setting S,, Sy
equal to unity in (3. 3) and (3. 4). This result must
hold independently of the MF approximation. Note
that the critical value of H at H'=0 (A=1) is 4J(0),
which is twice as large as what would be expected
for the corresponding Ising (2= 1) model.

IV. PLANAR SPHERICAL MODEL

In Sec. III, we have seen that the antiferromag-
netic SM, despite its scalar character, is closely
similar to a n-vector model (»=2). The important
distinction remaining is that the SM does not allow
a spontaneous magnetization in an orthogonal direc-
tion. This suggests the introduction of a planar
SM, where the spins are vectors in a plane.® Con-
sider the energy expression
E= ’ZI 2J1,7(070% + 07 07) - 2H 2 0}

i, i

- 2Hf,(z> - 2
i
Jea i

€B

0}) - 2H1(Z} of- 23 o}),
Jea Je B
(4.1)
where the spins have to satisfy the spherical con-
straints



4216 HUBERT J. F. KNOPS

| oo

-1 FIG. 3. Phase boundary

of an isotropic n-vector

model for =2, 3, and =

4 at a temperature half the
zero-field critical temper-
ature according to the

o mean-field approximation.

2 (09%+ (0D2= 4N, 2 (o09)%+(09?=iN.  (4.2)
Tea JeB

For convenience we have also introduced a stag-
gered field H! in the direction orthogonal to the
uniform field.

The problem may now be handled by exactly the
same steps as in Sec. II. One obtains the saddle-
point equations

__1 > z . .
1= 2n)® jdkz,,za— ﬁlgjz(ﬁ)+ 62+ M +8),  (4.3)

1 - 2, .
1= 2m)® Jdk ZaZp— ﬁzja(i)+ (S5)%+ M —S)z, (4.4)

where S} and S are the sublattice magnetization
of the A and B sublattice and are given by

BH![BT(0)+25]

S 2[z 425 - BTX0)]’ *.5)
. _aHi[BI(0)+z24] @6

B” 2[z 425 - 3232(0)] ’

All other symbols have the same meaning as in
Sec. II. One need not include a term representing
the lowest-eigenvalue term of the original sum be-
cause the S} and S; terms will prevent the lowest
eigenvalue from vanishing as long as H{# 0.

The coexistence region is now found when z 4z
becomes asymptotically equal to BZJ?‘(O) in the
limit H|- 0. Suppose that in this limit we again
have z .= BJX and zg=BJ/X. On defining further

. BIH|(NVENE

lim = =x, 4.1
w0 2[z 425 - BET2(0)] @7
it follows that
. e ¥ : 12,2
lim (S3)°’==, lim (Sz)*=x%x. (4.8)
H,=0 AT om0

The other two terms in (4. 3) and (4. 4) reduce in
the same manner as before and we arrive at equa-
tions which are formally identical to (2. 29) and

(2. 30). However, the significant difference is that
the quantity x* can now through (4. 8) be related to
the transverse spontaneous order in contrast to the
scalar model where x% could not be interpreted as a
spontaneous magnetization. This provides an ex-
plicit demonstration of the “vector character” of
the spherical model and of the spin-flip transition
expected on heuristic grounds.

V. CONCLUSION

We have seen that the antiferromagnetic SM re-
veals its hidden high-spin-dimensionality character
much more clearly than the corresponding ferro-
magnetic model. Despite the scalar character,
which does not allow a transverse order, the phase
boundary of the model mimics closely the phase
diagram of an isotropic z-vector model in which
there is a spontaneous sublattice magnetization
orthogonal to the magnetic field.

This result has a bearing on the question whether
the antiferromagnetic SM can exhibit a tricritical
point. Tricritical points are believed!® to occur
in antiferromagnetic Ising models with an addition-
al ferromagnetic coupling between the sites of each
sublattice. Such an additional interaction, however,
would not alter our results in any essential way.
One might thus well ask whether an isotropic n-
vector model will exhibit a tricritical point. In
a metamagnet the tricritical point is that point of
the critical line in the (H, T') plane at which the
transition changes from continuous to first order.
Some reflection shows that increasing H in the
ground state of an isotropic (antiferromagnetic)
n-vector model will gradually turn the spins over
toward the field direction, thereby leading to a
continuous transition. It is then hard to imagine
that a higher temperatuxe a first-order transition
could occur. This heuristic argument excludes the
possibility of a tricritical point. In fact its absence
in some spherical models has been checked ex-
plicitly.
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APPENDIX: MEAN-FIELD TREATMENT

A good way to obtain the mean-field (MF) ap-
proximation is to introduce the normalized dis-
tribution function

p=[z(a)z(d)] V2 exp(i- > &1+be 2 Tr;) , (A1)
Tea jes
z(a):flsmdﬁ e®?, (A2)
The free energy corresponding to p is given by
F=(E),+kT (lnp),, (A3)

where E is the energy expression given in (3. 2).
The minimum of this expression over all possible
distribution functions would give the true free
energy; when we minimize with respect to the
class of distribution functions defined by (A1) we
find the MF approximation to the free energy.

. When we differentiate (A3) with respect to @ and
b and equate the result to zero in order to obtain
the extremes of F, we find the familiar self-con-
sistency equations

nE=-2pJ(0)S,+ (BH+ BH')Z, (A4)
n == 2BJ(0)S,+ (8H - BH')Z, (A5)

in which Z is a unit vector along the z axis, and
S As SB are the sublattice magnetization of the A
and B lattice, namely,

Sa=zl@)t [ dE ™5, (AB)

o-

Sp=2(b)* [5.,d5e™5. (A7)

It is clear that §A is a vector Il 3 with length given
by

d
SA:d_a_ Inz(a). (A8)
With the introduction of polar coordinates z(a) can
be written as
=C [, "% (sin6)"%d6. (A9)

This integral is directly related to an integral
representation of the Bessel function I,, so that

2(@)=C'a"™ 4, . (an). (A10)

Using (A8) and a recursion formula for the Bessel
functions, one finds

Sa=I,,5@)/1,;-1@). (A11)

Similar formulas arise in Stanley’s paper* on a
chain of n-dimensional spins and further details of
this function can be found there.

We want to show that the self-consistency rela-
tions allow solutlons in which § has a component
orthogonal to z say in the x dlrectlon Note f1rst
that in case S,,, # 0 the conditions SA II'A and SB b
combined with (A4) and (A5) lead to the relation

=(H+H')[2J(0)]7'2 - 2S,, (A12)
in which the parameter X is defined by
N=(H+H")/(H-H"). (A13)
When we insert this in (A4) and (A5) we obtain
a=2BJurS,, b=2RJnX"1S,. (A14)

Substituting this in the expression (Al11) for the
sublattice magnetization yields

_ 1y /2(2BInNS )
S 4% T2 (2BIMNS ) (A15)

_1,5(2BIn\1S,)

SB’I,,,Z_, (2BImXIsy) (A16)
When S, #0 Egs. (A12), (A15), and (A16) are
equivalent to the original self-consistency equa-
tions in vector form. We note that (A15) and (A16)
are exactly the mean-field equations that would
describe a ferromagnetic n-vector model with
coupling resp. JX and J/X. There will therefore
exist nontrivial solutions when T < Ty= 2J (0)/k and
t<A<1/t, where again t=T/T,.

A convenient way to describe the solutions is to
consider at fixed ¢ <1 the parameter X and the val-
ue of S,,, as independent varlables From (A15)
and (A16) we find the lengths of SA and S, as func-
tions of . From (A12) we recall Sg,,=— XS, ,.
Hence we find

SZA z‘s ()‘) A,x; (A17)
Sg'g:SZB(X)— XaSA.x' (A18)

Given S, , and Sp,, we can now find H and H’ from
(A12) and (A13) which can be transformed to

H/J=8,,,(1+2)+Sg,(1+271), (A19)
H'/J=84,,(A=1)+Sg, ,(1-X"Y). (A20)

It is evident from these equations that at the same
value of H, H’, and ¢ both S, ,,and - S, , are solu-
tions. This means that two phases with opposite
sign of the transverse sublattice magnetization are
in coexistence. The critical surface which is the
boundary of this coexistence region is found by
setting S,,,=0, and its equation is consequently

H/J=+S,00) (1+N)£S5(\) (1+1/1), (A21)

H'/J=£S,(\) (A= 1)£S;(\) (1= 1/X). (A22)
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To complete this analysis one should still prove
that the solutions that we just obtained are indeed
stable solutions, i.e., present a true minimum in
the free energy. The best way to do this is to
consider the other type of solution which is pos-
sible, namely, the one where all vectors are along
the z axis. Outside the coexistence region, where
there are no other solutions, one of the latter type
should certainly be stable. One can now calculate
for these solutions the second-order contribution
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to F from small deviations of S 4 and 3 p orthogonal
to the z axis. It turns out that the determinant of
the quadratic form that one so obtains, passes
through zero on the surface defined by (A21) and
(A22). This means that the solutions with all vec-
tors parallel to the z axis become unstable with
respect to deviations of this axis exactly in the
region where we found solutions with transverse
components, so that the latter should be stable.
We will omit further details.

*On leave of absence from the University of Nymegen, Nymegen,
Netherlands.
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