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The critical behavior of the surface properties of magnets is discussed. A homogeneity assumption for
the free energy, involving a new exponent $, to scale the surface field, is introduced. New exponent
relations are derived for the surface exponents. These are satisfied for the two-dimensional Ising mcdel,
the spherical model, and mean-field theory. The existing estimates for the three-dimensional Ising
model, however, appear to be possibly inconsistent.

Considerable interest, both theoretical and ex-
perimental, 4 has been shown recently in the criti-
calbehavior of magnetic systems withfree surfaces.
The surface quantities of interest are most conve-
niently defined if we consider a spin system on a
lattice which is infinite in d'=d-1 dimensionsbut
has u((~) "layers" in the dth dimension; the first
and nth layers forming free surfaces. If F(n, h, h„T)
is the free energy (per spin) of this system in the
presence of a uniform bulk magnetic fieM h and asur
face field h|, then as u ~, with h, h„and T fixed
we expect' that

F(n, h, h„T) = F (h, T)+(2/n)F"(h, h& T)+. ~ ~, (1)

where F„(h, T) is the bulk free energy per spin and
F"(h, h~ T) the surface free energy per surface spin. ~

Since, in general, F" is nonanalytic at the bulk
critical temperature~ T„we introduce ~ the new ex-
ponents n" for the surface specific heat, C"(T); y"
for the surface susceptibilitys y"(T) = —8~F"/sh~;
for the surface magnetization Mq(T) = —eF"/Shy y,
for the layer susceptibility X|(T)= —S F"/Shqeh; y~, J
forthelocalsusceptibility y~ ~(T) = —s F"/ShL etc
In this paper we discuss the relation of these sur-
face" exponents to each other and to the standard
bulk exponents, on the basis of a generalized ho-
mogeneity assumption ~ for the singular part, F„
of F(n, h, h|, T).

Explicitly, we assume that in the critical region,
we may, write

F,(u, h, hn T) = Q(~ Q hn t ) (2)

as n-~ and h, hn t-0, where the function Q satis-
fies the homogeneity relation

Q(ln, l ~ h, l ~~ h|, l t) = O' Q(n, h, hg, t ), (2)

where we introduce the new exponent Q~ to scale h~.
The shifted temperature deviation t is defined by

t =[T- T, (n)]/T, = t+ «(n), (4)

where T, (n) isthefinite-sizecriticaltemperature, ~3

T, = T,(~) is the corresponding bulk critical temper-
ature, t= (T- T,)/T„and the fractional shift

e(n) = [T, —T,(n)] /T, = b/n" as n- ~,
with X the shift exponent.

If we choose l=i/n in(8), wemaycombine(2)and
(2) into the single scaling postulate

F,(n, h, hq, T) =n"Q(l, n~h, n~&hz, n t ) (8)

as n ~ and h, h~, t-0, which identifies 8, Q, and

Qq as crossover exponentsu in terms of u. In zero
field (h= h~ = 0) the specific heat C(n, T) and total
susceptibility per spin X(n, T) may be written

F(n, T) =n" X(n t), n-, l-0,
where +=iII)+28 or $+2tIe) if Y=C or X, respectively,
and the scaling functions X(x) are given by appro-
priate derivatives of Q. This result is of precisely
the form discuSsed by Fisher and Barber, ' where
8 is the rounding exponent. Hence from their ar-
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e"=a+ v, y"=y+v if X&1,

o,"=0+1, y"=y+1 if A. =l and v&1 .
(8)

(io)

Turning now to the behavior of the derivatives of
E with respect to hz we find that in zero field, It,(~ T)
andyz z(n, T) arealsooftheform(V)with&ad=|t+P~+Q
and /+2'~, respectively. The analysis of Ref. 1 is
again applicable, except to note that as g- ~, we now
require F(n, T) to approach F,(T)/n. Hence the ex-
ponents Y, and Y~, must satisfy

0+ 4'x+ 4 —Yie = 4+ 2%x —
Ys, a 8 = —1

~

which yields

++ y1 + + y1+ y1.1
1 -1=

v v

2 —Q'+y1 1 1
2v 2

(i2)

Combining (11)with (8}yields the first of our new
exponent relations:

(18}2y1 -y1, 1= y+ v ~

The behavior of the surface magnetization Mq(T) also
follows by a similar argument and we obtain the
second relation

Pi+Ye=P+Y ~

Eliminating Y~ between (18) and (14) gives

24+Ye, i=2P+Y- v=2-(&+v) ~

(i4)

(15)

If the shift exponent X exceeds unity, we may com-
bine this result with (9) to obtain

+2~1+y1, 1 ~ y (i6)

which was first proposed by Binder and Hohenberg. z

Note, however, that this last result does Not foQow
if X=1 and v&1.

The actual surface sealing theory of Binder and
Hohenberga may also be deduced from the basic ho-
mogeneity postulate (8). To do so we choose I =

I f I"
in (3), which yields, in place of (6), the alternative
scaling form

~.(~h, li, T)= lf I' e(~lfl", I/lf'I', Igl& I'~, 1)
(iv)

as n-~ and lt I-, h, k, -0, where L, =@1@,. ~ we
now assume that

Q(x, y, z, 1) = q„(y) + x ~ q"(y, z)+. ~ ~, (i8)

guments we find

e =1/v, g = (a -2)/v,

0 = - z(4 - eY) = &/v,

where u, P, Y, v, andh arestandardbulkexponents. 0'~z

A more detailed investigation1 of the behavior of
X(x) for large x yields the predictions

as x- ~ at fixed y and z, and compare with (1) we
obtain a scaled form for F";

F"(w &x, T}=-'Ifl' "
e"(&/I&l', &Jlfl"), (»)

provided A. &1. With h=0, this is precisely of the
form proposed by Binder and Hohenberg. If A. =1,
there is an additional contribution to E" from the
first term in (18) and we find

+-'&
I
fl""[(2-~)e.(&/I fl') - &(&/I fl')e-" (&/I &I')]„

(2o)
where 5 is the amplitude of the shift (5) and the
prime denotes differentiation. Hence the single ho-
mogeneity assumption (3) yields hotly the finite-size
scaling of Fisher' and the surface scaling of Hohen-

berg, and thus unifies these two apparently distinct
scaling formulations for surface problems.

The question now arises to the validity of the new

exponent relations (18)-(15) z for actual model or
real systems. The existing published' ' values and
estimates of surface exponents for d-dimensional
Ising models (0= 2, 3) are summarized in Table I.
The exact values of p1 and y1 1 for the two-dimen-
sional Ising model (a=0, P=-„Y=j, v=1) satisfy
(15), while either (18) or (14) then gives Y, =IzZ in
agreement with the numerical estimate. The pre-
dictions (13)-(15)are also satisfied by the mean-
field results +=1, y&= —,', yz z= —z, while (13) is
also in accord with exact calculations on the spher-
ical model, in all dimensions, which yield y1
= -

Yz z
= I/(d —2) for 2 & tf & 4. From (12)we explicit-

ly find that Qq = 1 for mean-field theory and /~ = -',

for the d = 2 Ising model and d = 3 spherical model.
On the other hand, for the three-dimensiona1. Is-

ing model (y=), P=Q, v=0. 64) the situation is
less definite. The estimates~ of y1 and y1 1 satisfy
(13) only within the relatively large error bars
quoted. With these values we may conclude from
(18) that Q, = l.0+0.15, while (14) and (16) predict
Q —0, 68+ 0, 08, However a preliminary analysts
of a direct low-temperature expansion' for M~(T)
indicates p1-—1.0+0.12. While this result must be
considered as somewhat tentative (the series is rel-
atively short), the validity of the general homogene-
ity postulate remains open to question for the d = 8
Ising model.

%'ith regard to real systems, the only expex imen-
tally measured surface exponent to date is p1 = 1for
nickel oxide (¹0)by low-energy-elect'ron diffrac-
tion (LEED).4 Although this does agree with the ten-
tative estimate quoted above for the d = 3 Ising mod-
el, a definite comparison is premature on both the-
oretical and experimental grounds.

In summary, the exponent relations (13)-(15)ap-
pear to be in agreement with the known exponents for
several model systems, but uncertain on existing es-
timates for the d = 3 Ising model andpossibly real sys-
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TABLE I. Surface exponents for Ising models.
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Dimension
d

Shift

1.Se+0.1S'

Magnetization
Pg

gb

Specific heat
~X

1b &~0.0SC

1.9S+O. Os'

Susceptibilities
Yf

&+0 os'
8

7 +0.080

0 (log)b

0 J.c

~Exact calculation (Ref. 1).
bExact calculation (Ref. 3).

CSeries estimate |Ref. 2).
~Series estimate @ef. 1).

No direct estimate yet
available.

tems. Undoubtedly, more theoretical and experi-
mental study is required before our understanding
of the critical behavior of aux face properties ap-
proaches that of bulk critical phenomena.¹terlfded ist Proof. Fisher (private communi-
cation) has pointed out that the exponent g, appear-
ing in (17) is conceivably model independent. For
the d =2 Ising model, mean-field theory and the
spherical model (all d) it has the value —,'. If we
assume for the d =3 Ising model that 6, ~ 0. 5, me

find from (12) and (14), y, ~0.82, y..t~ —0.2, f)t

=0.Vs. This estimate for y, is in good agreement
with the numerical estimate (Table I), while the
existing series for y&, & and M, must be viewed as
too short to exclude the estimates for pg g and Pg.

The author wishes to thank Professor Michael E.
Fisher for critically reading the manuscript and
several illuminating comments, Dr. K. Binder for
useful correspondence, and Dr. A. J. Guttmann and
Dr. 8. %. Gibberd for helpful discussions. The
award of a Queen Elizabeth II Fellowship is grate-
fully acknowledged.

'M. E., Fisher, in Proceedings of the 1970 Enrico Fermi
Summer School, Course No. Sl (Academic, New York, 1972),
and references cited therein; see also, M. E, Fisher and M, N.
Barber, Phys. Rev. Lett. 28, 1516 (1972).

'-K. Binder and P. C. Hohenberg, Phys. Rev. B 6, 3461
(1972), and references cited therein.

'B. M. McCoy and T. T. Wu, Phys. Rev. 162, 436 (1967).
Some of the results of this work were obtained independently

by M. E. Fisher and A. E. Ferdinand )Phys. Rev. Lett. 19, 169
(1967)].

'T. Wolfram, R, E. De Wames, W. F. Hall, and P. W.
Palmberg, Surf. Sci. 28, 45 (1971).

'For simplicity we consider a hypercubic lattice, but
definitions are readily extended to other lattices and, in fact, to
continuum systems.

That is, h, couples only to spins in the surface layers.
'Recalling that the system has two free surfaces.
'In this and subsequent definitions, the fields h and h, are

understood to be put equal to zero after differentiation.
'Other exponents of interest are 5, , describing the local

critical isotherm M, (h, ) and local gap exponents; see Ref. 2.
One should also, in principle, distinguish low- and
high-temperature exponents y", y, ', etc; in the absence of any

x'
evidence at all on this point we assume y" = y . (See also
Ref. 14.)

"See, e.g., M. E. Fisher, Rep. Prog. Phys. 30, 615 (1967).
"See, e.g., M. E. Fisher and D. M. Jasnow, Theory of
Correlations in the Critical Region (Academic, New York, to be
published}. A similar idea has been introduced by A. Hankey and
H. E. Stanley tPhys. Rev. B 6, 3515 (1972)j, although these
authors make the additional assumption of "extended scaling, "
which replaces t by t.

'-'Or more generally, in case there is no sharp transition for
finite n, a pseudocritical temperature; see Ref. 1 and M. N.
Barber and M. E. Fisher, Ann. Phys. (N. Y.) (to be published)."I= P + y = P5 is the gap exponent; see Ref. 10.

"Since P, is defined for T & T„we require the scaling
function for M, (T, n) to behave as ~xP', as x ——aa. Unless
co' Q eo there can, however, be no distinction between y,

' and
y„etc. The possibility of 0)' Q 0) may be excluded by
considering the behavior at T, of say M = —BF/3h as a
function of h.

' The validity of the relations (9) and (10) for ~x and yx
has been discussed by Fisher and Barber (Ref. l).

'66. S. Joyce, in Phase Transitions and Critical Phenomena
(Academic, New York, 1962},Vol. 2, p. 375. For this model
y = 2(d = 3)„1(d ) 4), and v =y(2.

"M. N. Barber (unpublished). Additional logarithmic factors
occur for d = 4, but do not change the conclusion.

'"M. N. Barber (unpublished).


