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The stopping power of matter is calculated quantum mechanically for high-energy neutrons. The
contribution from low-Q collisions (in which the binding of atomic electrons is important) is shown to
be insignificant at neutron energies of the order of 4Z " GeV or greater, where Z is the atomic
number of the medium traversed. The quantum mechanical result shows a weaker dependence on
neutron energy than an earlier semiclassical computation, applicable up to 10 GeV, although the two
calculations give comparable numerical values in the range 5-10 GeV. A simple stopping-power formula
is given for neutrons with energies between 4Z " and 500 GeV, where the neutron magnetic form
factor becomes important. A more complicated formula is given and evaluated numerically to 7000
GeV. The density effect and radiative corrections are not treated.

I. INTRODUCTION

Using the formalism developed in the preceding
paper, we calculate quantum mechanically the
stopping power of matter for high-energy neu-
trons. Results are compared with those of an
earlier semiclassical calculation. The energy
loss to atomic electrons occurs through the inter-
action of the neutron's spin and spatial distribution
of magnetic moment with the charge and spin
(magnetic moment) of the electron.

We proceed as in the theory of stopping power
for charged particles. As the neutron's energy
increases, the relative probability increases for
transferring an amount of energy which is large
compared with the binding energies of the atomic
electrons in the medium traversed. At very high
neutron energies, to be specified more precisely
below, we assume that collisions of this type are
primarily responsible for the neutron stopping
power. We calculate the stopping power in this
".high-Q" approximation, integrating over energy
losses Q greater than some value q, of the order
of the average binding energy of an atomic electron
in the medium. At sufficiently high energies the
dependence on g itself becomes negligible.

"Low-Q" collisions, in which the binding of the
electrons must be taken into account, are treated
separately. Relevant parts of the cross-section
formula are expanded in powers of Q and only the
lowest-order nonvanishing term retained. We as-
sume that this "low-Q" approximation is valid for
energy losses up to g, over which range we inte-
grate to estimate the low-Q contribution to the
stopping power. In principle, higher-order terms
in Q could be included to improve the low-Q com-
putation, but we do not do so here.

We adopt the same notation as that used in Ref.

1, which also coincides with Ref. 3 (when h = c
= 1). Equation numbers N from Ref. 1 will be
preceded here by the letter I, e. g. , Eq. (I-N).

II. FORM FACTOR FOR NEUTRON MAGNETIC MOMENT

Ge(Q) = p Z 1+v;Q
(2)

~

~
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It is instructive to see how large the neutron's
energy must be in order for the Q dependence of
the form factor to be significant. Expanding Eq.
(3) to first order in Q and squaring, we find that

G„=p (1 —3. 345Q). (4)

Setting the second term equal to 10% of the first
at Q, viz. , 33Q~ - 1, implies that y - 500.
Therefore, the error introduced by assuming the
constant form factor is about 10% at 500 GeV.

The high-Q approximation governs collisions in
which Q falls between q and its maximum value, '

Q „=3y'MmP'/(M+ 2ym).

To treat these collisions when ymfM is not small,
we introduce the spatial distribution of the neutron's
magnetic moment. As in a similar study for pro-
tons, this is conveniently done by using the em-
pirically fit form factor G„(Q}suggested by Hand,
Miller, and Wilson. Using their numerical values,
we write (for Q in cgs units and p, = —1.91 in units
of ek/2M~c, where M~ is the mass of proton}
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III. NEUTRON STOPPING POWER IN HIGH-0

APPROXIMATION
where v =mQ/2M, as found from Eqs. (I-7) and
(I-8). Introducing the symbols

The neutron cross section in the high-Q approxi-
mation is given by Eq. (1-39), in which Gz-—0 and
m is negligible in comparison with Q. Expressing
G„by means of Eq. (2) and making use of Eq.
(I-40), we write

2we'Zp dQ 7 1 p' Q
mP Q 1+y Q Q 2E

a = 2)Vi

(7; =m —av;,

& = (a+ mQ )/(a+ mq),

B; = (1+ v;Q )/(1+ v, q),

we find the high-Q contribution to the stopping
power,

(8)

(7)

(8)

(9)

—= N Qdo (10)

vm mP 1

2 K;KK + )KK) ~ ' ~ ~ K ) ) BI, , )11)
m Pa 1 2mv; 2mP 1

' ' (r,o) Q ~ v~ —vf 0'~ 0'~Q ~ E v~

where s=4xe NZ/mP . Expression (11) is exact within the high-Q approximation. The value of p for any
element is so small that p,q«1 and mp«a, and we henceforth drop these terms compared with unity. For
y not too close to unity, we also have Q~» 9. Under this condition the low-Q collisions make an insignifi-
cant contribution to the stopping power, as shown in Sec. V. Therefore, the neutron stopping power is then
given by (Q»q), '0

dE, z ~ 2 vm mP 1 Q m2 maP 1

Q 2E v 1+ Q
~ v Q „2E ~ n(1+";Qma)

/ ap mQm~ ~ X;X~ ~ 2mv; 2mp 1 ln(l+ v;Q )+m~ m+ ln 1+ ~ ' +~ X,A.
&

Qmag a g, g
0'go'g gag vg (T~Qm~ E p] vg —v~

If, in addition, y~ 500, Eq. (12) reduces to a simpler form. From Eq. (4) we see that we can represent
the form factor (2) by writing &, = I, X; = 0 for i &1, and v, = v = 1.7 erg . Expansion of Eq. (12) to first or-
der in v then gives (Q»)7, y~ 500)"

dE 1 2 M M+2ym ' 4M'v
1

m'

ymP ~ y m(P —2) 2M 4y~msP4

M+ 2ym M+ 2ym m 3(M+ 2ym)

Finally, at high Q, we treat the condition ym/M«1. We can ignore the Q dependence of the form factor,
but cannot assume that Q ~»)I. With 1,= 1 and X; = 0 for i & 1, Eq. (11) gives in the limit v, - 0,

dE Ix 2
( —Q )+ m~+ 1+ a

ln
a+mQm

(14)

From Eq. (1) we now have Q ~=2y mP . Further-
more, since mQ ~/a = P y m /M «1, the logarithm
can be accurately represented by expanding it to
first order in this parameter. With these sub-
stitutions Eq. (14) gives

(- )
= KK ( )

x y (1+ )+ . (15)

This formula will be considered further after cal-
culation of the low-Q contribution to —dE/dS.

IU. LOW-Q CONTRIBUTION TO STOPPING POWER

At low Q, the inelastic-scattering cross section
for the neutron is given by Eq. (1-32) with Ge = 0,
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(16)

G„= p, ', and ~«1. In addition, we make the ap-
proximation that Q/m «1. The matrix elements
are expanded into powers of Iq I and only the first
nonvanishing terms retained. In terms of the
optical-dipole-oscillator strengths f„,

I
F„I'=QfgE„,

I Pi Gnl =PiE„fj2m,

Pi = P'(I —Q in/Q),

where

Q „=E„/2mP (20)

is the minimum value of Q. Under these condi-
tions Eil. (I-32) yields the simple result

we Zp, f„
M PE„

and

I
C„I'=3E„f„/2m. (16)

E2
E22QdQ

With Q small, the scattering angle is also small,
and so

Integration over the range of the low-Q collisions
gives

~min

do„= Ma~
"

p (il —Qm„) +
2

"w ln En" 22my En —2m Qmin
(22)

Substituting (20} and summing over all excited states, we obtain (g„f„=I)
4 2 I

(23}
~min

mM2P 2 "" 2y' n

For most collisions at low-Q we expect that 2m'/E„»1. Therefore, we shall neglect the unit term in the

argument of the logarithm in the last term in Eq. (23) . Any overestimate of this term thus introduced is of

little significance, because this term is small, as shown below.
The low-Q contribution to the stopping power is obtained from Eq. (23) by multiplying by N, the number

of atoms per unit volume. It follows that

~ ~ ~
~

dE & KP. 1 ~ 2 1

J dd4M' 2 " P "" dtd ql' ')
The sums are evaluated in the Appendix. Substituting Eqs. (A15) and (A16), we obtain

(
dE m qP' 8(Z —0. 3)' p 16(Z —0. 3)'6I' 8(Z —0. 3}'(R

M 2m 3m 3y m yp(2m@) Z '

where 8 denotes the rydberg energy.

V. NEUTRON STOPPING POWER WHEN ym/N «1

(24)

(25)

The total stopping power at low y is represented by the sum of (15) and (25). Omitting the first term
from (25) in comparison with the last term from (15), we write

dE, q m 2~(I ~ qM 8(Z —0 3) (R

ds M 2y m 3m

-' "'(=)'
' '

16(Z —0. 3}61 8(Z —0. 3) 5I
3y'm' yP(2m')"'Z'4 (26)

The terms T; in Eq. (27) are defined in the order
of their appearance in (26). In contrast to the cor-
responding formula for charged particles, the in-

termediate energy g does not drop out. The main

dependence on g comes from the second high-Q
term, which decreases as y .

Numerical evaluations of the four terms from
Eils. (26) and (27) are given in Table I, for which

we have assumed q to be of the order of the aver-
age binding energy of an atomic electron, g-Z'4.
The last two terms in (26) are negligible ex-

2

ds 'Kp M
y' (1+ ). (26)

cept when y is very close to unity. The sec-
ond term becomes small compared with the
first for somewhat larger values of y, depend-
ing on the atomic number. A separate compu-
tation shows that the value of the second term
is one-tenth that of the first when y-42 ' '.
Thus when 4zw 5&y«M/m the neutron stopping
power is given by
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TABLE I. Values of terms in Eqs. {26) and (27) at different y for Z=13 and 2=82.

2
5

10
50

5.25
47. 0

197
5000

T2

408
65.3
16.3
0.65

2=13

T3

—3.87xlp
—3.87xlp
-3.87xlp 6

—3.87xlp 6

T4

8.52x10 6

1.69xlp 6

4.76xlp 7

2. 40x 10~

5.25
47. 0

197
5000

5380
860
215

8.60

Z =82

T3

—1.03xlo 3

—1.03x10 3

—1.03x10 3

—1.03x10 3

T4

2.33xlp 3

4.59x10 4

1.30x 10~
6.51xlp 6

Equation (28) can be compared with the corre-
sponding semiclassical formula, Eq. (23) of Ref.
2, which is valid for 1 & y-10.' The ratio of the
quantum mechanical and semiclassical stopping
powers is found to be

(-dE/ds)o„18(2y —1)
(- dE/ds)ac (y —1)(y + 3)

' (29)

When y = 5, the ratio is 1.3; when y = 10, it is
0. 35. The two computations give comparable
values for the stopping power in the range of y
where they overlap. The semiclassical formula
shows a stronger dependence on y, due possibly to
the abrupt falloff (r o, r ', and r ) of the classical
force components with neutron-electron separa-
tion.

VI. NUMERICAL RESULTS

Table II gives the neutron stopping power calcu-
lated from Eq. (12) and multiplied by A/Zp, where
A is the atomic mass number and p the density of
the medium traversed. The quantity ( —dE/pds)
&&A/Z is the same for all elements. From the
foregoing discussion, these values are accurate at
high y. Calculations were carried out through
y =7000, where the magnetic form factor is very
small and where the charge form factor may be
comparable in magnitude. The error at low y is

-10% when y-4Z ' '. The total energy E of the
neutron at each value of y is also shown in the
table.

The neutron stopping power increases by about
a factor of 100 between y = 10 and 100 and by another
order of magnitude between y = 100 and 1000.
Thereafter, it rises only slightly when y is in-
creased to 7000.

The possibility of detecting neutron energy losses
to atomic electrons was discussed in Ref. 2 on the
basis of the semiclassical calculation. The quan-
tum mechanical results do not appear to alter the
suggestion made there for their possible detection.
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APPENDIX: EVALUATION OF LOW-Q SUMS

The first sum in Eq. (24) is immediately avail-
able. ' In terms of the quantities S„defined in
Ref. 13, we have

ZEof„=lim QZ&~+„~'
n Q 0

(A1)

TABLE II. Neutron stopping power as a function of &

and neutron energy E.

The second sum in (24) is more difficult to evalu-
ate. Treating the exponent r as a continuous vari-
able, one may write

10
50

100
150
250
500
750

1000
2000
4000
5000
7000

(Ge V)

9.38
47. 0
94. 0

141
235
470
705
940

1880
3760
4700
6580

:—:(-",),
(MeVg ~ cm)

l.89x 10 ~

5.62 xlp+
2. 03 x10
4. 10 xlp
9.07 x 10-'
2. p4 x1p-'
2, 72 xlp+
3.07 x1p-'
3.45 x10-2
3.58 x10-'
3.62 xlp 2

3.66 x10-'

Q E"„f„lnE„= —Q E„"f„. (A2)

In terms of the S„, the sum needed in Eq. (24) is
related to

+ E fnlnEn= (A3)

This quantity can be estimated from a plot of
(S„/Q)z.o vs r at r = 3.

To make such a plot, the relevant quantities
were obtained as follows. For r = 1, 2 we have'3'"
S,/Q=—1 and (Sa/Q)u=o = s ( T), where (T) isthe total
kinetic energy of the atomic electrons. By the
virial theorem, (T) is also equal to the total elec-
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2=82

13

F IG. 1. Circled points
show values of ln S„[Eq.
(AS)] for r=1, 2, and 3
and for Z =1, 13, and 82.
Points belonging to the
same Z are connected by
straight lines for ease in
reading.

tronic binding energy, which is given approximate-
ly by Z ' (R, where 8 is the rydberg energy.
Therefore,

{Sq/Q)o.o-s z ' (R.

For r=3 we follow Ref. 13, taking

3' ' 5(rj)

{A4)

~1 ~2 (A5)

where L(5(r&)) is the density of electrons at the
nucleus of the atom, averaged over the ground.
state, and p is the density per cubic Bohr radius at
the nucleus. Most of the contribution to p comes
from the two A-shell electrons, for which the
screened hydrogenic approximation gives p- 2
x(Z —0. 3) /v. Therefore,

s„=(s„/Q""-'), , (Aa)

are shown in a semilogarithmic plot in Fig. 1 for
r= 1, 2, and 3 and Z=1, 13, and 82 ie In view of
the approximately linear trend shown and in view
of the smallness of the contribution made by the
sums in Eq. (24) when the high-Q contribution is
added, we assume that the value of the derivative
in (A3) is approximately the same as the slope of
the line drawn between the points at r = 2 and r = 3
in Fig. 1.

Specifically, introducing the dimensionless quan-
tities

cannot be calculated by means of a hydrogenic ap-
proximation or the Thomas-Fermi model. %e
make no attempt to calculate (A7), this quantity not
being critical for our purposes. The dimensionless
quantities

(S,/Q), =,-~(Z-0. 3)'8'.

For r=4,
(A6)

and

8„=E„/y P{2mq}"'=E„/t (A9)

(AV) (A10)

V', V being the gradient of the potential energy taken
with respect to the position coordinates of the jth
electron. The mean value in (A7) is large. In
fact, this quantity diverges if the electron density
at the nucleus is different from zero, ' and so it

we write for the second sum in Eq. (24),

(A11)

Since lnS„ is assumed to vary linearly with r, the
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logarithm of P„ in (A10} is linea. r in p. Under this
condition it follows that

From Eqs. (A11) and (A13) it follows that the sec-
ond sum is given by

BP„B(lnP„}
Bp, Qp, QE/1 h - ~ 1

c o &(Solano-o
' (Ai4)

-P, (lnP, —lnP„~).

With p, = 2, then,

(A13)
Finally, combining Eqs. (Al} and (A6), we have

Z E'„y„- o (Z-0. 3)'6l' (A15}

Combining (A4), (A6), (A9), and (A14) gives

( o (3o&@}o-o
&1' Q o.p f;(So/Q) o p'. (A13)

Z Eg„lnh„- o (Z —0. 3) 6l ln
p 3,(oZo 4

6(Z 0, 3) 61

yP 2m'

(A16)
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