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The two theoretical approaches to extended x-ray-absorption fine structure, based on either “long-range
order” or “short-range order” are critically examined within a muffin-tin-scatterer model. It is argued that
the two apparently dissimilar theories will in practice yield essentially the same results. The argument is
based on the implications of recent multiple scattering calculations on clusters of atoms.

INTRODUCTION

The theory of extended x-ray-absorption fine
structure (EXAFS) has had a long and varied histo-
ry.'? However, this development has not led to a
unified theoretical approach. Specifically, as ap-
plied to periodic materials, one supposedly has to
decide between a “long-range order” theory or a
“short-range order” theory. In both theories the
extended structure in the x-ray absorption coeffi-
cient above a core-level threshold is considered to
be a consequence of structure in the single-particle
final states. In the “long-range order” approach
one argues that this structure is a band-structure
effect, due to the diffraction of the final-state elec-
trons off the various periodic planes of atoms;
while in the “short-range order” approach one
again invokes scattering of the final -state electrons,
but in this case scattering only from the near neigh-
bors of the absorbing atom. Both theories predict
extended oscillatory structure in the absorption
coefficient, which roughly correlates with experi-
mental data. Several experimental tests have been
proposed to discriminate between the two theoreti-
cal approaches, but the sum of these tests have not
allowed a definite conclusion to be drawn.?

We propose here to show that, within the limita-
tions of a simplified single-particle model, the two
theoretical approaches outlined above should yield
essentially the same predictions. More precisely,
we shall derive an expression for the absorption
coefficient which can be evaluated in either a long-
range order or short-range order limit and we
shall show the close relation between these two
limits, 3

DERIVATION

Let us begin with a brief description of the sim-
plified single-particle model we use. The essence
of this model is to describe the potential seen by
the final-state electrons as a nonoverlapping array
of spherically symmetric spin-independent poten-
tials, each centered about an atom. The potential
between these muffin-tin scatterers is assumed
constant and this level determines our zero of en-
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ergy. We calculate the x-ray-absorption cross
section from a deep core level of an atom, at which
we place our coordinate origin, to final states
above the Fermi level. Although the expression we
derive could be evaluated for any energy above
threshold, many-body effects are probably domi-
nant close to threshold. Since these effects, such
as singular behavior at threshold, * multiplet struc-
ture, ® or plasma resonances, ® are clearly beyond
the scope of our model, we should expect our ex-
pressions not to become valid until somewhat be-
yond the threshold x-ray energy. Just how far be-
yond threshold is not clear, but a rough estimate
would be a few times the plasma frequency. This
limitation is inherent in any approach that is es-
sentially a single-particle theory. The further ap-
proximation of a muffin-tin model is made to facil-
itate our analysis. Infact, the determination of
the effective single-particle potential seen by the
final -state electron is a very difficult problem in-
volving the screening reaction of the electrons to
the developing presence of a core hole. Though the
relevant time scales for these relaxation processes
are not precisely defined, it seems to us reasonable
to assume in metals that the effective single-parti-
cle potential is that of a screened core hole, at
least in the sense of presenting a localized poten-
tial. If this assumption is accepted then the further
approximation of muffin-tin potentials is not an ex-
treme step. We shall assume that only the muffin-
tin potential at the origin is modified, though fur-
ther modifications could be incorporated. Finally,
we summarize our model description with the dou-
ble comment that, first, a muffin-tin model should
not be an unreasonable representation of the effec-
tive potential and second, that the use of a muffin-
tin model greatly facilitates the analysis of the
multiple scattering effects.

The quantity we wish to calculate is the contribu-
tion to the x-ray-absorption coefficient due to the
excitation of a deep core level, u,. This may be
expressed as

1)

where 7, is the density of atoms with the core level

He=n.0.,
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of concern and o, is the relevant contribution to the
absorption cross section of a single atom. We find
0. from the golden rule transition rate per unit
photon flux. The electronic perturbation is

-eé- 7 coswt, where & coswt is the electric field
of the monochromatic x-ray with angular frequency
w." Hence the single-particle transition rate for
absorption is

1= Qu/MI(I| ~(e) & | F)
F

X8(Ey +Hiw —Ep)(F | -se8-F|I), (@)

where in the sum over final states | F) we must
stay above the Fermi level. For the initial state

| I) we use an atomic orbital; for simplicity we as-
sume it to be an S state (K level):

(f|I)=Rytr)dm)™*/2 . 3)

Since the core level is deep, we assume | I) is fi-
nite only within the muffin-tin sphere, of radius
Ryr, of the absorbing atom and we normalize it
within this volume:

Ryr)=0 for 7 >R, f:“rzdrRﬁ(r)=1 . @

Also for, simplicity, we apply the dipole approxima-
tion to &, neglecting its spatial dependence. These
approximations are not essential, but do allow us
to write our final result in a fairly simple form.®
The only unknown now in Eq. (2) is a certain ma-
trix element of the operator

=ZF>\F>6(EI+h—w —EF)<Fi
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where H is the effective single-particle muffin-tin
Hamiltonian. An expression for p may in this mod-
el be derived as a straightforward application of
multiple scattering theory.®™! Substituting the
general expression for p into our special case of
(2), we find

4r® € -1 _E_(2m\®
ber e i w05 g () 0

R, 2
X fomr"drRo(r)Rﬂr) ; (6)

p=(R=0,1=1, m=0| t*~-G)" |R=0,

1=1, m=0) . (7)
Here R,(r) is a radial solution of the p-wave
Schrodinger equation at energy E for the muffin-tin
potential of the absorbing atom in the absence of
all other muffin-tin potentials. It is regular at the
origin and outside the muffin tin varies as

| Ry(r) | = 4 {j\[@mE/B% 27] coss]

-my[@mE/R2)} 2] sins]} , (8)
where j; and #, are spherical Bessel functions'? and
d{ is the =1 phase shift of the absorbing atom’s
muffin-tin potential. As noted above, we assume
the phase shifts for this potential §; are distinct
from those of the surrounding potentials §;. The
matrices in Eq. (7) are defined in a space deter-
mined by the positions of all the scatterers {R} and
by the angular momentum L = (, m)!t"13:

(RL [t |R'L’)= 08,361 1o (=)#2/2m)* /2 E™/2 %% 5ins, (1 - 63 o)

= 63,80z 1 (=) E2/2m )3 2 B2 4% sinb](55,) )

(RL | G |R'L’) = - 4ni(@m/m2)/2 EI/ZZ)(z)’ch 1 ki, [(@mE/R*)!2 |R -R’ ]

X YLl[ﬁ -R")/

Cih=[akyt BYFR) YL (R),

where hj =j; +in; and Y is a spherical harmonic
function.* Note that the m in (6), (9), and (10) is
the electron mass, not the magnetic quantum num-
ber, and that 6g g, is a Kronecker 0, not a phase
shift. The energy E that appears explicitly in the
above equations [and implicitly in the phase shifts
and R,(»)] equals E, +#w; we have assumed it to be
positive. Equation (6) is our most general expres-
sion for u.. We now concentrate on p to derive al-

|R-R'|]a-

o] ﬁ') ’ (10)

»

1)

r

ternative expressions in various limits.

First we consider a long-range order limit. For
this case we formally include all the scattering
centers in the evaluation of p. Such formulas for
p were first derived by Beeby°; we quote two
cases. First in the special case &;=0;, and with
the assumption of one atom per unit cell,

p=r'1fBsz<l=1, m=0 |
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X[t -G, E)]™ |[1=1, m=0)
=(1=1, m=0|8|1=1, m=0), (12)

where

(L|GE,E)|L")=N"Te'"Ra®e) (R L |G|R,L").
a,B

(13)
Here the matrices G(k, E), t, and S are in angular-
momentum space only. The integration in (12) is
over the Brillouin zone, whose volume is 7; the
sums in (13) are over the N atomic sites in the ma-
terial. Since (t™ - G) is the real Korringa-Kohn-
Rostoker (KKR) matrix, !> the contribution to Imp
comes from the solutions of

det [t - G(K, E)]=0 (14)

and hence are determined by the band structure.
The second case for which a simple answer is pos-
sible is when &; # 6;:
p=(l=1, m=0| @' -tr+sY)? |I=1, m=0),

(15)
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where t and t’ are the angular-momentum matrices
corresponding to the first and second line of Eq.
(9), respectively. Harris!® has shown how such
formulas as (12) and (14) may be numerically evalu-
ated, given the muffin-tin potentials. We only wish
to emphasize that definite long-range order expres-
sions for p do exist.

Now we consider the opposite short-range order
limit. This we treat by expanding p in a power se-
ries in t:

p=(R=0, I=1, m=0| (t+tGt+tGtGt+--+)
X|R=0, I=1, m=0) . (16)

Most short-range order theories to date effectively
terminate this series at the third-order term and
with some further approximations deduce a simple
expression for p. To illustrate this approach, we
assume that only §, is significant for the surround-
ing atoms and evaluate the first three terms in
(16). We need

(R=0, 1=1, m=0| G| Ra, =0, m=0)=(2m/h?)@mE/I>}/? Yyo(~ Ry ) @n) /21 [Ry (2mE /122

=—(R,, 1=0, m=0|G|R=0, =1, m=0) . (17)

Using the asymptotic form of 4; plus an ad hoc damping factor!?

K [R(sz/ﬁz)l/z]_.R"(sz/h—z)-l/zem(ams/nz)llze~m’ R@mE/R*)M 21 , (18)

we find for the expression in square brackets in Eq. (6),

2m* sin2s]

where Z is a unit vector in the polar direction. The
damping factor roughly accounts for the inelastic
scattering that occurs between elastic scatterings
from the muffin-tin potentials. As long as the in-
elastic scattering only leads to a mild blurring of
the energy (as appears to be the case, aside from
discrete plasmon loss effects'®), its inclusion sole-
ly as a damping factor is reasonable.!® The result
(19) is the typical form of short-range order the-
ories, %% aside from the lack of a Debye-Waller
factor in the sum over R’a, which one would obtain
from a thermal average of (19).%' Most of these
theories make the further approximation of assum-
ing that the scattering represented by §, is weak so
that 6, may be obtained in Born approximation. We
consider this is a dubious approximation, even for
energies several hundred volts above threshold.
Our reasoning is based on Levinson’s theorem,
which states that §; must decrease by »; multiples
of 7 as E increases from zero to infinity. Here n,

1 E 2m\ 3 m (2mE\!/? ~ ., sin[2R, (2mE/R?) /2 + 256{+ &)
—_— <—h_7) Imp—"n'z';'i—z(—-ﬁ—z> 1—%3(}20, z)

RZ(2mE/n?) Smb"e-mm) , 19)

r

is the number of bound states of / symmetry in a
single muffin tin, and is roughly the number of core
levels of / symmetry. Thus, the necessary occur-
rence of antiresonances, as §; passes through an
odd multiple of %n, is inconsistent with weak scat-
tering. Furthermore, Pendry has shown that these
antiresonances occur at surprisingly high energy. %
Finally, we note that except for the light elements,
our argument implies that the truncation of the ex-
pansion (16) at only third order and the neglect of

6; for =1 in the subsequent reduction, are gener-
ally incorrect approximations. We do not, how-
ever, wish to imply that the short-range order ap-
proach is invalid. The essence of this approach
lies in the introduction of the damping factor and
the physical justification of this term (that the final-
state electron can only propagate a limited distance
before inelastic effects destroy its single-particle
character) is very reasonable. Our point is mere-
ly that the elastic scattering is generally strong.
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DISCUSSION

Let us now examine the relation between a long-
range order and a short-range order evaluation of
EXAFS. As argued above, the only difference be-
tween these two approaches is whether the damping
coefficient X is zero or finite. In a short-range
order approach as A -0, one must end up with the
long-range order result, essentially by definition.
The interesting question is how small must X be-
come before the results are essentially independent
of A\; or, in other words, how large a cluster of
atoms is necessary to essentially reproduce a bulk
density of states. The answer to this question may
be inferred from the results of recent calculations
at Bristol of the multiple scattering properties of
clusters of atoms.?® The implication of this work
is that the essential structure of the density of
states is obtainable in small clusters of atoms (less
than thirty) and, more tentatively, that the config-
uration and scattering properties of the nearest
neighbors may be sufficient information. One way
to understand these results is to note that the in-
troduction of X in the calculation of the density of
states, which is essentially the quantity on the left-
hand side of Eq. (19), is roughly equivalent® to the
calculation of a Lorentzian averaged density of
states where the half-width of the Lorentzian I
centered at energy E is

T=\E2/m)2mE/r3)} 2, (20)

The Bristol calculations actually imply a stronger
result—that the effective blurring of the density of
states in their range of E due to the finite size of
the cluster is less than that suggested by (20).
However, the point we wish to extract is that the
evaluation of p, though done with a short-range or-
der technique (i.e., using only several layers of
atoms), should reproduce the basic structure of the
long-range order evaluation. It is in this sense
that short-range order and long-range order the-
ories are essentially equivalent.

Finally, we conclude with some brief remarks
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on the extension of our discussion to nonperiodic
materials. We consider two classes of disordered
materials: microscopic disordered systems, such
as isolated molecules, and macroscopic disordered
systems, such as amorphous materials. In the
first class the only order is short range, since
there is only a small total number of neighbors.
The muffin-tin model might be less believable here
(though it is used for such systems?), but at least
there is no dichotomy between long-range and
short-range approaches. For the second class,
bulk amorphous materials, the two approaches are
possible and distinct in detailed method, though in
both it is necessary to average the absorption co-
efficient over the environment of the absorbing at-
om. The long-range approach would concentrate
on the conditional average density of states of the
bulk, as for instance, in the work by Gyorffy and
Stott on disordered alloys.!® The average is con-
ditional on the absorbing atom retaining its posi-
tion and identity. On the other hand, in the short-
range method one would essentially replace, say,
the sum in Eq. (19) by an integral

E-nsf dRg(R) , (21)
Ry

where 7, is the density of surrounding atoms (here
assumed identical) and g(R) is the pair correlation
function of atomic positions.?® The implications of
the Bristol calculations should still apply, however,
and we would expect the long-range and short-range
methods to yield essentially the same predictions
on the same model. This may not be evident in
practice, though, due to the considerably greater
difficulty of finding the bulk density of states in dis-
ordered systems. Infact, one aim of the Bristol
calculations was to determine long-range bulk den-
sity of states by doing only a short-range calcula-
tion.
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