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We discuss the interaction of a slow electron with the surface of a semi-infinite dielectric with dielectric
constant that differs from unity by virtue of the presence of an infrared-active TO phonon. We obtain an

expression for the effective interaction energy between the electron and the surface which reduces to the
expression obtained from image-potential theory when the electron is far from the surface, either inside or
outside the crystal. When the electron is near the surface, the effective potential differs from the image
potential and becomes nonlocal. The form of the image potential is obtained by adapting to the present
problem a method used by Lee, Low, and Pines in bulk polaron theory. We have applied the theory to the
study of the binding of electrons to the crystal surface produced by the coupling of the electron to surface
optical phonons and bulk LO phonons. We consider both the case where the electron is outside the crystal
and trapped on the surface (the exterior-surface polaron) and the case where it is on the inside (the
interior-surface polaron).

I. INTRODUCTION

In a recent series of experiments, Ibach has ex-
plored the inelastic scattering of low-energy elec-
trons by surface optical phonons from surfaces of
the semiconducting crystals ZnQ and silicon. '
These experiments have provided detailed informa-
tion about the nature of the interaction between
low-energy electrons and surface optical phonons.
In the case of the ionic crystal ZnO, the data have
been interpreted in a complete and quantitative
fashion by Lucas and Sunjic. ~ These authors have
derived an expression for the probability that the
incident electron excites n surface optical phonons
by means of a theory which utilizes a classical
description of the electron motion. In earlier
papers, 3 we have developed a model of the inter-
action of low-energy electrons with surface optical
phonons in ionic crystals and in silicon. We have
also demonstrated how the results obtained by
Lucas and Sunjic for scattering of low-energy elec-
trons from ionic-crystal surfaces follow from a
purely quantum-mechanical treatment of the elec-
tron motion, and how the expression for the
scattering cross section is modified when the elec-
tron scatters from a coherently generated surface
wave.

One striking feature of the data on ZnQ is the
great strength of the interaction between the elec-
tron and the electric field generated by the surface
optical phonon. For example, when electrons
with an incident energy of =7 eV are incident on the
ZnO surface, the intensity of the one-phonon loss
peak is about one-half the intensity of the specular
beam produced by electrons scattered elastically
from the surface.

The purpose of the present paper is to explore
the possibility that in the presence of this strong

interaction between electrons and surface optical
phonons, an electron either inside or outside the
surface may be trapped at the crystal surface.
In an earlier note, we pointed out that the method
used by Lee, Low, and Pines' may be adapted to
the study of such surface-polaron states. In our
earlier note, we considered only the case where the
electron interacts with the surface optical pho-
nons. When the electron is inside the crystal, it
is also necessary to consider the interaction of
the electron with the bulk LO-phonon modes as
well. One purpose of the present paper is to ex-
tend our earlier study to the case where the elec-
tron interacts with both the surface and bulk LQ
waves when it is inside the crystal. For the
simple model described below, we find for our
mode1 that surface-polaron states (t. e. , states
where the electron is bound to the crystal surface
by means of the electron-surface-optical-phonon
coupling) exist when the electron is inside the
crystal and coupling to the bulk waves is included
in the theory. As we conjectured in our earlier
note, inclusion of the electron-bulk-LO-phonon
interaction reduces the surface-polaron binding
energy considerably. In fact, when the polaron
coupling constant e exceeds a certain critical
value, the surface-polaron state fails to exist when
the electron is inside the crystal.

In this paper, we first examine the nature of the
interaction of the electron with the crystal surface,
for the case where the surface optical phonons and
bulk LQ phonons are the only electric-dipole active
excitations to which the electron is coupled. Far
from the crystal surface, when the electron is
either inside or outside the crystal, the interac-
tion potential is found to be the image potential,
as elementary considerations demand. However,
when the electron approaches the crystal surface,
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and comes within a distance the order of the bulk-
polaron radius from it, the effective interaction
is strongly modified, in a manner described below.
The effective interaction becomes nonlocal in
character, incidentally. After this examination of
the nature of the interaction of the electron with
the surface is completed, we then present results
of studies of the surface-polaron binding energy
when the electron is both outside (the exterior-
surface polaron) and inside (the interior-surface
polaron) our model crystal. For the exterior-
surface polaron, we also present calculations of
its effective mass.

While our work was under way, a study of sur-
face-polaron states for the case where the elec-
tron is outside the crystal has been reported by
Sak. Sak presents two calculations, one valid in
the strong- coupling limit where the wave function
of the polaron becomes localized in the two dimen-
sions parallel to the surface, and one valid in the
weak-coupling limit where the electron is clothed
only by a single surface optical phonon. The elec-
tron-scattering data on ZnO cited earlier demon-
strates very clearly that the interaction between
the electron and the surface optical phonons is
quite strong in ionic crystals. As a consequence,
Sak's weak-coupling theory does not seem appli-
cable to such a system. It is this consideration
which ori.ginally led us~ to apply the method of
Lee, Low, and Pines to the present problem. This
approach is nonperturbative in nature, and allows
the wave function of the polaron to contain con-
tributions from multiphonon states. In bulk-
polaron theory, the method of Lee, Low, and Pines
provides an adequate picture of the energy and
wave function of the polaron in the region of inter-
mediate coupling, where the wave function surely
contains contributions from multiphonon states,
but where the interaction is not sufficiently strong
to actually localize the polaron. We presume this
method has a similar regime of validity for the
surface-polaron problem. A large number of
ionic semiconductors are characterized by polaron-
coupling constants in the range where the Lee-
Low-Pines method is valid. ' As we proceed with
our discussion, we shall compare the results we
obtain with results obtained by Sak in his weak-
coupling theory.

The outline of this paper is as follows. In Sec,
II, we define the model to be employed, and we
recall the nature of the interaction between an
electron and surface optical phonons and bulk LO
phonons in a finite slab. In Sec. III, we present a
qualitative and heuristic discussion of the effective
interaction between an electron and the crystal
surface, for the two cases where the electron is
inside or outside the crystal. In Sec. IV, we set
up a variational wave function for the coupled elec-

tron-phonon system, and we obtain a more precise
expression for this effective interaction. We have
applied the variational principal to the study of the
two sets of bound states mentioned earlier, the
case where the electron is outside the crystal and
trapped on the surface (the exterior-surface
polaron) and the case where it is inside the crys-
tal and trapped on the surface (the interior-sur-
face polaron). We present the results of these
calculations in Sec. V.

While our model provides a higMy oversimplified
picture of the interaction of an electron with the
crystal surface, and many important corrections
must be included before the results may be applied
to real crystals in a quantitatively reliable manner,
we feel the results presented here give one a good
picture of the main qualitative features of the
phonon-mediated contribution to the electron-sur-
face interaction.

II. GENERAL DESCRIPTION OF THE MODEL

The problem we wish to consider is illustrated
in Fig. 1. We consider a dielectric slab of thick-
ness L, with surfaces normal to the z axis. An
electron is placed near the slab, a distance z from
the left-hand surface. The electron may be either
inside or outside the slab. We have in mind the
limit Iz l «L, so the electron feels the presence
of only the left-hand surface. Thus, while we
keep L finite for parts of the discussion, we ul-
timately take the limit L -~ with z held fixed.

The dielectric constant of the slab differs from
unity because of the presence of an infrared-active
TO phonon. The frequency-dependent dielectric
constant of the material from which the slab is
constructed is thus given by

FIG. 1. Model considered in the present paper. We
examine the interaction of an electron located a distance
z from the surface of a dielectric slab of thickness L.
We consider the case z«L, and the electron may be
either inside or outside the slab.
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f ((al) = 1+ +p/((dr —(0 ), (2. 1)

y(z, t) = 4(z)e'&~'z~~e '"', (2. 2)

where the subscript II denotes the projection of a
given vector onto a plane parallel to the surface,
or a vector which lies entirely in such a plane,

In the medium, we must have V' D = 0, and
V K= 0 outside the slab. Thus, we require

z(w) „,-Q,',4) =0, 0&z&L
dzm

(2.3a)

where A~ =4znz~'/p provides a measure of the
oscillator strength of the TO phonon, and ~~ is
the frequency of the TO mode. In the expression
for Q~, s =N/V is the number of unit cells per
unit volume, p. is the reduced mass of the unit cell,
and e~ is the transverse effective charge. We will
require the term in the Hamiltonian which de-
scribes the interaction between the electron and
the long-wavelength modes of the dielectric slab
which set up a macroscopic electric field. While
the form of this interaction has been derived else-
where, we shall present here a derivation that is
quite short.

If we ignore retardation effects, then the elec-
tric field set up by a long-wavelength phonon may
be derived from an electrostatic potential y(x, t).
Because of the fact that translational invariance
exists in the x and y directions, we examine waves
for which

in the slab, the electrostatic potential is given by

y(x)=4&e'~"'*Isin(Q, z), Q, =nv/L (2. 5)

where n ranges over the positive integers.
The interaction between an electron and a given

bulk LO phonon is given by —ep(x). Thus, the
second-quantized form of the interaction between
an electron and bulk LO phonon may be written

H~„o=6(z)6(L —z) „~ e'
~II ~g

&&si (nQ, z)(bq+btq), (2. 6)

I
u

4 ~V+ (2. 7a)

~&z eq(x) (bq+ k q) . (2. 7b)
B(Q) Q

Q)i Q ÃS8

In Eq. (2, 7b) Q = (QI+ Q ) +, and we have intro-
duced the vector

where 6(z) = 1 if z & 0, and 6(z) = 0 for z & 0, and the
form of the coefficient B(Q) remains to be deter-
mined. Notice that the sum over Q, ranges only
over the values Q, &0.

A simple argument which leads to the value of
B(Q) may be constructed. Since 0=0 when an LO
phonon is excited,

D= E+4me*u= 0,

where u is the relative displacement of the two sub-
lattices of the ionic slab. Thus, for 0 &z & L,

d4
d z

—Q, 4 =0, z&0, z&L. (2.3b) eq(x) = [z Q, cos(Q, z) + iQ „sin(Q, z)],

Equation (2. 3a) requires that either e(v)=0, or
4 be a linear combination of e')~'. The first pos-
sibility requires that ~ equal the bulk-LO-phonon
frequency col„where ~~ = ~~+ A~, and the second
solution describes a surface optical phonon.

For the bulk-LO-phonon solution, we have

4(z) =4, sin(Q~)+4z cos(Q~), (2. 4)

and outside the crystal, 4 (z) satisfies Eq. (2. 3b).
Thus, outside the crystal, for z&0, we must have
4(z) = 4~e'qI', since the field cannot increase ex-
ponentially as z -—~.

Next consider the boundary conditions at z = 0.
Normal components of 5 must be conserved, and

D, =O inside the slab since z(~z)=0. Thus, D, =O

just outside. This condition requires 4, -0, so the
electrostatic potential is identically zero outside
the slab. This means that just outside the slab,
E,= 0. Conservation of tangential components of
E then requires 4 z = 0, so that 4(z) = 0 at z = 0.
Similar reasoning shows that 4(z) = 0 at z = L also,
so k, =sz/L, s= 1, 2, 3, . . . .

Thus, we conclude that for the bulk LO phonons

which has the property that

f (d'x/I ) I
e(x)

I
= 1.

We may also write for u the expression
1/2

u=Z
2

eq(l) (bq+btq)
2

where l refers to the position of a unit cell, and
the eigenvector eq(1) is normalized so that

(2. 7c)

(2. 8)

(2. 8a)

(2. 8)

The form of the term in the Hamiltonian that de-
scribes the interaction between the electron and
the surface optical phonon may be deduced in a

In the long-wavelength limit of interest in this work,
we may regard 1 as a continuous variable. Equa-
tions (2. 8a) and (2. 7c) then become equivalent,
and B(Q) may be obtained by comparing Eqs. (2. 7b)
and (2. 8):
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similar manner. If the electron is near the sur-
face atz=0, arjd L-~, thenwe need consider only
the interaction between the electron and the surface
waves which propagate along the surface z = 0. The
coupling to surface waves which propagate along
the surface z = L may be ignored. For the surface
waves which propagate along the left-hand surface
in Fig. 1, we have 4(z)= @pe q" ' '' from Egs.
(2. 3a) and (2. 3b). When one examines the con-
straint imposed on the solution by the require-
ment that the normal component of D is conserved,
one finds the surface-wave frequency ~, is given
by the well-known condition

z((o, ) = —1,

This operator has the property that for z &0, T
= —N V /2m' and T = —)) V /2m for z & 0. The 8
functions are positioned between the factors of 0
in order to ensure that T is properly Hermitian.

Finally, we add to the Hamiltonian the energy
of the bulk LO phonons and the surface phonons:

H&=)f&u& Q atq aq„+KppzZ , bq~bq.
tp))) Qg

(2. 13)

In summary, the model crystal employed in this
work is described by the Hamiltonian

the form

K2-
T= — V' e(z) V- V e(-z) V. (2. 12)2m* 2m

or for our model,

(u, = (or[ad(1+ z, )]'
H= T+ V(z)+H~, +H~z o+H~. (2. 14)

(2. 10)
where A is the area of one surface. An explicit
form for the coefficient C(Q„) may be deduced by
an argument similar in form to the one presented
above. In fact, we have presented this argument
in an earlier paper. One finds

C(Q„)=2zn ep 2,~p ~

2+st Q))
(2. 11)

We complete this section by enumerating the re-
maining terms in the model Hamiltonian. We shall
not take detailed account of band-structure effects.
The bottom of the conduction band is generally
located a few volts below the vacuum level, and
when the electron moves in the crystal in states
near the bottom of the conduction baad, its wave
function leaks out into the vacuum a bit. We de-
scribe this effect by simply introducing a step po-
tential at z = 0, with step height Vo. Thus, when
we consider motion of the electron inside the crys-
tal, we shall introduce the term

V(z) = Vpe(z)

into the Hamiltonian.
When the electron is inside the crystal, and in

states near the bottom of the conduction band, it
moves with the effective mass m*. In the vacuum
outside the crystal, the mass of the electron is the
free-electron mass m. For the operator which de-
scribes the kinetic energy of the electron, we use

where &, is the static dielectric constant of the
slab.

If „and a„are the annihilation and creation
operators for a surface optical phonon of wave vec-
tors Q)I then the term in the Hamiltonian that de-
scribes the interaction between the electrons and

these modes has the form

m eC(Q„) q i, (

III. INTERACTION OF AN ELECTRON WITH THE
SURFACE: A HEURISTIC DISCUSSION

( )
1 g & I C(Q„) I pq„ig)

s —
A ~ h+s

I)

If the expression for C(Q„) given in Sec. II is
inserted into Eq. (3. 1), the sum over Q „may be
converted to an integral, and the integration car-
ried out. The result may be written in the form

(3. 1)

(3.2)

This result is a familiar one from elementary
electrostatics. It is simply the amount of work

In this section, we discuss the principal qualita-
tive features of the interaction of an electron with
the crystal surface. The discussion presented
here is intended to be qualitative in nature, in or-
der toprovide a feeling for those features of the in-
teraction important in the subsequent section of the
paper. In Sec. IV, we shall present a more corn-
plete theoretical study of this interaction.

Imagine we place a point charge e a distance z
from the crystal surface, outside the crystal as
indicated in Fig. 1; then z &0. From the discus-
sion of Sec. II, it is clear that the electron will
interact with only the surface optical phonons. We
calculate the shift in energy of the electron pro-
duced by the interaction H~, displayed in Eq.
(2. 10). The first correction to the energy of the
electron arises in the second order of perturba-
tion theory. In the process described by this sec-
ond-order correction, the electron emits a virtual
surface optical phonon of wave vector Q„, and then
reabsorbs it. We presume the electron always re-
mains fixed at the point z. The energy of the in-
termediate state is thus higher than that of the
initial state by the amount S~„ the energy of the
surface optical phonon in the intermediate state.
Thus, the energy shift bE(z) is given by
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required to bring the electron from z =~ to the
finite distance z from the surface, where the force
of attraction is provided by the image charge.

Our discussion is oversimplified in one regard.
The electron actually has a finite mass m. Thus,
if the electron is initially at rest, it will recoil,
with momentum SQ„ in the intermediate state. Thus,
we should add the recoil energy h Q„/2m to the
energy denominator in Eq. (3. 1). One has

2 Q 2

( ) Q I O(QII) i zod Id' (3 3a)
A - K&u, +h Q'„/2m

II

~s 1
s,E,(z = 0)= —e

a, +1 4z,

where again

z, = (If/2m'&, )'i .

(3.4)

This rounding off of the divergence in the inter-
action energy was implicit in our earlier work, 4

and Sak also noted that the effective interaction
between the electron and the surface also differed
from the electrostatic value, when z- z, . Ray and
Mahan have considered the motion of an electron of
velocity V outside the crystal, and within the frame-
work of a calculation that describes the electron
motion classically, these authors have obtained an
effective potential with a form very similar to that
in Eq. (3. 3a) when the electron moves normal to
the surface In fact, . our Eq. (3.3b) becomes iden-
tical to the expression obtained by Mahan and Ray,
if one replaces the velocity V of the electron (for
the case where the electron moves normal to the
surface) by the quantity V, = (h&u, /2m)'i . We pre-
sume our expression describes the interaction
energy in the limit that the electron moves slowly,
with velocity V & V„while the expression of Mahan
and Ray applies when V is large compared to V,.

(3.3b)
Qd (dd+ Ig„/2m

For large values of I z ), because of the exponen-
tial factor in the numerator of Eq. (3. 3b), only
small values of Q„are important in the integral,
the recoil term in the denominator may be ignored,
and Eq. (3. 3b) gives the result in Eq. (3. 2) for
&E,(z). However, when Iz l-z, =(5/2m&v, )'iz, a
length the order of the radius of a bulk polaron
formed from an electron of mass m, the behavior
of dE, (z) is profoundly modified by the recoil ef-
fects. In particular, the interaction energy in Eq.
(3. 2) diverges as z 0, while the expression in
Eq. (3. 3b) remains finite. Thus, the recoil ef-
fects round off the divergence interaction energy
deduced from electrostatic considerations, and as
a consequence greatly modify the form of the inter-
action energy for z (z,. Direct integration of Eq.
(3. 3b) gives

e ~ B(Q) sin (Q, z)
(3. 5)

The sums are replaced by integrations according
to the prescriptions

Z=, )dQ„, Z- —J dQ, .

Since the integrand is an even function of Q„ the
integration over Q, may be extended from —~ to
+ ~ with insertion of a factor of &. After the ex-
plicit form of B(Q) is inserted into this form, the
results may be arranged to read

4ne e* m " d'Qsinz(g. z)
zp~iK ~ Q'(Q'+ 2 m &oi/If)

Next consider the case where the electron is in-
side the crystal, again a distance z from the sur-
face. The electron now interacts with the bulk LO
phonons as well as with the surface optical phonons.
The contribution to the interaction energy from the
virtual emission and reabsorption of surface opti-
cal phonons depends only on )z I, as one can see
from Eq. (2. 10). Thus, when the electron is in-
side the crystal, the contribution to the interaction
energy from emission and absorption of virtual
surface optical phonons is still given by Eq. (3. 3b),
provided z is replaced by its absolute value. To
obtain the total interaction energy, we must add to
this the contribution from emission and reabsorp-
tion of bulk LO phonons. Before we proceed with
the calculation, one important feature of this con-
tribution is evident from the form of the interac-
tion in Eq. (2. 6). Because of the factor of sing, z
which appears in this expression, the contribution
to the interaction energy from the bulk phonons
vanishes at the surface, and by continuity is small
near the surface. Thus, when the electron is very
near the surface, but inside the crystal, it will be
attracted to the surface, just as when it is outside.
This result is completely opposite to that obtained
from electrostatic considerations. In the theory
of electrostatics, when the electron is inside the
crystal, its image charge is of the same sign as
the electron, so the electron is repelled from the
surface. Our microscopic theory will show that
although one realizes the repulsive image potential
when z is greater than a certain length zo and the
contribution to n E(z) from both bulk and surface
optical phonons is considered, as z - 0, an attrac-
tive potential well develops. This potential well
is responsible for the binding energy we find for
the interior-surface polaron described in Sec. I
of the present paper. We now proceed with the
calculation.

The second-order shift in energy of an electron
placed at the position z inside the crystal due to
emission and reabsorption of a bulk LO phonon is
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4.«ae*~
4E =—

p, (a)L 2 S(dl
(3.6)

This result may be cast in a more familiar form by
introducing the polaron coupling constant a, which
for our model with background dielectric constant
unity is given by

Q=e 1— (3.6a)

One then finds

d E„=—afcol,

the well-known expression for the binding energy
of the bulk polaron, produced by both second-order
perturbation theory and the intermediate-coupling
theory of Lee, Low, and Pines.

It is a short exercise to evaluate the contribu-
tion to «s(z) that depends on z. To express this
result in a convenient form, introduce the length

z = (K/2m&or, )'~',

the bulk polaron radius in the theory of Lee, Low,
and Pines. Then for aEs(z), we find

2

«z(z) = —aK&oz+ — ' (1—e '~'0) .e a, —1 gg]g
4z c's

(3.&)

When z»z 0, the expression for &Ez(z) be-
comes

2e c, -1AEz(z ) = —a)f(o~+-
4z ~s

We separate «s(z) into a portion independent of
z, and one that will be seen to vanish as z
through use of the identity

sin (Q,z) = —,
' ——,'cos2Q, z.

First consider the part of AEz(z) that is inde-
pendent of z. We call this portion LEE . The inte-
gration is readily evaluated to yield

The total energy shift provided by the coupling of
the electron to the optical phonons follows upon
adding AE, (z) to b.Es(z), noting that the former
is a symmetric function of z about z = 0, as noted
earlier. When z»zo, we have

« t.t(z ) = &E.(z )+ «s(z )

+ ~ (3. 8)

IV. APPLICATION OF METHOD OF LEE, LOW, AND PINES
TO STUDY OF ELECTRON MOTION NEAR SURFACE

In this section, we derive the basic equation
that will be employed in our study of surface-
polaron states. We begin by writing out the Ham-
iltonian of the electron-phonon system in explicit
form:

The second term in Eq. (3.8) is the expression
provided by elementary electrostatics for the in-
teraction between the bulk polaron and its image
charge.

In the above discussion, we have ignored the dif-
ference between the free-electron mass and the
band-structure effective mass m~. Of course,
when the electron is in the crystal, m must be
everywhere replaced by m*. It is not obvious at
this point what mass should be used when the elec-
tron is near the surface, so its wave function ex-
tends into the vacuum outside. An answer to this
equation will emerge in Sec. IV.

As remarked earlier, as z-0, aEs(z)-0. This
also may be checked from the explicit form given
above. Thus, there is a minimum in EE„,(z) at
z =0. We shall see in Sec. IV that an electron may
form a bound state inside the crystal near the sur-
face with energy lower than the bulk polaron ener-
gy, aS~I, . It is necessary to use the full nonlocal
form to obtain an accurate expression for the bind-
ing energy, however.

H= f (z)P'„+ P,f(z)P, +V(z)+ Z PI" (aq„+a q„)e' '~' "~e
A

+ Z 8(z),z, [bq+b q]e " "sinQ, z if+,+Z aq„aq„+&~z Z bz~bq, .e&(Q) t ~ q „~r„.
Qi)Qg Oti ) ll~g

(4. 1)

In this expression,

f (z)= 8(z)+ (m*/m) 8(-z) . (4. 2)

S= S~S~,
where

(4 3)

We begin by introducing a canonical transforma-
tion S which removes the coordinate r„ from the
Hamiltonian:

s = exp —r„„~q„~q„

S =exp —'r„Q„Xxbx).t
~ll~s

(4. 3a)

(4. 3b)
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The transformed Hamiltonian H'is then related to
H in the standard manner:

H =SHS =Ss SB HSa s ~

Notice that

From Eqs. (4. 4a) and (4. 4b), along with the cor-
responding results for bq and b q, it is clear that
the coordinate r„does not appear in H'. The wave
function of the coupled electron-phonon system can
then be written in the new representation in the
form

4 &Q&)~
&&)

(4. 4a)

(4. 4b)

(&'(r z'~ o„~~bo ~)=e "'"'@(z'(ao„) (bqJ) (4 5)

Then

with a similar relation for bq and bq, and also

mal'

SP„S = P„-RQ Q„aq„aq —5 Z Q„bqbq.
Qi& 4,)Q,

H'q = e "(&'(~he

where the effective Hamiltonian that describes the
states characterized by the wave vector k„ is given
by

2

+Q «, (aq„+a q„)e " ' + Q e(z) f/2 sin(Q, z)(bq+b q) +5((), Qao„ao„+Kez, Z bqbq.
ed@))) t -o I I eE(Q) t

Q(& Q&)qg Q))qs

To proceed, we make an ansatz about the form of
4 introduced in Eq. (4. 5). We generalize the
treatment of Lee, Low, and Pines by utilizing the
ansatz

4=q(z) v, v,
I o), (4. 6a)

where the state 10) is the phonon vacuum state,
((()(z) is normalized so that f dz ( ((()(z) [ = I,

U. = exp + (fq„ao„fq„ao„)l- (4. 6b)

and

-fQUs=exp Z(gqe q~ bq gqe q&—bq~) I. (4.6c)
)

In Eq. (4. 6a) the function o)(z) and the parameters
fq„and go are treated as variational parameters, to
be determined by the requirement that the energy
of the system be minimized. The operators U, and

U& describe displacements of the lattice oscillators
in response to the presence of the electron cloud
represented by o)(z). If the electron moves well inside
the bulk of the crystal so that the excitation of the
surface waves may be ignored, then upon choosing
o)(z) =e' "one may show that the wave function in
Eq. (4. 4a) has the same form as that of Lee, Low,
and Pines.

The next step is to compute the expectation value
(4 ) h [ 4&. This quantity is equal to E(k„), the
energy of the surface polaron when its wave vec-
tor parallel to the surface is k„, since the function
l4& & defined in Eq. (4. 4a) is normalized to unity.
Since we wish to study bound surface-polaron states
in the present paper, we confine our attention to

(4. Vf)

and also

() l~f(*)&.
l

)'&= —I'J~*)'(')g f(*) )(*).
(4. 9)

the case where y(z) is real. The expectation val-
ue E(k))) is readily computed by means of the fol-
lowing identities:

(o
I vfao„v, I

o&=-f,', (4. 7a)

&o
I

UJa'„, U,
I
o&=-f, , (4. Vb)

(4. Vc)

(o
I

vtbt v, I o) = g, e"q"-, (4. Vd)

(4. 7e)

&o
I vdobo Uz

I
o& =

I gq I',

&0 I vao aq„ao. ao v, I
o)

= Ifo„ I'(%r„,o,;+ lfo;, I'& (4. vg&

(0
I

U/tbobqbqtbq. vz
I
0)

= lgq I'(bo, o + lgo I'&, (4 7")

and finally when /p(z) is real, we have

, j dz s (z) (o I v.'P.f(z)z.v.
I
o & o (z)

', &o I
P,f(z)P.

I o &

~, ', E(): I);, I" E(). l);. I') . (4. ) &

In Eq. (4. 7i), we have introduced the quantity

x= f dz f(z) I o (z) (4 6)
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The derivations of the identities displayed in
Eqs. (4. 7) are quite straightforward, except for
the one in Eq. (4.7i). As a consequence, the der-
ivation of this identity is given in the Appendix.

With these identities, one can readily compute
E(k„), and express the result in terms of quantities
introduced above, along with the matrix elements

kf(Q(()=(S
~

z ""' ~y),

and also

W(Q, )= (y
~
e(z)e ' +sing, z

~
y)

One finds that

E(~l& (v ='2 ' v + &v I
v(*&

I
v& —2 ~" r

" ((o„+fo &
—r I I(v(Q&va ~ (v (&&&((al

P,f(z)P, zC(q„)5f(q„), zB(q)

The amplitudes fo and go are determined by the
~

II

variational condition that

5E (k»)/5'(& 5 E(ki)/5go = 0.

One may express fq and go in terms of the two quan-
tities g and $ defined by the statements

nk =~a Ifc„l'+~ ~ lgcl' (4 1o)

(4. 11)

Both of these quantities are functions of k„, but
approach limiting values independent of k„ in the
limit of kII 0

One finds tha, t

and also

1 «(0 )M(Q )

A ' I&a, + X)t Q„/2m~+ () Iz/m') (rI —1)k„

1 eB(Q) W(Q, )
V'~' k(d + XK Q'/2m~+ (Xhz/m~) )Q, + ()(.I /m*)(ri —1)k„' Q„

(4. 12)

(4. 13)

These expressions forfo„and go may be substituted back into E(k„) to obtain an expression for the sur-
face-polaron energy in terms of only &I&&(z). The final step is to choose S&(z) to minimize E(k„). Notice that
the parameters $ and g which appear in Eqs. (4. 12) and (4. 13) are functionals of S'(z).

The general expression for E(k„) is cumbersome, and of little general interest. We display explicitly
only E(0), the energy at k„= 0. After some algebra, one finds

P.f(z) P*
E(o&=(v '2, ' v ~ &v I

v(*& I v&-z p v~
C (Q(&)M (Q(()

+o

1 g B (Q) I W(Q, ) I

V - K&g~+)I Q /2m~+ VP(Q, /2m~ 2m~

This expression has been employed in the calcu-
lations described in Sec. V. We conclude the pres-
ent section with a few remarks about the general
features of the result in Eq. (4. 14), and its rela-
tion to the heuristic discussion of the effective in-
teraction between the electron and the surface pre-
sented in Sec. III.

Consider the case ~here the electron is entirely
outside the crystal, i.e. , y(z)-0 for z &0, inside
the slab. Then W(Q, ) and the parameter $ = 0,
(p I V(z) 1(I&&)=0, and the parameter X=m~/m. The
expression in Eq. (4. 14) is then clearly the expec-

l

tation value of the kinetic energy, along with a po-
tential energy that results from the coupling of
the electrons to the surface optical phonons. The
potential-energy term is closely related in struc-
ture to the result displayed in Eq. (3.3a). In fact,
if we suppose the electron is localized near z =op,
and take &I&&(z) = 5(z -zo) as a consequence, then
M (Q„)= e o" ' 'o ', so the potential-energy term in
Eq. (4. 14) becomes identically equal to the ex-
pression for hE, (z) given in Eq. (3.3a). For gen-
eral &I&&(z), the effective potential is clearly non-
local in character, very much like the exchange
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potential in the Hartree-Fock equations. Thus,
while the expression in Eq. (3.3a) for n E,(z) pro-
vides a useful guide to the qualitiative behavior of
the effective potential near the surface, the non-

local character of the effective electron-surface
interaction becomes important in the region where
n E,(z) deviates from its limiting form provided by
the image potential.

When the electron wave function lies partially or
wholly within the crystal, then excitation of both
surface and bulk LO phonons occurs, as we have

seen in Sec. III. In the limit of meak coupling, the
presence of the parameter $ may be ignored, since
$ is proportional to an average of 8 (Q) T.he ex-
pression for E(0) then involves a contribution to
the potential energy from the coupling to bulk LO
phonons with a form very similar to the one dis-
played in Eq. (3. 5). If we again assume that the
electron is localized in its z coordinate, and take
for y(z) the function 5(z —zo), where now zo & 0 and

lies within the crystal, then (W(Q,)( equals
sin (Q, zo), theparameter&equalsunity, andthetwo
terms in the potential energy become identically
equal to the ones displayed in Sec. III, except the re-
coil mass equals the band mass m of the electron.

Again, if a general form is chosen for y(z), then

the contribution to the effective potential energy
from the bulk phonons is nonlocal in character, as
one can see from Eq. (4. 14). If the wave function

y(z) lies partially within and partially outside the

crystal, then the effective mass of the recoiling
electron is given by m*/X, a value that lies between
the band mass m* and the free-electron mass.

We have applied the theory described in this sec-
tion to a study of the binding of electrons to the
crystal surface by the effective potential in Eq.
(4. 14), for the case where the electron lies out-
side the crystal (the exterior-surface polaron}, and

when it is inside (the interior-surface polaron). The
results of these calculations, and a comparison of
our work with that of Sak is presented in Sec. V.

~. APPLICATION OF THEORY TO STUDY OF SURFACE-

POLARON STATES

In this section, we apply the theoretical structure
developed in Sec. IV to the study of surface-polaron
states, i.e. , bound states of the electron to the
crystal surface, where the binding energy arises
from the interaction of the electron with the crys-
tal surface provided by coupling to the surface and

bulk optical phonons.
%'e consider two distinct cases. In the first in-

stance, we suppose the electron lies outside the
crystal, and in the second, we suppose the elec-
tron lies inside. The first case mill be referred
to as the exterior-surface-polaron state, and the
second, the interior-surface-polaron state.

A. Exterior-Surface Polaron

An electron outside the crystal is drawn to the
surface by the attractive image potential. It can
form a bound state in which it is trapped to the
surface of the crystal by the attractive image po-
tential. It should be remarked that this bound state
will be stable only if a certain condition is met. In

particular, the energy of the surface-polaron state
must lie in a region forbidden to electrons in the
bulk of the crystal, since otherwise the bound state
is unstable with respect to leakage of the electron
charge into the crystal. We shall see that the bind-

ing energies we calculate are small compared to
typical values of electronic bandwidths and band

gaps encountered in the solid state. Thus this con-
dition can be satisfied if the inner potential is such
that an electron at rest far from the crystal has an

energy which lies in between two energy bands in
the crystal. In this situation, as one enters the
crystal, the wave function of the electron will de-
cay to zero exponentially fast in a distance the or-
der of a few angstroms. We shall assume this is
the case, and treat the effect of the crystal surface
in a phenomenological manner by treating it as a
repulsive barrier of height Vo, with the parameter
Vo adjusted so that the decay length of the elec-
tron wave function assumes a reasonable value.
If the above criterion is not satisfied, the surface-
polaron state becomes a virtual level, with a finite
lifetime which results from admixture of bulk Bloch
states into its wave function.

For the situation described above, where the
wave function of the electron decays to zero rapid-
ly as one enters the crystal, the bulk LO yhonons
will only be excited weakly compared to the sur-
face optical phonons. This is ensured also by the
fact that the contribution of a particular bulk LO
phonon of wave vector Q to the electrostatic po-
tential near the surface vanishes as sing, z, as
we have seen. Thus, in this subsection, we ignore
all effects that arise from coupling of the electron
to bulk LO phonons by setting to zero the matrix
element W(Q, ) defined in Sec. IV.

We begin with some remarks about the nature of
the contribution to the interaction energy from the
third term in Eq. (4. 14), the contribution from the
surface optical phonons to the energy E(0) of the
surface polaron at k„= 0. Suppose we first consider
the case where the interaction is very weak. Then
the electron mill be loosely bound to the surface,
and its wave function will have a spatial extent
large compared to the critical distance z, = (5/
2nuu, )'~ introduced in Sec. III.

In this limit the discussion of Sec. III indicates
that the term A. K Q„/2m* in the denominator of the
third term in Eq. (4. 14}may be ignored. After the
explicit form of ) C(Q„) ) is inserted into the form
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This term has a simple physical interpretation.
The function p(z) is, to within a factor of e, the
charge density of the electron in its bound state.
The function

z,—1 " dz' p(z'}
c,+2 o z+z'

is the electrostatic potential felt at the point z out-
side the crystal by virtue of the presence of the
image-charge distribution, where the image-charge
distribution is, of course, located within the crys-
tal. The interaction energy in Eq. (5. 2) is the in-
teraction energy associated with the interaction of
the bound distribution of charge (located outside
the crystal) with the distributed image charges.

There is one important point to bear in mind that
follows from the result in Eq. (5. 2}. Even in the
limit of weak coupling, where the electron-charge
cloud is located well outside the critical distance
z, within which the form of the image potential is
modified by recoil effects, the image potential
cannot in principle be approximated by a simple
local one-electron potential. The full Hartree
form exhibited in Eq. (5. 2) must be used, and the
potential calculated self-consistently. If one re-
places the function fo dz' p(z')/(z+z') by the re-
sult 1/2z obtained if one replaces p(z') by the localized
form 5(z —z'), thenthe binding energy is considerably
overestimated, and the electron wave function is
found to be too tightly compressed to the surface.

To illustrate this point, we have carried out a varia-
tional calculation of the energy utilizing the function

p(z) = 2~~'z e ~, (5 2)

with P the variational parameter. This wave func-
tion is a special case of a more general form used
by us earlier, and Sak has used it also in his weak-
coupling theory. When recoil effects are neglected,
the integrals are readily carried out. The energy
is minimized when

5/4
1 me z, —I'l~ e 2e,

s+ 2 ] 10zs 1+ (5. 4)

that results after this term is ignored, and the sum
is converted to an integral, this contribution to the
interaction energy becomes

V, = —(one*/p, uP)e j dQ„M (f(}„). (5. 1)

In the limit of weak binding, the effect of the small
but finite penetration of the electron into the crys-
tal may be ignored. We thus take y(z) = 0 inside
the crystal. If we define p(z) = ((((2(z), and insert
the explicit form of M (Q„) into Eq. (5. 1), the in-
tegration over Q may be carried out in a trivial
manner to yield the result

P Es —2
~ lz p z

and the binding energy (relative to the vacuum
level) E(0) at k„=0 is

(5. 5)

Suppose we compare these results with those of
a, calculation which presumes the electron moves
in the simple image potential

e(z, —1}
V(z) = —

(

with an infinitely repulsive wall located at the crys-
tal surface z = 0. This is the potential appropriate
to a model which has the electron interact only with
a point charge located a distance z inside the crys-
tal, rather than the distribution of charge p(z) that
enters the Hartree potential of Eq. (5.2). The
eigenvalues of this latter problem may be obtained
exactly, by the standard series-solution method
emyloyed in texts on elementary quantum mechan-
ics. One finds the bound-state eigenvalue spec-
trum has the Rydberg form, with the nth eigen-
value E„given by

me E,- 2 1

The ground-state wave function has precisely the
form used in our variational calculation, with P
given by

A comparison of these two sets of results shows
that if the full Hartree potential of Eq. (5.2) is re-
placed by the simple local image potential

then the binding energy is overestimated by the
rather large factor of Q, and the wave function is
too tightly bound to the surface. Even in the limit
of weak coupling, a self-consistent potential which
recognizes that the electron interacts with an ex-
tended image-charge distribution must be used. Of
course, the quantitative comparison between the
two sets of results is sensitive to the form of the
variational function chosen for use with the Hartree
potential. The results displayed in Eqs. (5.4) and
(5. 5) are valid only in the limit Pz, & 1. When the
coupling constant o is sufficiently large that this
condition is violated, the wave function is localized
close enough to the surface that recoil effects must
be included in the effective potential. Next we de-
scribe calculations we have carried out which in-
clude these effects, and allow extension of the re-
sults in Eqs. (5. 4) and (5. 5) to larger values of a.
We conclude this subsection with a comparison of
our work with the weak-coupling theory of Sak.
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To calculate the binding energy of the exterior-
surface polaron in the presence of recoil effects,
for y(z) we have chosen the form used in our earli-
er work,

Ae"', z & 0 (inside crystal)
B(z+zo}e ~, z &0 (outside crystal).

~ ~

~

The constant y measures the depth of penetration
of the electron wave into the crystal. The decay
length of the electron wave function is presumably
a few angstroms, and is controlled principally by
the distance between the vacuum level, and the
nearest unfilled band, as discussed above. Thus,
in the calculations below, we have regarded y to
be a fixed parameter. Gf the four remaining
parameters A, B, zo, and P, three are fixed by
the requirement that p(z) be normalized, contin-
uous at the surface, with slopes in the vacuum and
in the crystal fit at the surface. One of these
parameters remains free, and may be regarded as
a variational parameter. We have chosen P as the
variational parameter.

First consider the energy of the surface polaron
at kI 0, This energy E(0}measures the binding
energy of the surface polaron relative to the ener-
gy of the electron when it is infinitely far from the
crystal surface. As remarked above, in these cal-
culations, we ignore the contribution to the binding

energy from excitation of the bulk phonons by that
portion of the electron wave function which pene-
trates into the crystal. All the calculations have
been carried out with the assumption that the band
mass m*= 0. 25m. We also have the static dielec-
tric constant a, and the polaron coupling constant
e as independent parameters. We have fixed e,
at the value 1.4, and we then consider all physical
quantities to be functions of e.

In Fig. 2, we present the value of p which mini-
mizes the energy of the surface polaron for 0&0.
& 10. We plot the dimensionless quantity Pz„and
when this quantity equals unity, then the wave func-
tion extends out into the vacuum a distance the or-
der of z, . The parameter D = yz„and we have
calculated the value of P for D = 10, and D = ~(no
penetration of the electron wave function into the
crystal). When the electron wave penetrates into
the crystal, the wave function becomes more com-
pacted to the surface. 5 recoil effects are ignored,
then for D = ~ an analytic expression for P valid for
small n is displayed in Eq. (5. 4). For D=~, this
expression fits our numeri. cal results for values of
0.'well outside the weak-coupling limit. In fact,
for 0 & a & 5, the expression in Eq. (5. 4) works
well. In fact, even for 0,'as large as 10, where
in the theory of bulk polarons the wave function of
Lee, Low, and Pines provides a poor description
of the polaron, ' the simple formula in Eq. (5.4)
is in error by only about 15%.

E (k ii) =E (0) + g k ii/2 7&i p (5. 6)

where the polaron effective mass is related to the
coefficient of the &)) term in the manner indicated
in Eq. (5. 6). From the expressions in Sec. IV
we find that if excitation of the bulk LO phonons is
ignored, then the effective mass m~ of the surface

I,20

I.OO

0.80

0.60

0.40

0.20

IO

FIG. 2. Value of P which minimizes the energy of the
exterior surface polaron, as a function of the polaron
coupling constant n. The parameters employed in the
calculation are described in the text.

In Fig. 3, we present the binding energy of the
surface polaron, in units of Sco, , for the case D
= 10 and D= ~, with the remaining parameters ar-
ranged as described above. In the limit of weak
coupling (small n), where recoil effects can be
ignored, for D=~, the results are fit mell by Eq.
(5. 5), which predicts that E(0) will be proportional
to 0.'. In fact, just as in the case of the parameter
P, the simple formula in Eq. (5. 5) fits the results
quite well for 0. as large as 5, while the binding
energy falls below that predicted by this expression
for a greater than 5. If the electron is allowed to
penetrate the crystal (D = 10), then for large a, the
binding energy is increased significantly. The
physical reason for this is clear, since when the
electron wave function penetrates into the crystal,
a portion of the electron charge density is placed
right at the surface, where the potential set up by
a given surface optical phonon is strongest.

Finally, we present calculations of the effective
mass of the exterior-surface polaron. If the ener-

E(kI) is expanded in powers of k~~ then for small
k„, one has the form
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polaron is given by

m~-—m+/X+ hm,

where

e'h' Q'„&'(Q „)~'(Q„)

(5. Va)

(5. Vb)

0 2 4 6 8
a

FIG. 3. Binding energy of the exterior surface po-
laron, as a function of the polaron coupling constant 0, ,
for the parameters D=10 and D=~.

cussion of the weak-coupling theory, one important
difference is apparent. Sak allows fc„ to vary with

z, and eliminates fc„ from the equation for q&(z)

to obtain an integral equation for y(z). However,
he does not solve this equation, but moves on to
use a variational wave function with fo, independent
of z to obtain all results displayed in his paper, in
the portion on the weak-coupling theory. Thus,
while it would be very interesting to compare the
predictions of our wave function for small 0. with
those deduced from the more general form used by
Sak at the beginning of his paper, there are no ex-
plicit results for either the binding energy or ef-
fective mass displayed by him until he ignores the
z dependence of fq . To obtain values of the bind-

ing energy and effective mass for his general case
would require the solution of a rather complex
integral equation, unf ortunately.

The expression for the energy of the exterior-
surface polaron at k„= 0 provided by the weak-cou-
pling theory of Sak is identical to our Eq. (4. 14),
with W(Q, ) assumed zero and excitation of the bulk
LO phonons by the surface polaron ignored. Thus,
there is a direct analogy between the theory of
surface polarons and bulk-polaron theory, since
in bulk-polaron theory a calculation which treats
the electron-bulk LO-phonon interaction by second-

We have computed the polaron effective mass as
a function of e, by using the variational function
and parameters as described above. For the val-
ues of D used in the calculation, ) is well approxi-
mated by m*/m, so that the recoil mass m*/X is
accurately approximated by the free-electron mass
m. The results of the calculation are displayed in
Fig. 4.

We conclude this section with some comments
on the relationship of our work, and the work of
Sak cited earlier. In the paper by Sak, as we men-
tioned in Sec. 1, the theory of the exterior-surface
polaron is presented for two limiting cases, the
limit of weak coupling where the wave function of
the surface polaron consists of a linear combina-
tion of a state with zero surface optical phonons,
and a state with a single optical phonon excited.
He also considers the limit of strong coupling,
where the electron-surface-optical-phonon coupling
is strong enough to localize the wave function of
the electron in the two dimensions parallel to the
surface. Our results can be compared with the
former case, since our wave function is applicable
only for coupling constants small enough to the
electron probability density remains extended in
the two dimensions parallel to the surface.

If we expand our wave function in powers of

fc„, and compare the one-phonon part with the
function utilized by Sak at the beginning of his dis-

I.8

I.6

m&
tel

I.4

l.2

I.O
0

I

IO

a
FIG. 4. Effective mass of the exterior surface po-

laron, as a function of o. for D=10 and D= ~. The
parameters employed in the calculation are described
in the text.
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order perturbation theory produces the same ex-
pression for the polaron binding energy as the theo-
ry of Lee, Low, and Pines, even though the wave
function of Lee, Low, and Pines includes multi-
phonon states. ' Sak has not explored the varia-
tion of the exterior-surface-polaron binding ener-
gy with a in detail, however. He does use a varia-
tional wave function identical to ours in the limit
D- ~ (no penetration of the electron wave function
into the crystal) to extract an analytic expression
for E(0) valid when Pz, » 1 [see his Eq. (28)]. Our
calculation yields a similar result in this limit,
however the numerical calculations described
above suggest that this limit is not realized for
the range of values of a explored here. Thus, we
feel this limit will not be realized in practice.

Sak has also included the effect of allowing the
background dielectric constant c„to differ from
unity. However, he does this by including in the
Schrodinger equation for the electron the single-
particle local potential e (e„-1)/4(e„+ 1)z, while
the argument we presented above suggests that
even if recoil effects are ignored for the polariza-
tion oscillators responsible for producing a„& 1,
the image potential seen by an electron outside the
crystal should come not from a point-image charge,
but from the distributed image-charge density
e 1 p(z) [ inside the crystal Thu.s Sak's means of
introducing a background dielectric constant great-
er than unity may lead to important quantitative
errors. In the example given above, we have seen
that Sak's procedure appears in the limit of small
a to lead to a polaron wave function too tightly
bound to the surface, and an overestimate of the
binding energy.

Sak's theory also produces for the polaron ef-
fective mass the expression

1 1 &m

mp m m 2

for D=~, where nm is given in Eq. (5. 7b). There
is again a close relation between the expression
provided by the Lee-Low-Pines approach and the
perturbative approach.

B. Interior-Surface Polaron

In this subsection, we consider an electron in-
side the crystal, moving with energy near the bot-
tom of the conduction band. The bottom of the con-
duction band is presumed to lie below the vacuum
level by an energy the order of a few electron volts.
The wave function of the electron then is confined
to the volume occupied by the crystal, and the wave
function decays to zero in an exponential manner
as the coordinate of the electron moves into the
vacuum outside the crystal.

When the electron is well into the bulk of the
crystal, it is clothed by a cloud of virtual bulk LO

phonons. Its energy (at k= 0) is lowered below that
of the bottom of the conduction band associated with
the rigid crystal as a consequence. If this polaron
binding energy is computed by means of the pro-
cedure introduced by Lee, Low, and Pines, one
finds the polaron binding energy is given by the
simple expression n~)fez„, where a~ is the polaron
coupling constant computed with the band structure
mass m*. Now imagine the polaron is brought to-
ward the crystal surface. When it comes close
enough to the crystal surface to couple to the sur-
face optical phonons, its energy will be lowered,
since it will now acquire a cloud of virtual surface
optical phonons. If the energy of the polaron is
lowered below that of the bulk polaron, it will re-
main trapped at the surface in a bound state.

It is not at all clear that such a bound state will
exist, however. To speak in physical terms, when
the polaron comes within one bulk polaron radius
of the surface [the radius of the bulk polaron is the
order of z~= (5/2m*&or, ) ], the cloud of bulk LO
phonons which clothe the electron must be distorted
or altered in a way that is surely unfavorable from
an energetic point of view. Whether or not binding
occurs depends on which of the two competing ef-
fects is the dominant one. Recall the discussion
of Sec. III, where we saw that while the effective
potential obtained there was repulsive when the
electron is far from the surface, an attractive
well existed near the surface. In order to tell
whether the attractive well can produce binding,
of course, the full form of the nonlocal effective
potential must be used.

W'e have carried out a study of the binding ener-
gy of the interior-surface polaron at k„= 0 by utiliz-
ing the full expression given in Eq. (4. 14). The
bottom of the conduction band was assumed to lie
a distance Vo below the vacuum level, and the sur-
face was represented by a step potential, as in the
case in Sec. VA on the exterior-surface polaron.
In fact, the variational wave function was presumed
to have the same form as that used in the study of
the exterior-surface polaron, except that the expo-
nential tail e "' was now allowed to extend into the
vacuum, and the parameter P describes the penetra-
tionof thebound state into the vacuum. Once again, y
was regarded tobe fixed at a value the order of a few
A ', and P is the sole variational parameter.

To carry out the calculation, one chooses a val-
ue of P, and then computes the parameter $ defined
in Eq. (4. 11). The result is then inserted into Eq.
(4. 14), and the energy is computed Aplot of.the
energy as a function of P showed the existence of
a mell-defined minimum in all cases we explored.
The binding energy e of the interior-surface polar-
on is then given by z= S~z, n*+E(0), where a real
bound state exists only if e & 0.

In Fig. 5, we plot the binding energy of the in-
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conditions, can affect the properties of the surface
of the crystal only at rather low temperatures,
since otherwise they will be thermally ionized.

APPENDIX: DEVIATION OF AN IDENTITY USED IN SEC. IV

.00
2.5a"

In this Appendix we derive the identity displayed
in Eq. (4. 71) of the text. Begin by noticing that the
identity

(A+B) A B LAeB)/~

—.OI

may be utilized to write U~ in the form

egg g
rr, ep 2ZI=g, l exp Eg, e "s-,)

& exp — g~e ~~'bz . A1

FIG. 5. Energy of the interior-surface polaron, as a
function of a~, for the parameters described in the text.
The quantity fE(0) —I'&1,0.)/K1, is the negative of the
binding energy.

Through the use of this form for U~, one finds
that

U —U,'=—+i Q Q,go Uyo U, e"o.*8

Q

+i+Q gqboe
Q

terior-surface polaron as a function of a*, the
polaron coupling constant defined in Eq. (3.6a) with

the mass m replaced by the band-structure effec-
tive mass m*. The parameter D is given by yz~,
and has been chosen as indicated in the figure. The
binding energy is seen to be very small indeed.
Furthermore, for 0.* slightly greater than 2, the
bound state ceases to exist, in the sense that the

energy associated with our variational wave func-
tion lies higher than that of the bulk polaron at
k= 0. Thus, while in our earlier note, we con-
jectured that for large 0, in particular, inclusion
of the bulk LO phonons in the calculation in an ex-
plicit manner would lower the binding energy, the
effect is much more severe than we supposed.

In Fig. 6(a), the values of P which minimize the

energy of the interior-surface polaron are plotted
as a function of e* which produce a bound state,
the wave function of the interior-surface polaron
extends quite far into the crystal, a distance the
order of 100 A on the nearly flat portion of the
curve. In Fig. 6(b), we present the values of the

parameter $ z~, where $ is the value of g corn-

puted for the P which minimized E(0). This param-
eter increases with n*, and its presence in the de-
nominator of the term in Eq. (4. 14) which gives the
contribution from the bulk LO phonons to the bind-

ing energy plays an important role in depressing
the energy of the interior-surface polaron below

that of the bulk polaron.
The binding energies of the interior-surface-

polaron calculated in this paper are sufficiently
small that these states, if they exist under realistic

0.05-
~D~IO—0=m

PZp
0.025-

0
I

1.0
I

2.0

O.I5

f Z~

0.10

0.05

0 I.O 20 g%

FIG. 6. (a) Quantity Ps& is plotted as a function of 0.~,
for the parameters described in the text. (b) Parameter
]~& is plotted as a function of n~, for the parameters
described in the text. The curves for D =10 and D= ~
coincide, to within graphical accuracy.
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Upon noting that

Utb-U =b -g e 'Q '
Q B Q Q

one finds that8, a
~' 8 ~~=8

+i Z Q, (gebee'oU'+gob~ e 'eU'). (A2)

We wish to compute the expectation value

I e e e
(&.)=-D „«Z"(z) DU'

Z f(*)Z f(z)Z, U D)

I Z*Z"(z) D U U f(z)U —U D).
8 t

Upon utilizing the identity given in Eq. (A2), and
evaluating the matrix elements of b

Q
and bQ that

enter the expression, one finds that

8 8
(&,)=-2, Idzm*(z) —„f(z)„v(z)

D
~@Ulgo I

dzy
S f 9'+ ~dzy f

Q ) 4

xh' 2

+
2 « ~ @'

I go I'+ ~ @. I go I' (A3)
Q Q

After performing a partial integration on the first
of the two integrals in the first set of square brack-
ets in Eq. (A3), one finds the two integrals equal

dz

which vanishes when p~ is real, the situation of
interest here. The right-hand side of Eq. (A3)
then equals the right-hand side of Eq. (4. 'li) in the
text.
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