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An exact treatment of a cooperative Jahn-Teller transition is presented. The results are expressed in
terms of the thermodynamic properties of the Ising model. The dynamic behavior of fluctuations is

discussed in terms of irreversible thermodynamics.

I. INTRODUCTION

Models describing cooperative Jahn-Teller tran-
sitions have for the most part been treated in the
random-phase approximation (RPA).~* In RPA,
the static thermal averages are determined in the
mean-field approximation, while the dynamic be-
havior is described by equations of motion linear-
ized about the mean-field values. A somewhat im-
proved approximation, which has been considered
by Halperin, is applicable under certain conditions
for the case of two nondegenerate electronic lev-
els.’ In the present paper an exact statistical
mechanical treatment is given for a model contain-
ing all the essential features of the cooperative
Jahn-Teller transition. The results are expressed
in terms of the statistical mechanical properties
of the Ising model. The model describes the inter-
action of a doubly degenerate electronic level at
each lattice site with nondegenerate elastic strain
and optic phonons of a given symmetry (at g =0).
Only a linear coupling between the phonons and the
electronic system will be considered.

The Hamiltonian then takes the form!~*

5¢=22[4P,(g)P (- q) + 303(q)Qn(q)@n( - 9)]
+20 E()Rn()os(-a) . (1)

The first two terms describe noninteracting pho-
nons, while the last term describes the coupling

of these with the doubly degenerate electronic level
where 04(q) is the lattice Fourier transform of the
Pauli operator o4(l) associated with lattice site 1.
The sum runs over all phonon modes of a given
symmetry. This symmetry is different for acous-
tic and optic modes. The coupling coefficient for
optic phonons, £,(¢=0), is nonzero, whereas for
acoustic modes £,(q) is linear in g in the small-g
limit, and its value is direction dependent. The
symmetry of the strain field to which the electronic
levels couple determines the way the limit is to be
taken. The special features associated with the

g - 0 limit for acoustic modes have been discussed
elsewhere. !

oo

II. FREE ENERGY

The free energy in a state described by the den-
sity matrix p is

F=Tr[pH +(1/B) plnp], (2)

where B=1/kT. The density matrix satisfies the
relation

1=Trp. (3)

The density matrix p, and hence the free energy
F, of the equilibrium state can be obtained by
minimizing the expression, Eq. (2), for F with
respect to variations in the density matrix under
the constraint given by Eq. (3). The result for p,
is the Gibbs distribution. However, in order to
discuss the dynamics of the fluctuations in the sys-
tem we also need the free energy for nonequilibrium
states.

A nonequilibrium state may be described by
specifying the expectation values of the phonon and
pseudospin operators

¢n(q) = TI’PQn(lI) ’ (4)
d.)n(q) = Trppn(q) ’ (5)
m(q) = Trpos(q) . (8)

The density matrix describing this nonequilibrium
state and hence the free energy, F(T, ¢,(q), ¢.(q),
m(q)), is obtained by minimizing the expression
Eq. (2) for F under the constraints (3)-(6). The
equilibrium free energy is obtained by minimizing
F(T, $,(q), $(q), m(q)) with respect to ¢,(q), d.(q),
and m(q).

Minimization of Eq. (2) under the constraints
(3)—(6) is achieved by introducing Lagrange param-
eters. We obtain

p=(1/Z,) e, (7
where

Z,=Tre™e (8)
and

H,=H-2[A(-q)Q(q) +B,(- ¢)P,(q)]

—? h(-q)os(g).  (9)
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The Lagrange parameters A,(q), B,(g), and k(q),
are to be determined by Eqs. (4)-(6). In terms of
the introduced variables these conditions may be
written

®a(q) = -éA—j;—q—)[—(l/ﬁ)hlZe],

o) = - 55y~ /B2, (10)
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mlg)= - g~ (/AnZ,].

In order to calculate Z, it is convenient first to
introduce a canonical transformation

Q.(0)=Q,(q) +[ £,(~ @) 03(q) = A,()]/w¥(g),

P,(q)=P,(q) -B,(q) .
In terms of the new coordinates the Hamiltonian
H, takes the form

H =3 T [P 0)P (- @) + 20,00~ )] - 3 2 {B,0)B(~ ) +[1/0}(@)] 4, @A, (- )}

nq

where we have introduced the definitions,

Hq) =2 2gl=a) (19
bla) =) - 2 falldipal@).. (19)

The first two terms of Eq. (12) describe displaced
harmonic oscillators of the same frequencies as
before. The lasttwoterms describe anIsing model
in an external field b, while the middle two terms
result from the introduction of Lagrange param-
eters. The free energy corresponding to the Ham-
iltonian in Eq. (12) may be written

F,=-kTInZ,=F +F;+F"'. (15)
F; is the free energy for noninteracting phonons of
frequencies w,(q)%:

Fy= -3 2 [30,@) + N, (@), (18)

where N,(q) is the Bose occupation number factor.
F/(b) is the free energy of the Ising-model Hamil-
tonian,

Hy= -3 2 J(@)03(a)os(=a) - b=a)osla). (1)

Although exact expressions for F;(b) are known
only for special cases, large amounts of informa-

-3 2 J@0y(a)os(-a) - b(-a)ogla),  (12)

r

tion are available for the Ising model also where
exact solutions do not exist.’
Finally F' is given by

F'= =12 (B,(@)B,(~0) +[1/2@) A,(@) Al )} .
" (18)
The Lagrange parameters may now be deter-
mined using Eq. (10) and Eqs. (15)-(18)withthe
result

A(q) = w3 (@)Pn(a) + En(- @) mlq), (19)
B,(9)=4(a), (20)
m(q)=m,(b(-q)). (21)

The function m,(b(- q)) is the magnetization of the
Ising model in the presence of the field b defined by
8F (b)
8b(-¢q) |7~
Equation (21) determines b(g) implicitly as function

of temperature and m(g) which may be used with
Eq. (19) to determine k(q) from Eq. (14),

h(g) = b(g) +J(q)m(q) + 22 £,(q)balq) - (23)

my(b(-q)) = (22)

The set of Eqs. (19)-(23) completely determines
the Lagrange multipliers. Using these, the free
energy for the nonequilibrium state may finally be
written

F=Fy+F(0)+3 D $,(@)bn(=0) +3 D 0b(@)0n(@)6u(~0) + Dol m@)8,(~ )

+3 Z T@m(@m(-)+Z b(-mla) . (24)
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The equilibrium values of ¢,(q), ¢,(q), and m(q)
are obtained by minimizing F. From

aF 9F aF

80,(a) 00,(q) Bmig) ° (25)
we obtain

ba(@) == [£4(- )/ 2(q)]m"(q) , (26)

$3(g)=0, (27)

»°(g)=0. (28)

To obtain the last equation we have made use of
Eq. (26). From Eq. (21) it follows that

m°(q)=(03(q))=m,(b=0, q). (29)

Further, in the absence of external space-varying
fields the magnetization of the Ising model is spa-
tially uniform,

myb=0, g)=mB, . (30)

The optic-phonon normal-mode coordinate is then
given by

63(q) = (Qn(q)) == [£,(0)/w}(0)]m, 5,0 . (31)
The corresponding result for elastic strain is

ey==(/cv)m,; (32)

c is the elastic constant defined by
wi(g)=cq?, (33)

where a denotes the acoustic mode, v is the volume
of the unit cell, and 7 is the coupling constant to
the strain determined by the limiting procedure, *

. £.(q) Q) e

lim 28ttt o — 34

=0 walq) cv (34)
Thus the temperature dependence of the order pa-
rameters (03), (@,), and {e) are all determined by
the magnetization m;(T) of the pure Ising model
with no external field.

The equilibrium free energy is given by

Fo=F,+F,(6=0).
III. TIME DEPENDENCE OF FLUCTUATIONS

In order to construct equations of motion de-
scribing the fluctuations about the equilibrium
values we shall use the phenomenological equations
of irreversible thermodynamics. These equations
have the general form”?®

%‘: Ry,(@) x,(q)= -X,(q), (35)

where the x,’s are the coordinates describing the
state of the system, chosen such that their equilib-
rium values vanish. X, is the thermodynamic force
conjugate to x; and is given in terms of the free
energy by
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1( oF d OF ) (36)

Xi(q) = ‘}' ax‘(—q) +EE 8921(—Q)
The kinetic coefficients R;,(q) satisfy the Onsager
relations,

Riyj=Ry;. (37)

Applying these equations to the variables ¢,(g) and
m(q) we obtain from the free energy, Eq. (24),

(£ +20) + 2 T@)A0,(0) + £~ am@) =0
F“""(q)*dt 2 @)ADn(q) + E,(-q)am(g) =0,

2 in(q)A¢,.(q)+<x;‘(q) +J(q) —yad—t >Am(q)= 0,

(38)
where

Ap,(q) = Dalq) - d2(q)
and (39)
Am(q)=m(qg) —-m°(q)

describe the deviations of ¢,(¢) and m(g) from
their equilibrium values; T',(q)=TR,,(q) is a kinetic
coefficient describing the damping of the phonons,
and y(q) = TR,,,(g) measures the relaxation rate of
the electronic levels. Other off-diagonal kinetic
coefficients such asR,, or R,, which lead to a
coupling of the equations through the damping
terms have been neglected. In Egs. (38) we have
also introduced the susceptibility of the Ising model
defined by

dmy(q) 0
9b(q) T

When Fourier transformed, Eqs. (38) become
[wi(q) - w® = iwT,(q)] Ad,(q) +£,(-q)Am(g) =0,
22£,(q)Aba(q) +[x7(q) +I(q) (41)

-iwy(q)]am(q)=0.

xq)= (40)

Introducing the vector x(q)=(A¢,(q), ..., Ad,(q),
Am(q)) these equations may be written in the ma-
trix form

Xqw) +x(q)=0, (42)

where x"!(qw) is the inverse of the linear response
function of the system.

Equations (41) are identical to those derived
elsewhere in RPA except that the X; rp, is here
replaced by the exact susceptibility of the Ising
model. Requiring that the determinant of X !(qw)
vanishes we obtain the coupled mode dispersion
relation, *

G Hqw) -2 |£,(q) |?Dylgw) =0, (43)

where we have introduced the definitions
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G (qw) =xi'(q) +J(g) - iw¥(q),
(44)
D;}Ygw) = wi(g) - w® —iwT,(g) .

Of particular interest is the acoustic-phonon sus-
ceptibility X ,,(gw). From Eqgs. (41) and (42),

- _ . 6% (qw)
Xaalqe) = wila) - o* ~iwlo(q) - 7720, (48)

where

F(qw) =%(x}‘(q) +|£,(@)|?Dylg, 0)

+ z? |£,(q) |2[D,(g, 0) - D,.(qw)]), (46)
and
%= | £,(q) [ /vy . (47)

For frequencies low compared to the optic-phonon
frequencies, w2(g)> w?+iwl,(g), the last term in
Eq. (46) may be neglected, and 7(g) becomes fre-
quency independent. The dynamic structure factor
S(gw) which may be derived from Eq. (45) by the
use of the fluctuation dissipation theorem then
exhibits a central peak®!! in addition to the acous-
tic-phonon sidebands. The half-width of the cen-

tral peak is given by
T.(q)=xi'(9)/¥ (48)

and the low-frequency isothermal elastic constant
¢ bylz

¢=cx7(0)/[x7'(0) +J,(0)], (49)
where
e JE@IE n?
Ja(O)—lqlflc"l—u;E'(q—)-—cv . (50)

Both I' (0) and ¢ depend on X; and vanish at the
transition point T, of the Ising model.

Thus the relevant thermodynamic variables of
the Jahn-Teller phase transition may be expressed
in terms of the properties of the Ising model. The
temperature dependence of the relative elastic con-
stant is determined entirely by the susceptibility.
The order parameters {03), {¢), and (Q,) are all
proportional to the magnetization of the Ising mod-
el. Of these, {03) measures the splitting of the
electronic levels, the strain {¢) measures the
change in the shape of the unit cell, and the optic-
phonon normal-mode coordinates (Q,,) determine
the internal displacements.
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