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The dynamic behavior of a system undergoing a cooperative Jahn-Teller structural transition is
investigated. Coupling to both acoustic and optic modes are considered. Particular emphasis is placed
on the low-frequency response. In addition to the peaks in the dynamic structure factor corresponding
to the soft acoustic mode, a central component is obtained, the width of which goes to zero as the
transition temperature is approached. Unlike other transitions for which a central component has been
observed, the width of the central peak for Jahn-Teller transitions such as that in TmVO, may be
sufficiently wide to allow a direct observation of the narrowing by neutron scattering or other

techniques.

I. INTRODUCTION
The cooperative Jahn-Teller phase transitions =3
are characterized by a soft acoustic mode. The
low-frequency elastic constant of this mode vanishes
at the transition point.? The soft elastic constantis
strongly frequency dependent. Very different re-
sults are obtained depending on whether wr > 1 or
wT<< 1, where 7 is the relaxation time of the elec-
tronic levels.? The phonons modulate the electron
populations of the electronic levels. The difference
between the high- and low-frequency response re-
sults because at low frequencies the modulations in
the electron populations caused by the phonons have
time to decay within each period of the wave, where-
as at high frequency there is not sufficient time for
this to occur. This relaxation process gives rise
to a peak at w=0 in the dynamic structure factor.
The width of the peak is determined by the relaxa-
tion T and vanishes at the transition point. In this
papersthe dynamic susceptibility is calculated using
an equation of motion method. The relaxation time
is introduced by adding Bloch-like relaxation terms
to the equations of motion for the pseudospin opera-
tors describing the doubly degenerate electronic
level. The elastic constants for wr «< 1 are equal
to those calculated thermodynamically. The re-
sults in both limits w7 > 1 and wr < 1 agree with
results previously obtained. 2

Central peaks have recently been observed by
neutron scattering in other materials undergoing
structural transitions such as NbySn and SrTiO,.*"®
For those transitions the mechanism giving rise to
the central peak is, however, quite different. In
NbgSn the central peak has been interpreted as due
to third-order anharmonic phonon interactions, °
whereas the mechanism which gives rise to the cen-
tral peak in SrTiOj; is not yet established.

As a particular example, the calculations will be
applied to TmVOQO, which has a non-Kramers doubly
degenerate crystal-field-split ground-state elec-
tronic level well separated from the higher-lying
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electronic levels.” TmVO, undergoes a second-
order (or very nearly second-order) transition at
2.1°K. In TmVO, the doubly degenerate level
couples strongly with two different symmetry
strains and optic-phonon displacements, ® and the
calculations have been carried out for this case.

In appropriate limits the model will describe cou-
pling to nondegenerate strains and optic phonons

of a single symmetry, as well as the classic model
in which the electronic levels couple to doubly de-
generate strain and optic-phonon displacements,

as in the case of an octahedrally coordinated Jahn-
Teller ion.?!

II. HAMILTONIAN

The model Hamiltonian will be written in the
form, I3

H= 2

nq «=1,2

+3 030(9) Qna(@)@nal- 2)]
+ E gna(q)Qna(q)oa(‘q)- (1)

nq @=1,2

[%an(Q)Pnu(_q)

The first two terms describe noninteracting pho-
nons, while the last term describes the coupling of
these phonons with the doubly degenerate electronic
level, where o,(g) is the lattice Fourier transform
of the Pauli operators o,(!) associated with site .
The sum z runs over all phonon modes of a given
irreducible representation specified by a. This
symmetry is different for acoustic and optic modes.
For optic phonons &,,(C) is nonzero whereas for
acoustic modes £,,(q) is linear in ¢ in the small ¢
limit, and its value is direction dependent. In the
case of acoustic phonons it is the accompanying
strain field e 4(¢) which couples in the same way to
the electronic levels and has the same symmetry
(at g = 0) as the optic-phonon normal-mode dis-
placements Q,,(g). The coupling to the acoustic
phonons may therefore be written, alternatively,

ggnaea(q)oa(_q)) (2)
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where 7, is a constant. The strain e,(g) is a linear

combination of the individual strain components
€y 1(‘1 ).

For later reference it will be convenient to in-
troduce the transformation3+®1°

@1a@)=Qnal@)+ Ynald), Pral@)=P,(@), (3)
where

Ynal@)= Ena(=2)04(@)/ W3,(a).
The Hamiltonian (1) then takes the form

H= 2 2[%13,,‘,@1)1‘3,..,.(—q)

nqg a=1,

+ 3 020@) §1al@) Qpal- )]

_g T T @)o@)oa(-q), (@)

q a=1,2
where
Ja(q)=2 gng(‘i’)gn(gq()—q) . (5)

The new Hamiltonian describes displaced oscilla-
tors of the same frequency with an additional
pseudospin interaction. Introducing lattice Fourier

J

transforms the last term may be written,

1 5

2 1! a=1,2

To(l=10,0)0,0"). (6)

This term describes an effective interaction be-
tween the pseudospins at sites ! and I’. It is this
interaction which gives rise to the cooperative
Jahn~Teller transition.

III. EQUATIONS OF MOTION

The Hamiltonians Eqs. (1) and (4) have been
written with the high-temperature phase as refer-
ence configuration. The distortion from the high-
temperature phase is described by nonvanishing
thermal expectation values of the operators o,
and Q,, for one of the two symmetry components,
say a=1. The thermally averaged quantities will
be determined in a mean-field approximation
(MFA). The dynamic behavior will be described
by equations of motion linearized about the ther-
mally averaged quantities, i.e., by the random-
phase approximation (RPA). From the Hamilto-
nian equation (1) the equations of motion may be
written

2 01@)= 2 Dbala) Quala) 03la - )~ [0:00) - @D/,

2 2@)= = 22 @) Q@ os(a ~a") - [0s@) - ©):)/7s,

%Oa(q)= 2208m(@") Qm(@' )02 - a') ~ 225£,20") Qua(a’) 04(a = ¢') = [05(@) = (09):)/ 73, (7

az

In the equations for o, we have introduced relaxa-
tion terms, where 7, denotes the relaxation time
for the ath spin component to relax to its instan-
taneous equilibrium value!! (s,), in the presence of
the fluctuating phonon field.

We set

Qna(q)= <Qna>+ ’}’"a(q) )
(9)
04(q)=(0a)+ 1.@),
where @,,)=(0,)=0for a=2, Substituting in Eq.
(8) and setting the static parts of the equation of
motion equal to zero, we obtain in the case of optic
phonons the relationship

= 1,400 |
Em(O)(Q,.l(O))—-——P——w ©) oy . (10)
nl

For acoustic phonons the limit ¢ - 0 has to be taken
along particular directions determined by the sym-
metry of the strain field to which the electronic
levels couple, as specified by Eq. (2). When ex-

37 al@)= W1a(0)Qna (@) + 40 (- 9) 00 (@)

®)

T

pressed in terms of the static strain and the con-
stant 1, introduced in Eq. (2), the corresponding
relationship for acoustic phonons takes the form

niey == (M/cwXoy) (11)

where v is the volume of the unit cell. The elastic
constant ¢, is defined by

(’-’51(4)=c1q2, (12)

where w,,(g) is the uncoupled acoustic mode fre-
quency. Thus with the identifications

N1 = £41(0) (Qa1(0)), | £44(0) |2/ wE (0)=0%/cyv,

(13)
where 7 =a denotes the acoustic mode, the rela-
tionship Eq. (10) may be used both for acoustic
and optic modes. 2

According to Eqs. (10) and (11) the strains and
the internal displacements are proportional to
(0,). Inthe mean-field approximation (o,) is given
by
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(04)=tanhBJY(0) (oy), (14)

as follows from Eq. (4). The transition tempera-
ture is defined by the limit (0,)~0, T~ T,, or

kT, =J1(0). (15)

Because 0,(l)0,(’)=1for I=1’ and thus adds only
a constant to the Hamiltonian, it is important to
subtract the term /=1’ in the mean field, !
Yied1(11") (0y). Thus in Eq. (14) J{(0) is given by

7@)=04@) =% D I4), (16)

where the last term represents the subtraction of
the I=1' term. J%(g) which will be introduced below
is defined analogously.

Whereas the thermally averaged mean field has
a single component, the instantaneous mean field
has two components, acting on ¢, and 0,, respec-
tively, given by

1

|

W{-Z} £10(2) @ra@)

- [Jalg)-J5(@)] Ga(q)}, a=1,2. (17)

The first term follows directly from Eq. (1). The
last two terms subtracts the self-interaction on the

same site. Introducing

w?=w+wk (18)
we obtain

©u)e= W /w)tanhpw , a=1,2

(09)¢=0. (19)

We expand the equations of motion in the fluctuat-
ing quantities p, and 7,, and keep only linear terms.
When Fourier transformed these equations take the
form

{- iwéf [xii (q)+J1(q)]} Kag)= —% 2"3 §m@)7rmia),

[wi(@) = WP =iwTy@)]7 @)= = Eny(= ) 114(q),

{-iw+ (As/72)[x22 @)+ T2@)]} 12(@) = 27,(0) (o) 1s(q) = (Ax/T2) 2 E,(@) 7o), (20)

[—iw+ (1/79)] k3(@)= - 2J,(0) {0y 12(@) = 2(01) 20 4m2(@) 7 nala) ,

[wE— W? = 4wT2(@)]7na(@) = = Ena(— @ )2(@) .

The first two equations and the last three equations
form two separate coupled sets of equations, one
for each value of a. In these equations we have
introduced the temperature-dependent functions

A1= B(l— <01>2),

A,=tanhBJ}(0) (o7)/T4(0)(0y), (21)
with the limits
A =A,= T>T,
1=42=B, > (22)

A,=1/J%(0),

The last identity follows from Eq. (14). We have
further introduced

Xaal@)=A/[1-J%@)A,],

where x,,(7) are components of the static suscepti-
bility tensor for the pseudospin model Eq. (6) in
the RPA., RPA is equivalent to the linearization
approximation introduced above. According to
Eqs. (15) and (23), x;,(0)"*=0at T=T,. In Eq. (20)
we have also introduced phenomenological damping
constants I',,(g) in the phonon equations of motion.
We consider first the set of equations correspond-

T<T,.

a=1, 2 (23)

[

ing to a=1. Introducing
GLaw)=—iw(To/A L)+ Xaul@) +J4(@), 24)
Do (qw)= wia(@)— ¥ = iTme().
The coupled-mode dispersion equation may be
written
G1'q@) =2 | (@) [*Drylgw)=0 (25)

for an arbitrary number of modes n. If we intro-
duce a force F,,(¢) acting on the acoustic-phonon
normal-mode coordinate Q,,(g),

HF’:—EQu(—II)Fu(‘I),

we can calculate the corresponding susceptibility
Xallgw)=D3}(gw)

y | £61() 1 ® ,
GiNqw) =31 1£m(a) 17D yy(qw)

where the prime on the summation indicates that
the summation is over the optic modes only. If we
consider frequencies w much smaller than the op-
tic-phonon frequencies this expression reduces to

(26)
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Xai(w) = Wl - w? = Wl = 8%/ (y - iw) , (27)
where
(@)= (A7) [X11@)+J (@], (28)
8%(@)= | £a(@) |¥/[x31@)+ I01@)],
and where we have introduced the definition
Jaald)= | £aal@) |Y/ @ia(@). (29)
From Eq. (13) it follows that
Jaa(0)=12/c v . (30)

Equation (27) has precisely the form used to de-
scribe the central peak and critical neutron scat-
tering intensity at other structural transitions, #®
Equation (27) yields different values for the low-
frequency response w < w,,, w<I', depending on
the relative values of w and y:

-1 2

X "= Wqy, w >y
=wf, w<y (31)
where
‘:’ﬁx: ‘-"31" 6%. (32)

From Eq. (27) the half-width of the central com-
]
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ponent I';, is determined by
To=y (@Y wly). (33)

From Egs. (28) and (32) the low-frequency elastic
constant is given by

¢y/c1=x1100)/[ xi1(0) +J,,(0)] , @ <. (34)

For w>>vy the coupling to the electronic levels has
no effect on the elastic constant,

c/ei=1 (35)
The half-width of the central peak may be written
L.lq)= (A1/71)X-1i @). (36)

Equations (34) and (36) show that both the low-fre-
quency elastic constant and the width of the central
peak (at ¢ =0) goes to zero as T~ T.

The preceding expressions have been expressed
in terms of the static wave-vector-dependent sus-
ceptibility of the pseudospin model Eq. (6). Al-
though derived only in RPA, these expressions may
be shown to be exact!* with xpps replaced by the
exact x.

We consider next the set of coupled equations
(20) corresponding to a=2. The dispersion rela-
tion takes the form

(—iw+1/74) ifj (G;‘(qw)—E |£02(q) 'ZDnz(qw)) +4J%0) <ol>2( 1-2 | £,200) |2Dnz(qw))= 0. (37)

The corresponding acoustic-phonon susceptibility
for frequencies smaller than the optic-phonon fre-
quencies is given by

Xaz(qw)= w35(q) - W? - iwT,,(q)
- | £22@) |? Z,(0)/Z5(qw), (38)
where
Z (0)=4d,(0) (0 + (As/To)(- iw+ 1/74),
Z,(qw)=(—iw+1/7Tg) {‘ iw+ (Ay/T,)
X[x22(@) + I a2(a)]}+ 491(0) (o)
X[J1(0) - J2(q) - J422(q)] .

For T >T,, Xa3 has the identical structure as
Xai, given by Egs. (27) and (28) with a central peak
of width

Te2(a)= (A2/72) X32(@) (40)
and high- and low-frequency elastic constants given
by

= = -1

2.y, 2. X2@

€2 7’ € Xz2(0)+J42(0)
respectively.

For T <T,, X;3 has a much more complicated

(39)

(41)

structure. The electronic levels are no longer de-
generate, and the amount of level separation in-
troduces an additional energy scale. However, in
the limits 75, 73= 0, and 75, 73—~ < simple expres-
sions for the elastic constants are obtained. We
find

S x33(0)
e~ Xal0)+7,2(0) ’ (42)

2 J1(0) - J5(0)

¢z J4(0) = J2(0)+J,5(0) ’

(43)

respectively, in the two limits. According to Eqgs.
(22) and (23),

X23(0)=J4(0) - J4(0), T<T,. (44)

Thus in the low-temperature phase, the relative
elastic constant ¢,/c, is independent of temperature
in both limits.

The low-frequency elastic constants calculated
above correspond to isothermal elastic constants.
The adiabatic elastic constants, measured ultra-
sonically, are related to the isothermal constants
by well-known thermodynamic relations. Dynami-
cally the relationship between the adiabatic and iso-
thermal elastic constants is obtained by considering
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the coupling of the sound wave with the heat-diffu-
sion mode. !* The adiabatic and isothermal elastic
constants are equal in the high-temperature phase?®
and at T=0.

IV. LIMITING CASES

For coupling to elastic strain and optic phonons
of a single irreducible representation, we obtain
the results given by Eqgs. (27)-(35) where yxy,(7)
now denotes the static susceptibility of the Ising
model,

--;- T g, 0,0) 0y0"). (45)
141¢

The results for coupling to doubly degenerate pho-
non modes (E modes), as in the case of tetragonal
distortion of octahedrally coordinated Jahn-Teller
ions, ! are obtained by setting £,,=£,5= £, T;=7
=7, and J,=J,=J. The elastic constants are then
given by

T = 0O
“L=1 aur
c
—c—2=1, T>T, (46)
Z2-0, T<Tg

%3(0)+J4,(0) °

where X,; and X, are the susceptibilities for the
pseudospin model,

0
¢ xu0)
¢ x11(0)+J,(0)’
)

c

-3 ZIN00)0,0")+ 0,0) 5t (48)

In RPA,

A
1
Xll(q)"‘l r,(q)AI ’

A
—— L2
Xexl@)=7Z J'(q)A,

with
Ay=p(1-(o?),

4, tanhBT’(0) @)
0oy

The width of the central peak for T > T, is given by
Telg)= (B/7)xMa), (50)

where x;;=X22=X. The elastic constants in (46) and
(47) agree with results previously derived in these
limits. #'" The general expressions provide an in-

(49)

’

|oo

terpolation between these limits.

TmVO, is an example for which the doubly de-
generate electronic levels couple strongly to two
different symmetry modes.® These are optic pho-
nons and elastic strains of B,, and B, irreducible
representations of the D,, point group, respective-
ly. The corresponding elastic constants are
c1=Cgg and C,= 3(c 4, - Cy5) With ¢, going to zero at
the phase transition. The elastic constants in
TmVO, have been measured ultrasonically.® Neu-
tron studies of the soft acoustic modes and of the
central peak have not yet been carried out. In soft
mode systems which have been studied so far the
central peak has been too narrow to be resolved by
neutron scattering. Brillouin scattering data on
TbVO,, ¥!® which measure the elastic constants at
intermediate frequencies, suggest that the width
of the central peak may be ~ 10 rad/sec. This is
estimated from the frequency for which deviation
from the low-frequency elastic constant appears.
In TmVOQ, it may therefore be possible to resolve
the central peak structure and to study the pre-
dicted narrowing of the central peak directly.

V. CONCLUDING REMARKS

In the models discussed above it was assumed
that the electronic levels couple to both acoustic
and optic modes. In that case the acoustic mode
is the soft mode. If there is no coupling to acous-
tic modes then the optic phonon susceptibility will
diverge at the transition point. For example, if
we consider coupling to a single nondegenerate
optic-phonon mode, its susceptibility will have the
form of Eq. (27),

Xo (@)= wi- W?—iwly- 6%/ (y-iw). (51)

As before, the low-frequency susceptibility w < wy,
w < I’y has different values depending on the rela-
tive values of w and v,

Xo = 1/4:’(2) (w<<y)
=1/wf (0>79), (52)
where
of@) ___x'a@) (53)

wola) ~xMa)+I(q)
and the width of the central component is given by
L.=(A/7)x @), (54)

where A is defined by the first of Eqs. (21). How-
ever, in order to have a divergence in the optic-
phonon susceptibility, it is inaddition required that
there is no direct coupling between the optic mode
and the elastic strain of the form

g2e@)Q(-q). (55)

This interaction induces a strain distortion even if
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only optic phonons couple to the electrons. It gives
rise to an acoustic-phonon susceptibility given by

Xa'(w)= (0} - * - i0l,) = £2¢* % W) , (56)

where xq(w) is defined by Eq. (51). From X, we

obtain the low-frequency elastic constant,
t=c-g*/a}0) . (57

Thus as &2(0) approaches zero according to Eq.
(53) ¢ will go to zero before &2, and the acoustic
mode will again be the soft mode.
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