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A Green s-function theory is developed for a Heisenberg antiferromagnet using a decoupling scheme
which conserves the frequency moments of the spectral function. The method closely follows
Tahir-Kheli s decoupling scheme for a ferromagnetic system, and various correlation functions, sublattice
magnetization, and susceptibilities are obtained. The theory is compared with the low- and
high-temperature series expansions. The Neel temperature obtained using the theory is used to estimate

~JPka values of some transition-metal compounds. The theory is then applied to one and two
dimensions, and it is found to lend support to Stanley and Kaplan's suggestion of a second-order phase
transition, while not predicting spontaneous magnetic ordering.

I. INTRODUCTION

The Heisenberg model of the spin-spin interac-
, tion to describe various magnetic properties of ma-
terials continues to be of interest even today. The
model consists of a finite array (a linear chain in
one dimension, a square in two dimensions, and
a cubic structure in three dimensions) of points
which may be thought of as vertices of unit spacing
and side L. Periodic boundary conditions are
assumed. The system of spins interact through
an isotropic exchange between the nearest-neighbor
sites. The Hamiltonian for such a system is given
by

where the prime on the summation indicates that
the sum is only restricted to nearest-neighbor
pairs. In spite of the inherent simplicity of the
model, it remains essentially a many-body problem
and an exact solution for quantities such as the
partition function have not been found in any dimen-
sion. The ferromagnetic ground state and the low-
lying excited states of the system were found by
Bloch, ' who also showed that the deviation from

the ground-state magnetization was proportional
to T I . Dyson in 1956 presented a theory of spin-
wave interactions, which is useful in discussing
the low-temperature thermodynamics of the fer-
romagnetic system (J& 0).

The development on the antiferromagnetic
Heisenberg model, however, has not been so en-
couraging. The exact antiferromagnetic ground
state of the Hamiltonian (1.1) (with J & 0) is not
known in any dimension even though Bethe and
Hulthen have computed the ground-state energy of
the antiferromagnetic linear chain. des Cloizeaux
and Pearson, discussed the low-lying excitation
spectrum of the antiferromagnetic chain and found
that the long-wavelength magnons obey a linear
dispersion law. The statistical theories of the
model historically date back to the molecular-field
theory of Neel, which successfully explained the
existence of a transtion temperature, a specific-
heat anomaly, etc. , but failed to explain the lack
of short-range order above the transition tempera-
ture and many other low-temperature properties.
Series expansions by Opechowski~ at high temper-
atures and spin-wave theories at low temperatures
have their validities in restricted range of tem-
peratures but are unreliable near the transition
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point.
The most satisfactory approach to describe the

statistical mechanics of the Heisenberg antiferro-
magnet has been the application of the method of
double-time Green's functions. The most satisfy-
ing feature of the Green's-function formalism is
its validity in both high- and low-temperature
ranges, as well as near the critical temperature.
The various works using Green's-function theories
differ from one another in one important aspect.
The exact equation of motion for Green's functions
of any order involves a still higher-order Green's
function and this new Green's function has to be ap-
proximated in some manner. The random-phase
approximation (RPA) is unsatisfactory, and does
not agree with the spin-wave theories at low tem-
perature. Anderson and Callen proposed a de-
coupling scheme for an antiferromagnetic system,
extending Callen's earlier suggestion for a fer-
romagnet. Lee and Liu" studied the statistical
mechanics of a simple antiferromagnet over the
entire range of temperature and obtained sublattice
magnetization, Neel temperature, and the various
correlation functions.

While the work of Lee and Liu was in excellent
agreement with various other theoretical esti-
mates, the scheme of decoupling was made from
heuristic arguments. An attempt to fix the param-
eters of the theory from physical considerations
was made by Mubayi and Lange for the ferromag-
netic case. Tahir-Kheli'I used a self-consistent
version of an alogarithm due to Roth' for the solu-
tion of the Hubbard model, and found that, in the
case of S = 2, his results for the ferromagnetic
Heisenberg model basically reproduced Mubayi
and Lange's solution. The decoupling scheme in
this new approach is fixed by the condition for con-
servation of various frequency moments of the
spectral function. " The scheme is made self-con-
sistent by the additional condition that the scheme
also fixes the corresponding decoupling of the cor-
relation functions. Tahir-Kheli found that this
latter condition cannot be satisfied for an aniso-
tropic Heisenberg model.

The present work treats the statistical mechanic.
of an antiferromagnet with isotropic nearest-
neighbor interactions by the use of Green's-func-
tion theory, using the self-consistent moment-
conserving decoupling scheme (SCMD) of Tahir-
Kheli. In Sec. II, we review the definitions and
properties of spin Green's functions and the prop-
erties of various frequency moments of the spec-
tral functions. We also derive the equation of
motion for the Green's function, and briefly out-
line the various decoupling schemes proposed
earlier. In Sec. IG, we describe the SCMD in
detail, and obtain a solution for the Green's-func-
tion equation of motion and consequently obtain the

energy spectrum. In Sec. IV, we obtain the low-
temperature expansion for the magnetization and
compare it with the spin-wave theory and the RPA.
We also calculate the susceptibilities in the anti-
ferromagnetic phase. In Sec. V, we determine
the Neel temperature of the solid, and compare the
i J'I/ks value predicted by the present approach

with other high-temperature estimates on various
substances. We calculate the molar suscepti~
bility at the Neel temperature and explain experi-
mental data on several compounds. In the last
sections we specialize our results in one and two
dimensions and discuss these in the light of an
exact theorem due to Mermin and Wagner. ~

H. GREEN'S-FUNCTION EQUATIONS

For convenient reference, we give here various
definitions and formulas, which we shall be using
later in this paper. The double-time retarded x
and advanced a Green's functions are defined by

&(A(t);B(t')»"= G'„s(t-t')= -—te(t t')&[W-(t), B(t')]&

&&A(t); E(t')»' =- G' (t —t') = te (t —t')&[&(t), E(t')]&;
where the angular brackets & ) denote the usual
average over a grand canonical ensemble. 8(t)
is the unit step function, being unity only when t is
positive and is zero otherwise. The Green's func-
tions are not defined for t = t'. The Fourier trans-
form of the Green's function defined by

&Q; a»""=-G"'(E) = —~ G""(t)e"'dt,y
i'"

AB

satisfies the following equation of motion:

EG"„(E)= —&[W, a]&+«[W, 3:],a»"," .

It is well known that these Fourier transforms of
the retarded (advanced) Green's functions can be
analytically continued to the upper- (lower- ) half
of the complex energy plane if E is to be consid-
ered complex. If a cut is made along the real
axis, the function

G(E) = G'(E) ImE & 0

= G'(E), ItnE & 0

can be considered to be one analytic function con-
sisting of two branches, one defined in the upper
and the other in the lower half-plane.

Regarding Z as the complex energy variable we
have

«A; E»x = G„~(Z) = —i d(u, ImZ + 0
F++((g)

(2.4)
where F" (z) is the Fourier transform of the time
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([A(t), B(t')]& = f d~ e-'""-' 'F"'(&) (2.5) lee ~ ]

z«A;B», = —, ~'..+(&[A, ~];B&&, . (2.9)

In general, when one is dealing with a many-body
system of interacting particles, Eq. (2. 9) is an
infinite hierarchy of equations and hence no exact
solution can be found for ((A; B»z It is .customary
to truncate the hierarchy at some suitable stage,
and one of the central problems in using a Green's-
function procedure is to find a reasonable trunca-
tion, in conformity with the physical constraints.

The Hamiltonian of the system we consider is

R=J Z Q fg f~ —p, sHQ Sf . (2. 10)
iGA )E B

The sum over j in the first sum is restricted to the
nearest neighbors and the second term represents
the extra energy in a magnetic field directed along
the negative z axis. The equation of motion for
the Green's function ((S~„s»&&z= G",

&
(Z) is given

by

(z —q,a)((s'„„s-„,» = f}„e„„&su&

-& & «(s' s:, -s:.s' );s. »
a

(xe v} . (2. 11)

Here 5's are the nearest-neighbor vectors, the
Greek indices A, p, , v refer to either of the A or
B sublattices. The second term on the right-hand
side contains the higher-order Green's functions.
The frequently used RPA decoupling scheme con-
sists of neglecting fluctuations in S~ [g=- (X, i)],
replacing the operator by its average value (S~&,

From Eq. (2.4) it follows, using the properties of
5 functions, that

F"s((g}=i lim [G„s((o+ie)—G„s((o —ie)] . (2. 6)
I Q

We define the nth moment of the spectral function
F by the following relation:

(dgs = f (d F(&d) dQ) ~ (2. 7)

[The functions E"s(sp} differ from the conven-
tional spectral functions J„s(a&) of Zubarev by a
factor (e "+1).] These moments are related to
the equal-time thermodynamic average

)n-n +1 ) n

co„"s=lim t —
~

A(t), —i —[ B(t )7 et)
(2.S}

Thus, a knowledge of these moments can be ex-
pected to provide us with a knowledge of spectral
functions and hence of the various properties of
interest. The equation of motion satisfied by this
generalized Green's function ((A, B»z is seen to
be

(&s'„,s'; s-„,»„-„&s„'&«s'„„s-„,» . (2. 12)

HI. DECOUPLING PROCEDURE AND SPIN-WAVE
SPECTROM

A. Decoupling Procedure

In this section we shall seek an approximate
solution to the Eq. (2. 11) by decoupling the last
term on its right-hand side. Let us propose a de-

This procedure neglects short-range correlations
in the system and leads to a magnetization renor-
malization of the quasiparticle energy in disagree-
ment with the low-temperature theory. Callen'
suggested a decoupling procedure using a param-
eter which was later used by Anderson and Callen
and by Lee and Liu for the antiferromagnetic
problem. The parametrization is suggested by the
fact that for spin one-half S~ can be written
S-S S~, and Callen proposed

((S'S', B)) (S')((S', B)) —rt&s S')((S' B» ~ (2 ~ 13)
When applied to the antiferromagnetic problem,
Anderson and Callen found that one of the two
equally acceptable values for this parameter led
to internal inconsistency, and in that sense the
procedure remained largely ad hoc. Liu and Lee"
observed that the inconsistency was absent in the
case of vanishing magnetic field. Mubayi and
Lange, ' in their study of two-dimensional ferro-
magnet introduced an over-all parameter on the
right-hand side of Eq. (2. 13) in addition to n and
they determined these two parameters by two con-
straints: The first one, often referred to as
Dyson's kinematical condition, requires (S', &~~"

=0, and the second condition was the assumed
validity of the decoupling procedure in a certain

. limiting case. By doing so they obtained a phase
transition in two dimensions, in accordance with
the theory of Stanley and Kaplan, ' while still not
obtaining a spontaneous magnetization, the non-
existence of which has been rigorously established
by Mermin and Wagner' in both one and two di-
mensions. However, Kenan reported that this
new scheme leads to the onset of antiferromagnetic
short-range order in a ferromagnetic system.

In the self-consistent moment-conserving de-
coupling scheme (SCMD} of Tahir-Kheli, ~~ which
we use here with the necessary modification for
an antiferromagnetic system, the parameters of
the decoupling scheme are chosen so as to con-
serve the maximum number of frequency moments

Since the parameters are assumed to be in-
dependent of Z, these moments can be computed
and compared for large Z. The procedure be-
comes clearer in Sec. III, when we solve Eq. (2. 11)
by explicitly decoupling the higher-order Green's
functions.
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coupling scheme following Tahir-Kheli. 3 For
X+v,

Am"=
2 Qe~+0'.) *0'„ (3.7)

(({8„,8'„...-8'„,8„'...);8-„,)),=A,""((8'„„8-„,))

+Am~(&8'„„„8„,&) . (3.1)

Ag g(d +Ap, g co

X1+ —!+ —+ ~ ~ ~ d(o . (3.3)
(o & (o

Z] Z

If the decoupling scheme is to preserve the nth
moment the coefficients of Z on the right-hand
side of (3.2) and (3.3) must match. Since we are
decoupling the equations for (2. 11) at the very first
stage, we can only preserve the first moment.
More moments could be conserved by writing down
the equation of motion for the Green's functions
on the right-hand side of Eq. (2. 11) and decoupling
at a later stage. %e thus require

j E((u) d(o = f [Ai A(&)+As fa(~)]&~ ~

Using Eq. {2.5) in the limit f- f' this leads to

I'2(8„,8 '„...)+(8-„,8'„„,))'(5„„5„„,—5,„5,,)

=2A~ 5„„5))(S„g)+2Ag5„„5),g, g(8„),o) ~ (3 5)

Since X4 v, Eq. (3.5) determines both A"," and

Denoting

q '„=(8'„8„',.),
(3.5)

q'„„=(8„,S'„„,),
we have, for A, and A.&,

1
Al O'phd+ 4p) p

The parametex s A& and A&" wQ1 be fixed by the
condition of conservation of the first frequency
moment, and the necessity of the procedure being
self-consistent. If E(ap) denotes the first frequency
moment of the Green's function on the left, and

fq(&o) and f~(&o) denote the corresponding moments
for the two Green's functions ((8'„„8„&))sand
((8'„&,„'8»)), then we have, for large Z

(((S„',8'„„~-8'„,8„'„,);8„~)) = —
! d&g

&(&o)

~Os

1co

E(~) 1+ —+ —+. . . d&o . (3.2)1 QP (d

2Ã. -- Z Z

The successive terms can be recognized as the
first, second, ..., etc. , moments of the spectral
function E(~). On the right-hand side of (3.1) we
have

A", «8:„8„,))..A."«8'....;8„,)).

where o„=-&8'„,) has been assumed independent of
the lattice site because of translational invariance
within each sublattice.

The first-order moment-conserving decoupling
scheme (3.1) will be self-consistent as well, if
the correlation functions corresponding to the
Green's functions are self-consistent too. This
means that for A~ and A~~ given by Eq. (3.V), we
must have

~oo

(3.aa)
Since Eq. (3.3) is to hold for all (p, , j) it must,
in particular be true when (i =j, p =X), and also
in the case when (j=i+5, X= p). Consider S=2
to begin with. In this case for the first choice of
(p, j) one obtains

2.{e' @-o~,.
while, if one makes the second choice for (p, j)
one gets

2o„(q~+o~) —o,q„„
2ovktu }

(3.Qb}

The expressions (3.9a) and (3.Qb) are indeed
self-consistent because of obvious symmetry
o„=—o„, for an antiferromagnet. Thus, Eq. (3. 1)
together with Eq. (3.7) fixes the decoupling
scheme in this case. From Eq. (3.7), and the
symmetry requirement e„=—c~, we have

Ai =oi(1+2(u) =Am =-As =-Aa (3~ 10)

Coming back to the case of general spin 8, it is
seen that y'„„ in this case is

pa =(oAz l4~+ 4~+ ~xv 8{8+1)ov]

+ 2 o„q~),„[8(8+I) -Mi -o'd- 4mj
x [q~„+M„o„-8(8+ 1}o„]', (3.11)

where

4Lv (SWSXfSv4+d) s ~L ({83d) Soled)

M„=((8'„,)3) . (3.12)

The above result is trivially derived from Eq.
(3.3) by choosing (p, j)= (X, i), and using the fol-

+A,"(S-„,S'„„,) . (3.3)

This result is an immediate consequence of the
expression for the correlation functions in terms
of the Green's functions
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lowing relation for the general spin:

818'1 =8{8+I) —(81) -8; (3.13)

and, using E(I. (3.14b},

Thus the additional complexity of the general spin
case is due to the presence of new quantities like

tt~, I.~ and M„. Before we deal with this com-
plexity, we will find it convenient to write down

the formal solution for the Green's functions, as
a result of our decoupling scheme.

S. Formal Solution of Eq. (2.11] and Spin-Wave Spectrum

Let us fix p, to be the A. sublattice throughout the
calculation. Then on introducing the various de-
coupling schemes, discussed in the foregoing sub-
section, into E(l. (2. 11)we get a set of two si-
multaneous equations:

(s. »}1
&Z-E —p. H Z+E —p H

Ei =JSA1(1 —y„)'I (s. Is)

By obvious symmetry, the Green's functions 6
and 6+~ are obtained, respectively, from 6++ and
6 by o', oa, &g —yg, and 0„0&. The en-BA

ergies of the spin wave in the upper and lower
branches are, as can be corroborated by compar-
ison with the conventional spin-wave theory

(Z —p, sH- J'SAA1 )((SA1,'SA~)&s Eg f EQ + pr+H s (s. 19)

= "s11+&A1'& «8'S. 1.2'SA1»S

{Z-PsII+J A, )((Ss„SA~&&s

~ «SA1 os SA1»S

CAA(k k)=~S--S--
Z && 8 tgka LgR

3.14
(z -(2,)(z - e2)+ (zA, s,y,)2

&

'

gSA(k) 1 'YS) gAA(j~)
Z g ~ Z 7

3
(3.14b)

e~,m= p, &H+ J$A& (S. ISa)

where p is the nearest-neighbor coordination
number of the lattice under consideration. In
deriving the last equation, we have used the fact
that A~~" = -A& . Henceforth we shall drop the
superscripts. To diagonalize E(ls. (3.11) and
(3.12}we introduce the Fourier transforms

((S' S )) =(—) Z S (k k )eS1'Ri'"&'"
A)L2

This gives

The above results now immediately lead to the
following:

(8„-,8„', &= o„[an(0)+y„(0) —q, (0) —i], (S.2O)

(8,8', ) =cr [cp„(0) -(I(),(0) -2n(0) -1], (3.21)

Q SIR.Ry (k)

n(@
2 g f„(k)+f1(k)+1 (2.I

2(1 —y'„}"'

(3.22)

(3.23)

The general structure of the Green's functions
and the correlation functions are thus seen to be
the same as those obtained by Anderson-Callen
or RPA decoupling. It was shown by Callen and

Shtrikman, '~ and later generalized for the case of
multiple sublattices by Mills et cl. ~0 that an im-
plication of such a decoupling scheme, or alter-
natively of E(ls. (3.20)-(3.23) is that the generat-
ing function for ((8'„}"&is given by

Q,(~) = &S"1&

[+Ss+1 ss (1 ~ )2ss1 (ss1)s]

& [9'1'"—(I+Pk)""] '[{I+Pde' PZ'-
(3.24)

where y„=(8„8'„&/ae1. The averages ((Sf)"& are
obtained from (3.24) by

(3.15b)

gAA(k) ~+ Z (22

7T

x ', (s. is)—Eg —p, gH Z+ Eg —p, gH

12S

The nature of the spin-wave spectrum becomes
apparent on rewriting E(I. (3.14a) in a slightly
different form,

(3.as)

In particular, the sublattice magnetization 0„ is
given by

vA =8 ——,
' [2n(0) + (I()„(0)—P, (O) —1)

+(28+1)[-'(an(0)+y„(0) —(I() (0) —1)]' "
x({-'[an(0)+s (0)-s (o)+I]]s " (3 as)

-{-'[an(0).s.(0) —q, (0) —i]}'*")-' .
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0'g is trivially obtained from 0'g with the substitu-
tion —A(0) for A(0). Similarly

M„=((SQ &=8~ —(1 —28)qr„+2)»»2„—(1+28)(1+2»)))„}

~~ss+1/ [(1+~ )R»)+» ~Rs+1] (3 27)

and in a manner analogous to the Tahir-Kheli
method me can get

»t)~» =(Sf»8„»S'„»,o& = (1/2o„)[3M„-8(8+1)- a„]»}))

(s. 26)

Following the method outlined by Tahir-Kheli and
Callen~' me can obtain the function I „' as well,
through the generating function

This gives

uq, b) d'q, (a) aq, (a))+

(8' 8'
&

—a„a„
M), —a),

(3.29)

(s. so)6 px- +xMXI )) =a) M))+ ()»'))) —aAd
il

where p„= (8„'P, which is obtained from (S.26).
Substituting these results in Eq. (3.11) one can
now write down )t)o„„ in terms of known functions
»t)6~, a)„and M„only. On inserting these in Eq.
(3.'f) one gets

2 )t)f„[3M„+y„8(8-+1)]—a„[8(8+1)o„+y», a)) —M))(r„]Xv v
68(8+1)av™p)+aD'a

(s.sl) '

Let us introduce the Fourier transforms of the
spin operators

f„(k)=Z f„,e-"'"», (4. 1

QS„—(k)e ~'"» .
These obey the following commutation rules

[8~(k,), 8„(kz)]= 2S) (k, + km)5»

[8'„(k,), 8'„(k,)]= ~8'„(k, + k,)5„„.

(4. 2)

(4. 3)

Using Eqs. (3.8a) and (3.21),

(8„(k )8'„(k»»)& = (N/2')5», , »„5»„» [A""f(E~+»»»»H)

+ a""f(E,—p»»ff)], (4. 4, )

where f(x) is the Bose function (e"—1) '. In the
absence of any external field, using Eqs. (3.20),
(4. 3), and the following relation for the Bose func-
tions:

(e "-1)'=coth(-,'Pr)--', (4.6)

the various correlation functions can be written
as follows:

(8-„(-k}8'„g&=(8;(-k)S;(k}&

= (g Ne~}[J'sA»E», coth(p pE») —1],
(8'„(—k)8„(R)&= (Se( —k)Se(k)&

= (-'. No„)[ZsA,E coth(-.' PE,}+1],
(4.6)

where y„=o„(p„—o„M») /(M„-o„). For the simpler
1 1 1case of 8=2, M„=M„=4, p„=40~ andy„=Q, one

easily gets back the earlier relations (3.10).

IV. ENERGY SPECTRUM, TRANSVERSE CORRELATION
FUNCTIONS, AND LOW-TEMPERATURE THERMODYNAMICS

=«(- &)8;(k)&=&8:(-k)8;(k}&

= —3 Na~df»A»y», E»,'coth(g pE~)

The transverse correlation functions of two
spins, i.e. , (8„»8»& are given by the inverse
Fourier transforms of Eqs. (4. 6). The energy
spectrum (3.16}can be written

E-„=ZsA,(1 —y',}"', (4. I)

0. 156 for sc,
0.150 for bcc,

and the constants ao and a, are given by

1(2) 1(4)+0= g g ~g= gr
where 1'(n} are the Rtemann 1'-function 1'(n)
=Q., p ", the factor q being 3'~~ for an sc and 4
for a bcc lattices. A similar expansion can be
made in the Eq. (4.6) giving

where A, , is given by Eq. (3.31). A, =a„ is the
result of decoupling by RPA, while R = 1 corre-
sponds to noninteracting spin-wave theory.

%e will now investigate the consequence of the
foregoing results on the low-temperature thermo-
dynamics of the system. In this range of temper-
ature, the function [A(0) ——,] can be expanded in
powers of the reduced temperature r(= f»»»T/Zs }, —
folloming standard techniques, ~~ which we will not
repeat. For H=0 it gives

A(O) .' = '.C'+a—,(—~/A-,)'+a, (~/A, )'+0(~'),
(4.6)

where

O'= —Q (I-y~)»-I

&8'(- k)8;(8& =&8;(-k)8'(k}& y'„„=—2a„[2Co+ ao(» /A, )'+ 0(r')], (4.9)
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where

Substituting these in Eq. (3.31) we get

w, =s - [fl(o) --,']-q„/as+ ~ ~ ~ . (4. iS)

An iterative procedure can be now set up as fol-
lows: Starting with A~= S and o~= S in the zex'oth

order, [Q(0) ——,] and g, are calculated from Egs .
(4.6) and (4. 9). These provide the first-order
values for A& and 0&. It is necessary to calculate
go~ and A, correctly to the order r, in order to
calculate O„correctly to the order 7 . Neglecting
all products of the small quantities C0 and C',
we get (C-=Co —C')

8 —e1
2 ~

ay=2 —2C —4ao [1—2(C+C )]-16[ag(1-ac -4C)
—2a'(1 —5C —2C )], (4. 14)

Sp o1

a„=s ——,
' c'- a,~'[1 -(c/s)]/s'- ~g [i —(ac/s)],.a,'(C+ 2C')/as'- (as+1)'a,"(C'/2X./S)""&/S',

(4. 15)
8+1 ~

A=S+&C-a07 (C+2C )/2S . (4. 16)

These results are to be compared with the spin-
wave results of Oguchi

Sy 1 ~

o„=S ——,
' C'- a,[1—(c/S)]v'/S'

-a,[1 -(2C/S)]~'/S'+ ~ ~ ~ . (4. 1V)

It is noted that the temperature-independent terms,
as well as the 2 term, agree with the spin-wave
theory for 8& 2. The coxresponding RPA results
gives the small correction C/S to the ~ term
wrong. For the 7 term, the extra terms propor-
tional to g0 appear in our result. The deviation is
somewhat large for 8 = 1, but decreases sharply

c = —Z ~'(1-9)'I'

0.253 for sc,
0. 223 for bcc

The series expansions of 0» M„=M» and y„=y~
are as follows:

a„=S—[fl(O) ——.
' ]+ (2S+1)[fl(O) ——.

' ]""+~ ~ ~

(4. io)

M=s'+(1-as)[n(o) --', ]
+ 2[f1(o)- -.' ]' - (as + 1)[fl(o)- -.' ]"", (4 »)

~ = -s(as -1)- (1-6S)[o(o)--.']
—as'(as+1)'[fl(o) --'.)"+ ~ ~ ~ . (4. 12)

. for higher values of S. Anderson and Callen's
coefficient of 7 gives better agreement with the
spin-wave result for 8 = 1, but for higher 8 values
our agreement is better. For S = » the tempera-
ture-independent terms agree with (4. 17) for the
RPA, the Anderson-Ca, lien, and SCMD approaches.
However, the correction of order C in the v

term disagrees in all the three cases.
The perpendicular susceptibility is determined

by the correlation functions, through the well-
known relation3

X'=Ppe & &Sls&& .
&eS

(4. ia}

Expressing the operators 8~& in texms of 8;, one
finds, using (4.6) that

)(~=-', P Na„/ZsAq. (4.19)

Using the expansions (4. 14)-(4.16), we get the
following expansions for g .
8 p 01

C+C 5C+4C
X' 2J3 '2S -0 —

28
+ ~ 0 0

8=-'1
2 ~

)f'= ",[i-(c+c')-6,2(1-4c'+ac)].
(4.ai)

The spin-wave result of Oguchi is

C+C C&~
2Z 2S S S (4.22}

while the RPA gives the temperature-independent
x esuli

(4.26)

Thus, the temperatux'e-independent term of SCMD
agrees with the spin-wave theory, whereas the
RPA result does not give the zeroth-order quantum
correction. The z~ term again deviates from its
form in (4. 22) by a few percent.

V. HIGH- TEMPERATURE THERMODYNAMICS

A. Neel~-Temperature Thermodynamics

In this section we will obtain expressions for
some thermodynamic quantities at high tempera-
tures. However, fixst we determine the Neel
temperature T» at which the sublattice magnetiza-
tion vanishes in the absence of any external field.

Putting H= 0, the sublattice magnetization is
seen from Eq. (3.26} to be given by

(as+ 1)[fi(o) --'.]'"'
ae S+ 2 fl(O)+

[ (O}
x ]Fg+z [ ( ) x]ggix ~

(5.1)
At very high temperature, y„=y, —= y is given by
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TABLE I. Reduced Noel temperature (k~TN/J 3) for
simple cubic and body-centered-cubic lattices.

n(0) =Ip/p JSA&+If'p Jf(Aq+

where Ip= (2/N) $„(1-yp) has been evaluated by
Watson. ' For sc and bcc lattices Io has been
value 1.516 38 and 1.3932, respectively. Thus
[n(0)] can be regarded as a small parameter in
which one can expand various quantities. At such
temperatures o„, M~ and y„are given by

o„=x[n (o) n-(0)(-. x- pp)] = —0's

Mg=x+ 2x( p x -*)n (0) =Ms

(5. 2)

(5.3)

y„=x(1—4x)/5n'(O),

where x =
& S(S+ 1), and the neglected terms are

of the order n (0) or less.
There nearest-neighbor correlation functions

gP„„can be determined from the Eq. (3.21) to be
(for II=0)

gu, = —2o„N Z (2((p+1)
(1 p)i(,

d k

4 2 1-y~ (5. 4)

For high temperatures g~,, can be expressed as
follows:

=Ra (((—l)(JSAqll) —&J&Ail( Z y) .
a

Using the high-temperature expansion for o„t

q'„=a [(1 I,)/I, ]+-o(p') . (5.5)

RPA

0.17
0.44
0.82
1.32

0.18
0.48
0.90
l.44

Anderson-
Callen (Ref. 9)

Simple cubic

0.22
0.54
0.98
1.54

Body-centered cubic

0.23
0.57
1.04
1.64

Present

0.25
0.69
1.31
2.11

0.25
0.68
1.30
2.09

these, and is almost equal to the molecular-field
value. It is found that the T„predicted by the
theory is somewhat greater than T, value calcu-
lated by Tahir-Kheli in the same scheme. This
is in conformity with Rushbrooke and Wood's
estimate

T»= T, [1+0.63/bS(S+ ,1)]

The high value of T„ itself is very disturbing, and
the answer must lie in the very nature of the ap-
proximation. However we have no satisfactory
theoretical explanation to this at present.

The perpendicular susceptibility is determined
by the relation

If we substitute the foregoing results in the ex-
pression for A&, we obtain

)('= —,
' pNo JJ f(Ai, (5. 10)

A, = a n-'(O) + O(n-'(O)),
where

~I 1 Io

(5.6)

(5.V)

J f(/k» T» = Ip/a . (5.8)

In Table I we compare this with the RPA and the
Anderson-Callen results. It is found that the T„
predicted here is too high compared to any of

The Neel temperature is determined by lim~ ~„o&
=0. At such high temperatures o„ is given es-
sentially by the first term of its expansion in (5.3),

lim oz—-xn (0) =xP„JSA~(t»)/Ip, (5.8)
T N

where P„=1/k»T». Thus at T= T» A, must vanish
identically. From Eqs. (5. 3) and (5.6) it is seen
that to order p

Ip+ —PJSAN I Ag = a,PZSAi 12 )
giving PJSA, = [12(PJSa —I )]'~'p. Thus, at T= T„,
we get

From Eq. (5.8) the ratio (o„/A, ) = )(P»J S/Ip at
the Neel temperature. Thus the susceptibility at
the Neel temperature is given by

p N S(S+1) Js
2J s 3Ip k»T» ((

The molar susceptibility at the Neel temperature
)f»(T») can be written

(5. 11)

X»(T») = ~»/2IpT» (5. 12)

where C„ the molar Curie constant. In Table II,
we have listed the molar susceptibility of six
compounds MnF2, FeF~, LaFeF~, LaCr02, and
KCoF~. The first two of these have rutile struc-
ture in which the magnetic lattice is body centered
tetragonal. However, it seems likely that the
important interactions are super exchange interac-
tions between a "central" atom, and its eight cor-
ner neighbors. ~d The other four have all pseudo-
perovskite structures, in which the magnetic lat-
tice is approximately sc. All these compounds
conform to the nearest-neighbor model discussed
here. ~~ In calculating the theoretical numbers, we
have used the experimental C„values in some
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Compounds

MnF2
FeF2
LaFeF3
LaCr03
KFeF3
KCoF3

Z S TN ('K)

8 ~q 68
8 2 79
6 5 740
6 8 320
6 2 115
6 ~~ 135

Cu

4.38
3.88*
4.38
1.88
3.38*
3.54

Xu(TN)
(cgs/mole)

expt.

0.025 1
0.0196
0.002 11
0.001 96
0.0113
0.008 35

Xu(~N)
Calc.

0.023
0.018
0.001 97
0.001 96
0.0097
0.008 8

TABLE II. Molar susceptibility at the Noel tempera-
ture. The experimental values of Cz marked with an
asterisk are taken from Ref. 27.

identical to that carried out by Tahir-Kheli' for
the ferromagnet, except that the sign of the ex-
change integral is changed. We will merely quote
the obvious analog of the high-temperature
(T» T,) susceptibility in our case, in order to
avoid duplication of details. It is found that for

&(203x) '],+ 0(v ') . (5. 17)

cases, as this enables us to take into account cer-
tain effects, such as the orbital contribution to
the susceptibility, which cannot be estimated ac-
curately by theoretical methods. Theoretical
values have been taken in the other cases. The
agreement is within a few percent of the experi-
mental numbers. However it must be pointed out
that )(s(T„) is.notoriously insensitive to the theory
and is correctly given by most of the decoupling
schemes.

We will presently calculate the internal energy
of the Heisenberg model at Neel temperature.
This is given by

E=(X)=2N JSZ y,(f„(-q)'5 (q)) . (5. 13)

E=2N'zsg —,
'

y,(s„(-q)s;pq)),

which gives, using the expressions (4. 6) for the
correlation functions on the right,

2

E — ' Js Q coth ~' (5. 15)

At an arbitrary temperature, a study of the inter-
nal energy or the resulting specific heat, is com-
plicated, and is to be carried in a computer. At
the Neel temperature TN, the expression simpli-
fies, and we can write

It is possible to calculate the internal energy for
a system of particles with biquadratic interactions
(the Ising model part of the Hamiltonian, in this
case), from a knowledge of the single-particle
Green's function. In this particular case of
isotropic interactions, we can rewrite Eq. (5. 13)
as

It is seen that the above result agrees with the
exact-series expansion only to the first two powers
of I/r, as much as the other decoupling theories
(cf. Refs. 10 and 22 for negative J}.

The series (5. 17) is in itself not very interest-
ing. Whereas the coefficients of I/r in the ferro-
magnetic phase are all positive, so that the ferro-
magnetic analog of (5. 17) diverges at some critical
point, viz. , the Curie point, this is not true for the
antiferromagnetic series, since the coefficients
now alternate in sign. T, still determines the
radius of convergence of the high-temperature ex-
pansion, but does not correspond to a physical
singularity in the su eptibility. The ordering
temperature is determx ed by discussing the anti-
ferromagnetic "staggered susceptibility" )fo (the
order parameter) reflecting the effect of a vanish-
ingly small magnetic field, which changes sign at
alternate sites. The Hamiltonian for discussing
the staggered susceptibility is taken to be

(S„-,S'„,) = o„[2fl'(0) —1],
(Ss, Ss,)=- os[20'(0)+l.],

(5. 20a)

(5. 20b)

R=J Z Z s( fq —iJ,IH Z sf Qs; i-
fC A jet le% EEB 5. 18

We will take the vanishing-field limit at the end of
the calculation. For (5. 18), the Green's-function
equations are the same as (3.16) and (3. 17) ex-
cept for the following replacements:

+i = —&2 = Pa&+~&+g

Eo- &so = [(J SAN+ IJeH) —-(JSA,yo)']'I', (5.19)

E =-Ei-&a .
Equations (3.20) and (3. 12) for the correlation-
functions now take the following form:

EN ———o xPAo I)/Io (5. 16) where
For S =

& it is seen that this is the same as esti-
mated by Liu and Lee. "

B. Analysis above N*l Temperature

The region above the Neel temperature (T & T„}
is paramagnetic, and the analysis is formally

For temperatures above T„, f(&go) can be expanded
in the inverse powers of ~, and one gets, retaining
only the leadiag term.
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Xz = llm o„/p, »H
H«0

(s. as}

A =lim A~/o„
H «0

P

Above the Neel temperature, a„-0as K-0. As
the temperature is lowered to the Neel point 7.'~,

y diverges in the limit of a vanishing magnetic
field. Eq. (5.22) can now be written

(s. 24)

I+AX«0 (0) — Z
( )k ~ )k

. (5.25)
O'B k + Xs Xsrk

It is seen that 0'(0) diverges as H-0 (T & T„),
and thus in this limit, one can expand various
quantities like 0» M» etc. , in the inverse powers
of 0'(0). The expansions (5. 3) for o„, M„, etc. ,
are still valid with the replacement 0'(0) for A(0).
Before proceeding further, we will cast (5.25) into
a more convenient form. Using symmetry in the
k space for cubic lattices, we can write

,
( )

2 ~ p.«H+ JSAg
NP, (P,H+&SA,)'- (&»irk)'

(s. 22)
Let us introduce the order parameter X«(the
staggered susceptibility x"), and a quantity A,
through the following relations:

where F(0) =la.
The solution of (5.23} for S=—', is straightfor-

ward, for in this case 4x-1 vanishes identically
and one gets Xz-(T- T„) . For the case of
S & 2 we have to divide the range of temperature
into one close to T„and the other much higher.

(a) (T —T„)«T»: In this region, the suscep-
tibility x is expected to be small, and as such Q
is expected to be small. In this case we use the
expansion '

F(Q) =F(0) —bQ i

where

b=3&3/~2 for sc

= 2&2/« for bcc

= 3v3/« for fcc.

Substituting this into (5.31)-(5.32), we get, for
$&—13 p

(4x —1) b (aox)(T /T» 1)—
"« '-'«"» vs[(24 -i)F'(0)-(c -1)]'

(s. 32)
Thus the exponent of the staggered susceptibility
is given by

n'(0) = (I/pi, H) qF(q),
where

(5.26) y=1 for S= &

=2 for S&~ . (s.33)

Q=(AX.} ' (s. a7)

F(Q) =(2/&) Q (Q+ 1-r,) ' (s. as)

Substituting the expansions for cr» etc. , in the ex-
pression (3.31) for A&, and using (5.27)-(5.28),
we get

J&QXS»+ 40
x hP —~kqo(4x —1)

where $0 = lim«„0$' is found to be given by

00 = [2 /F(q}][i —«+ Q)F(q}]

In the same limit X« is given by

lim [Q(0)p»H/x] = X»' = QF (Q)/P«
H«0

(s. 29)

(5. 30}

(s.31)

The set of equations (5.29)-(5.31) can be solved
simultaneously, and using Eqs. (5.9} for the Neel
temperature T„-, we get the following convenient
expression:

—(24« I)[(1 P ~~} & I ]Jy
+(4 -1)q(1-PX-,'x)-'-(C -1)
~[F-'(q)(1 —px-,'x)-'- F(o)-'],

(s. 32)

The value of y does not seem to have been esti-
mated with much reliability, although for S = «we
must have y = 1.33, for symmetry with the ferro-
magnetic case. The RPA value for the critical
exponent is 2 while the Landau theory gives y=1
(see p. 660 of Ref. 29).

(b) T» T„: In this case Q» 1, and we can use

F(Q) =Q '[1 —Q '+(I+ I/s}q ]+O(Q ) . (5.34)

Inserting (5.34) into (5.31), we get for T» T,

X,
' = (n, T/x) [1—q-'+ (1+1/s)q-'] (S.35}

and (5.23) gives

ksT (24« —1)(1+1/S) -4« —1)
Jby 20x

(s. 36)
Solving (5.35)-(5.36) gives

x
1

2J&g Jsr
[Xs]T~T» b T

1+
b

+ (2+aa)
b T +

B 8
(s. 37}

Comparing (5. 37) with the series expansion of
Rushbrook and Wood we find that the straggered
susceptibility agrees only to first two terms.

VI. RESULTS IN RESTRICTED DIMENSIONALITIES

In this section, and in Sec. VII, we restrict our-
selves to one and two dimensions. This is impor-
tant because of an exact theorem by Mermin and
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4 g JBA, +i1BH (, )
a a

(s. I)

2 2 Q (~sA1+ OBH) 2 t'h(l p )
N

(s. 2)
where u&2= (i1BH+JSA1) —(JzA, yd) . We will now

construct the quantity A, using Eqs. (6. 1) and

(6.2). By definition, A, is positive, and is given by

A11=o„(i+2/ )

4 ~ (ZSA, + y.BH)(l -y', ) (, )
N a

(6. 3)
Now, the hyperbolic cotangent has the property

coth»&l/~»~ (s. 4)

and thus we can set up an inequality for the posi-
tive quantity A, ',

» s & (zsA1+uBH){1 y'2}

Np 2 (JBA1+)1BH} —(JBA1yd)

We will now specialize above results to one and
two dimensions.

A. One Dimension

In the case of a linear chain with nearest-
neighbor interactions, we have 8=2 and y~=cosk.

Wagner, which rules out the occurrence of the
antiferromagnetic order in one and two dimensions.
However, their proof does not preclude the existence
of a second- or higher-order continuous phase
transitions, where (8"/&H" }S' ~ while S' 0 for
H-0. It is generally believed, however, on the
basis of a theorem due to VanHove, 3' that phase
transitions of any kind will not occur in an one-
dimensional system, whereas in the two dimen-
sions, Stanley and Kaplan" have predicted a sec-
ond-order phase transition. However, the usual
decoupling schemes predict no phase trmsi-
tions in these dimensionalities, whereas the molec-
ular-field theory predicts a phase transition in
all the dimensions. In the following, we shall ex-
amine these questions within the framework of
SCMD scheme. We consider the case of S=-,' for
simplicity, but the general spin case follows in an
analogous fashion.

In the presence of a magnetic field, which alter-
nate in sign from site to site, the Green's-func-
tion equations (3.14a) and (3.14b) are still valid,
except for the identification

Qg = —Q2 = PgH+ JSAg

instead of (3. 15a). The nearest-neighbor trans-
verse correlation function $„B, and the magnetiza-
tion 0&, are given by

Replacing above sum by an integration through
the prescription

N ~
(2 )„ d"k (s. 6)

where A is the unit cell vblume, to be normalized
to unity, and n the number of dimensions.

Thus in one dimension, we have

(~zA1+ idBH}»n'k
wP ~ ( JzA, + f2BH)' —( JzA, )'cos'k

(6.7)
The integral on the right-hand side of Eq. (6.7)
can be simplified using the various properties of
the integrand, and one can obtain

~+V
~ 21 sin p

vPZ . (1+ i1BH/JzA, ) —cos'k (s. s)

Substituting the value of the integral on the right,
we get

pZ & i1BH 4/A, ) 'I2

2 2 JAg p~II )

The inequality (6.9}presents the following cases
of interest.

(a) 2 PJ'&1: The left-hand side of (6.9) be-
comes negative, and hence the right hand side
must also be so. After a little algebraic manip-
ulation, one gets from (6.9)

1 4(I ~

p J) PB

(s. 9)

(6. 10a)

showing that in the limit of vanishing field, A& can
be written

lim A, =f( P, Z)H,
H~o

(6. 10a)

where f(P, J) is a positive definite function of the
temperature, and the exchange constant J.

(b) —,p J= 1: In this case nothing definite can be
said about the behavior of Az in the limit of small
field by. .using (6.9). Hence we return to Eq.
(6.3), and use the inequality

coth»'- I/~»~ + 2» (6.11)

This gives

H t 4JAI~ 1 1 ' +(pJA)

+ $ JA1@ i1BH, (6.12)

In order that both the inequalities (6.9} and (6. 12)
be satisfied simultaneously at & PJ= 1, it is neces-
sary that A~ must go to zero slower than H itself,
for then it is possible to satisfy the equalities in
both the cases. It can be easily checked that A,
must go to zero no faster than J H as H 0.

(c) 2 pZ& 1: In this case it can be easily shown
that A, has a finite value even in the absence of
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1 2/PJ+3PJAg (6. 13a)

1 2/P J. (6. 13b)

While (6. 13b) is merely a statement of the condi-
tion imposed, (6. 13a) states that

limAq & (3/P J)[1—2/p J]
H~O

(6. 14)

the right-hand side of which is positive definite.
In summary, the behavior of limH. OA, as a func-
tion of H in various ranges of temperature ranges
is the following:

limA, = constxH
H 0

—,PJ&1

a field. Putting H=O, the inequalities correspond-
ing to (6.8) and (6.12) can be worked out starting
with the Eq. (6. 3). They are

the critical point itself, a similar analysis using
the case (b) above shows that

(6. 19)limy = const ~H
T TG

Let us now examine what happens to the sublattice
magnetization itself. For & PJ~ 1, we have shown
that

limA, = lim o„(1+2g) = 0
H~O H ~0

The integral on the right is easily performed, and
in the limit of the small H one obtains

Since P' is bounded, this suggests that lim„.oa„
=0. For —', PJ&1, A, is seen to independent of H.
As before, we set up the inequality

+t
1& (6.20)

&P .I, (2 JAq+ psH) —2 JA, cosk

= const' H ~'
& PJ= 1 o„& (const/7')! H! '~3 (6.21)

Xg = llm v~/psH
H 0

(6. 15)

For high temperatures we obtain

(Xzp.sH) & 2(wl8) f dk [(ZsA&+ p, sH) —JIA~ cosk].

Substituting the value of the integral on the right
we get

Xz (2psH/p)[(JSAi+ psH) —(JSA&) ]
(6.16)

Further, using the inequality (6. 11) for the hyper-
bolic cotagent

X'-'(2~.H/W[(J»3+ ~.H)'-~», )'] "'
+ 3 ppsH( JSAq + p'sH) . (6. 17)

As long as 3 pZ&1, the effective-field parameter
A, goes to zero with H, according to (6. 10a) and
(6.10b). Thus only the equality signs in (6. 16)
and (6. 17) can simultaneously be satisfied. Rec-
ognizing the role of —,'p J as a turning point, let us
define a critical temperature T, by the relation

-'. PZ/= 7./r; (6. 18)

it is immediately observed that above T„ the
zero-field susceptibility goes like (T —T,) . At

= const,

Since A is the effective-field parameter of our
theory, a shift from a linear to a power law sig-
nifies a change at 2 PJ= 1, in the response of the
spin system to an external field. We will present-
ly examine the susceptibility and the spontaneous
magnetization.

The static magnetic susceptibility of the sublat-
tice A is defined in terms of the sublattice mag-
netization cr„by the relation

It is observed that there is no spontaneous mag-
netic ordering in a one-dimensional chain, con-
sistent with the exact theorem of Mermin and
Wagner. ~ The existence of a nonzero transition
temperature, for a second-order phase transition
in one dimension, is somewhat disturbing, and
is probably erroneous.

VII. RESULTS IN TWO DIMENSIONS

(ZSA, + p sH) [4 —(cosk„+cosk„)3]
4(J3A&+ p, sH)' —(JsAi)' , (7. 1)

which can be simplified, first by expressing the
integrand as partial fractions, and then using its
various symetry properties, to give

+t

~&f 4 33f

4 —(cosk„+cosk~) (7 2)
2(J'SA, + p~H) —JSAi( cosk„+ cosk, )

The integral on the right can be performed follow-
ing the method indicated in the Appendix. 'One
obtains

The analysis of the two-dimensional case is
somewhat more complicated because of the fact
that the integrals involved here are not expressible,
in terms of simple algebraic or trigonometric
functions, as before. Further, we have to re-
strict ourselves to a particular lattice, which we
take to be quadratic structure, for convenience.
In this case y = —,

' (cosk„+cosk„), and the inequality
for A~~ corresponding to (6. 7) can be written

1 1
g+t :+t

z

-t ~t
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A g ~
2 2(JSAg+ PsH) PsH l

(v. 8)

(c) p J&1: This case can obviously be consistent
with (7.7) and (V. 8) if A~ is independent of H.
Summarizing, we have shown that

where limA& = const xH
H~O

PJ&1

mJIAg JSAg & i JSAg & i '

(v. 6)

where (=(1+psH/4JA, ) ~, and we have put the
coordination number of the square lattice, 8= 4.
With g so defined, it can be shown that, for f,

approaching the value of unity from below
((=i-o'),

(i —q)K(q) - —,',"'„ in " (V. 7)

As in the case of one dimension, we consider
three cases of interest.

(a) p J& 1: In this case, if it is assumed that
fJ.sH/JIA, -O as H-O, then $-1, making (V. V)

valid. However, since lim„pxlntxI =0 the in-
equality (7.6) will imply P J& ( contradicting the
condition p J& 1, since $ remains less than unity.
Thus in this case, the ratio psH/J3A, must ap-
proach a finite nonzero value,

limA~ =f(P, J)H,
Hvp

where f(P, J) is a function of J' and P.
(b) PJ= 1: In this case nothing definite can be

said about the behavior of A& with H. Thus, as in
the one-dimensional case, we consider the next
term in the expansion of coth —,

'
Par„ to set up the

following inequality:

PJ.g-'- (2/v)~-'(I —g')K(g)+P'J'A', +-.' JA, p,,H .
(7.8)

As H- 0, conditions (V. 7) and (V. 8) can simul-
taneously be satisfied if A~ goes to zero with H,
for then both (7. 7) and (7.8) become equalities.
For )=1, we can write as H-0;

(4/v)(I —g)K(&) = P'J'A; . (7.8a)

Replacing, K($) =-,' lln(psH/JsA, ) I, in the limit of
H-0 we get

K(g) being the complete elliptic integral of the first
kind defined through

K(() = f"(1 —]'sin'y) '"dq (v. 5)

The inequality (7.3) can be written

PJ' S '- (2/. )& '(1 —S')K(&),

= const x(HI niHi)
~ pJ=I

= const, pJ&1 . (7.11)

Thus again we find that PJ=1 behaves as a singular
point, at which the effective-field parameter A~
changes its power law. As before for PJ& 1 the
vanishing of A, = o„(1+2g ) as H- O. implies o„
-0. For p J& 1, we have to examine the expres-
sion for the magnetization from (6. 1). Thus for
low temperatures

cr„',
I

dk„
f~

dk„

JsAg+ psH (7 12)
2(JsA~+ psH) —J3A&(cosk„+ cosk, )

const 1
T linlHI l

(v. 14)

Thus it is seen that a two-dimensional Heisenberg
model cannot exhibit spontaneous antiferromag-
netic ordeq, a result which is in agreement with
the exact theorem of Mermin and Wagner. It may
be remarked that the exact way in which cr& goes
to zero is of no particular significance, since
Mermin and Wagner's theorem is in the nature of
an inequality involving the temperature T and the
magnetic field H. By using a slightly different
form of the inequality for the functions, it is pos-
sible to get, for instance, a stronger condition on

H, while obtaining a weaker one on T, or vice
versa.

The deviation from the linear behavior to a
logarithmic law in the field dependence of A„how-
ever, suggests existence of a continuous phase
transition. The static magnetic susceptibility X„
can be seen to obey the following inequalities:

Xw (8psH/mP)K(f)

(8psH/vP)K(()+ ,'PpsH(JSAg+ psH)—.

(v. 15)

(7.16)

Using the value of the integral on the right,

o-„'&(2/vP)K(~) . (v. is)

In the limit of the small H, K(g) =
& llnlps/4JAql I,

and thus

/AH /AH
4JA, 4JA

Thus we obtain

2=Ay (7 9) As long as PJ-1, A&-0 as H-O, thus only the
equality signs in (7. 15) and (7. 16) can simulta-
neously be satisfied:

limA, =constxH I )InH~
H~O

(7. 10) X.= 'P.b.HK(&-)] ' . (v. iv)
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The inequality (V. 6) can be written in the following
form, since as the temperature approaches T„
A, goes to zero slower than p,„II, and very near
T~ it can be assumed that $

( 1. Thus one gets
from (V. 6), for pJ(1,

[p,zHK($)] —4 JAg/v(1 —PJ)
giving
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APPENDIX

The integral in (V. 2) can be expressed as a
linear combination of the following basic integral
and other elementary ones, after suitable algebraic
manipulations:

y~ = P/2(1 —PJ)—= T, /2(T, —T) (V. 16)

Thus at a critical temperature T„defined by
T, = J/kz, the zero-field susceptioility diverges
as (T, —T) ', for T=T, —O'. At T=T„ the in-
equality (V. 6) is written as an equality for reasons
mentioned earlier, and one can write

[p,sHK(()] '=constxH ' (V. Ie)

Thus at 7= T„ the susceptibility y„diverges, ac-
cording to the law (HllnHI) '. The critical tem-
perature T, can be compactly written as T, =Jd/
2ks, where d=l, 2 denotes the dimensionality. It
is noted however, that the T, in this case, is ex-
actly the molecular-field value, and is thus more
than twice than that implied by Stanley and Kaplan
series extrapolation. Our calculation seems to
support Stanley and Kaplan's suggestion regarding
a phase transition in two dimensions, whereas the
usual decoupling schemes do not support this.
All these schemes predict absence of long-range
order in these dimensionalities. The validity of
the existence of second-order phase transition is
an open question and cannot be answered now.
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dk,4z'
i

" i, ' a —b(cosk„+cosk„)

(Al)

xexp[- A[a —b(cosk„+ cosk„)]] (A2)

The integrals over k„and k„can be performed by
using the integral representation of the Bessel
functionss~ of imaginary arguments:

(i)n i

+i

J„(iz)=
'i e ' "cosn8d8

2m .-.
(n=0, 1, 2, . . . ) . (AS)

Thus, the integral can be expressed as a Laplace
transform of a product of two such functions:

z= f e. [z,(ab)]'e-" (A4)

which can be obtained from standard tables, to
be

2b~
&= —K—

wa aj
where K is the complete elliptic integral of the
first kind.

where a=2(ZzA&+ p, zH) and b=JzA&. It is ob-
served that integrand does not have any pole in the
z-y plane for Max[5(cosz+cosy)](a. Thus it is
possible to transform & into the following form by
introducing an additional integral.

e eO i4f i+f

a Q af ~ ~f
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