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Valence-Force-Field Potentials for Diamond»ke Crystals
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Analytical vibrational potential energy functions sinai&ar to ones accurate to fourth order in linear
triatomic molecules are shown to have encouraging accuracy to second order for solid carbon and
silicon. The theoretical basis for the potential functions is discussed.

I. INTRODUCTION

Analytical functions for valence-force-field po-
tentials allow for the possibility of extrapolation
to outside the quadratic region of the multidimen-
sional surface in valence coordinates. The sim-
plicity of the valence coordinates, which are bond
lengths and angles, allows one to visualize the con-
tributions to the force field in terms of physical in-
terpretations given to terms in the force-field po-
tential function. Such features are of established
importance in the chemical literature concerning
molecules. It is expected that they will be help-
ful in the understanding of solids, the topic of this
paper.

Keating's proof' that, within the Born-Opyen. -
heimer approximation, the (3N —6)-dimensional
vibrational potential energy field in a solid of N
atoms is central for nearest-neighbor quadratic
force constants provides the reason for the suc-
cess of valence force fields for covalent solids.
To date, the work of Tubino et al. on diamond-
structure carbon, silicon, germanium, and tin ap-
pears to represent the extent of the direct deter-
mination, through the lattice dynamics and vibra-
tional spectra, of valence force fields in solids.
Keating fits his own force field to elastic constants. '

At the quadratic level both methods should be
equivalent, and Keating's field is capable of pre-
dicting valence force constants. In this payer such
predictions will be compared to the valence force
constants determined from experimental spectra
by Tubino et al.

The main theme of this paper is the introduction
of a simple-potential energy function for diamond-
like crystals. Qne experimental bending valence-
force-field constant will be used in the parametri-
zation. An additional variable parameter is an in-
teger that is about 4. All other parameters come
from the crystal structure and lattice constant and
from ground-electronic- state diatomic-molecular
vibrational potential energy data, and they are used
according to a theory for pure-stretching vibra-
tions, and correction terms, which will be pre-
sented. The valence-force-field force constants

will be predicted and compared with constants cal-
culated using Keating's force field and with con-
stants from experiment as determined by Tubino
et al.

II. KEATING'S FORCE FIELD

It is worthwhile to examine Keating's force field
and to show valence-force-field force constants
may be evaluated from it. Keating writes the po-
tential energy N' for diamondlike crystals, '

a' N
kRR (pure stretch),

(stretch-stretch),

8 N'
bee= pee (pure bend),

8 S'
Re= epee (stretch-bend),

S'
ee' eeoc' (bend-bend),

where the derivatives are evaluated at the equilib-
rium structure and as many coordinates as pos-
sible are held constant when taking a derivative.
For the diamond structure the equilibrium angle

where 0. is the central first-neighbor force con-
stant, P is the noncentral second-neighbor force
constant, a is the lattice constant, and R, (l) is the
distance from nucleus i in cell l to the central nu-
cleus. The four nuclei are coordinated tetrahedral-
ly about the central nucleus in the undeformed
(equilibrium) solid.

With the central nucleus as origin of coordinates
there are four bond lengths {Rjand six angles {e)
which are the valence-force-field coordinates.
The quadratic valence-force-field force constants
are written
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8, has the value 109.471'.
The force constants in Eq. (2) were determined

by Tubino et al. by fitting lattice-dynamics equa-
tions to reproduce phonon dispersion curves based
on inelastic neutron-diffraction experiments. In
making these fits, they included an additional force
constant corresponding to a bend-bend interaction
for a chain of four bonded atoms. They considered
these six force constants to be the minimal number
of pertinent variable parameters needed to pro-
duce a, satisfactory fit to the experimental spectra.

Keating expressed o. and P.in Eq. (1) in terms of
elastic constants. ' It is noted that Eq. (1) is a
functional of distances between nonbonded nuclei
since

R, ~ R, =R, R, cos8„=—,'(R';+R,' —R'„), (3)

where B,~= I R~ —
R& l ~ Thus, the second summa-

tion could be viewed as containing, in part, cen-
tral second-neighbor components, central first-
neighbor components, and products of them. Keat-
ing's noncentral second-neighbor interactions are
functionals of central pairwise interactions. The
valence force constants of Eq. (2) are obtained by
taking derivatives of Eq. (1). In addition to Eq.
(3), some useful formulas are

R, =[R;+R —2R;R cos(—,'8;,) cos(v ——,'8,)]'i

Rgq =(RI+Rq —2RI Rq [sin(8(„—~av) sin(8), —a'v)

——,
' cos(8„——,'v) cos(8&a --,'v)])' . (4)

TABLE I. Comparison of force constants evaluated
using Keating's potential, the results of this paper, and
experiment. ~

Experimental valence force constants and force
constants determined from Keating's function are
in Table I.

III. POISSON EQUATION FOR NUCLEAR VIBRATIONAL
STRETCHING POTENTIALS IN MOLECULES AND SOLIDS

Here a theory is presented for stretching force
constants A». The usefulness of this theory for
quadratic, cubic, and quartic stretching force con-
stants in diatomic and triatomic molecules has
been demonstrated elsewhere. ' The higher-or-
der force constants will not be considered here
since Tubino et al. did not determine them. How-

ever, they may be easily evaluated.
According to classical electrostatics, a Poisson

equation for the interaction of nucleus a of charge
Z, at positions R, in a rigid molecular electronic
charge density p(r), where R, and r are from an
arbitrary origin, can be written

V- W~(R, )=4vZ, p(R, ), (5)

where W„ is the classical electrostatic energy.
According to an assumption that the density is
made up of a superposition of rigid densities cen-
tered on each nucleus, p(r) takes the form

(6)

Because of translational invariance, p, will not
contribute to Eq. (5). Equation (5), in the density
approximation of Eq. (6), may be given a quantum-
mechanical basis through the Hellmann- Feynman
force theorem; W~ is then an approximation to the
total molecular energy via the Poisson equation.

In the Hellmann- Feynman force approximation,
the force on a, F, , is given by, using Eq. (6),

Diamond

Eq. (15)
Keating" of text' Expt. ' Keating

Silicon

Eq. (15)
of text' Expt.

v- wF=E P;(/R; — /)vz( @ )&
kRR

ke8

kRR ~

kRe

kee.

4. 295
3.366
0. 142
1.153
0. 898

3. 802
(O. 872)
0. 759
0.260
0.345

3. 831
0. 872
0. 164
0. 392

—0. 015

1.524
1.267
0. 023
0.284
0. 338

1 540
(0. 164)
0. 053
0. 030
0. 075

1.469
0. 164
0. 052
0. 073

—0. 025

These force constants are second derivatives of the
energy at the equilibrium geometry of the diamondlike
structure. As many valence coordinates as possible are
held constant when evaluating derivatives.

Equation (1) of the text. From Ref. 1 of the text, for
diamond, &=1.29, P =0.85; for silicon, &=0.485, P
=0.29, all in mdyn/A. .

'Using Eqs. (11)-(14) in Eq. (15) with N = 5 for diamond
and N=3 for silicon. Using Ref. 11 of the text. for
ground (X 7t„) state C2, Re=1. 3117, k, =9.523, le=-59. 4y

for ground (X Z )Si2, Re 2. 252, ke 2. 12, le —8. 55 (A, ,
mdyn/A, mdyn/R2). In diamond R~ becomes I. 54452 and
in solid silicon it becomes 2. 352. For diamond, A
= 13.2467, 8 = —28. 3642 and for silicon, A = 3.0015, B
= —3. 8983.

From Ref. 2 of the text. Units are, from top to bot-
tom, mdyn/A, mdyn'A, mdyn/A, mdyn, mdyn A.

where W is the total molecular energy in the Born-
Oppenheimer approximation. Clearly, p, does not
contribute to the force on nucleus a. The diver-
gence of Eq. (7) yields '

V- W=4vZ, Z pq(R, ).
Re

fkg

For a diatomic molecule a-b, for the origin on
nucleus 5, Eq. (6) becomes

V, Wn = 4vZ, p~(R, ).

(6)

(9)

The accuracy of Eqs. (6) and (9) depends on the
accuracy of the density approximation of Eq. (6)
as used in Eq. (7), since Eq. (V) is exact for eigen-
densities in the Born-Oppenheimer approximation.

Remarkably, for such a simple model, Eq. (9)
and its derivatives can contain quadratic, cubic,
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Fn = e '"N(R', /f, + 2R, /i, "+ 2/0') (12)

5= -l, /k, —2/R„ (13)

C=k, e~"R . (14)

Equation (11) gives very good predictions of the
quartic force constants. Any components of the
energy Coulombic near R will not effect force con-
stants when EI, is adjusted to give the minimum in
W(R) at R, . Though R ' components may exist for
covalent diatomic molecules, Eq. (11) becomes
less and less accurate beyond the quartic level in
these cases. Although dissociation energies can
be fairly well predicted for ionic diatomic mole-
cules by Eq. (11), in general the equation is to be
thought of as a source of equilibrium force con-
stants through quartic order and perhaps some-
what beyond. At displacements greater than a few

tenths of an angstrom from equilibrium, the rigid-
density Poisson equation model should not be ex-
pected to hold as charge redistributions may be-
corne significant in determining the potential func-
tion, especially in covalent cases.

Empirical relationships for quadratic force con-

and quartic force constants k„ l„and m to good
accuracy when R, is set equal to the equilibrium
distance R, and atomic electronic charge densities
are employed. 3'4 Alternative formulations using
the total molecular density lead, with reasonable
assumptions and approximations, to an equation of
the form of Eq. (9). This means Eq. (8) can be in-
terpreted as a classical equation of the form of Eq.
(5). The force constants appear to be governed
by a classical electrostatic Poisson equation for a
nucleus embedded in the electronic charge density
tail due to orbitals centered on the neighboring
nucleus. Other energy changes, which affect R,
and correspond to density redistributions, must
be nearly Coulombic. a The success of Eq. (9) does
not necessarily imply that density tails exist at a
nucleus since the formula gives an approximation
to the interaction of a nucleus with a spherically
averaged distorted atom due to the rotational invari-
ance of this component of the energy.

The nuclei a and b may be interchanged in Eq.
(9), and for most heteronuclear diatomic mole-
cules the smaller Z is to be used. ' The very
ionic LiH molecule is an exception. Furthermore,
invoking a generalized model density for diatomic
molecule s,

p(R)= C'e 's (10)

leads, on integration of Eq. (9), to a formula for
diatomic potentials, ~

Wz&(R) = C [e ~ "(2/f R + 1/(; ) —FD /R],

where

stants of molecules made of atoms from pairs of
columns from the periodic table of the elements
collaborate the Poisson equation model and pro-
vide another means of determining C and g for use
in Eqs. (10}-(12). The implication is that effective
densities for use in the Poisson equation are rigid
and transferable "core" densities. '

When C and f are determined by means of Eqs.
(13) and (14) for ground-state Ca and Sia, "then the
effective density of Eq. (10) yields k» values ac-
cording to the equation, k»= k, exp [ f(R-„-R,)],
where R„is the equilibrium distance in the solid:
diamond, 3. 179 (3.831); solid silicon, 1.553
(1.469) in units of mdyn/A, where experimental
values in parentheses are from Ref. 2. These are
good predictions, encouraging the use of the Pois-
son equation in solids.

IV. VALENCE-FORCE-FIELD POTENTIALS FOR
DIAMOND-STRUCTURE CARBON AND SILICON

The goal is to predict the force constants de-
fined in Eq. (2) and to compare with the results of
Tubino et al. A reasonable approach is to write
down analytical functions analogous to those which
worked well for free carbon dioxide and other lin-
ear triatomic molecules. ' Thus, the potential
function has the form

4 ~ A 8
W= Q Wn(R))+ Q „— N-, (15)

l 1 4&9 &j

where the 8'D are ground-state diatomic potential
functions of the form of Eq. (11), A is a constant
determined by fitting Eq. (15) exactly to k~, and
R is a constant determined by the condition (sW/
SR, )fR„}=0. The integer N is expected to be
around 4 as it was for the triatomic molecules. ~

Equation (15}is indeed reasonably successful, as
seen in Table I, and the interpretation of the terms
in it would appear to be much the same as for the
triatomic potentials: The diatomic potentials O'L}

come from the theory behind the Poisson equation
for nuclear motions in rigid-density tails, as dis-
cussed in Sec. III, and the additional terms repre-
sent valence orbital contributions to mixed force
constants.

Whereas according to the theory there is a con-
nection between force constants evaluated using
the Wn(R) of Eq. (11) and atomic "core" electronic
charge densities, the terms in the second summa, -
tion of Eq. (15) are not at present associated with
particular electronic charge densities or changes
in charge densities during deformations in the crys-
tal. These latter terms in Eq. (15) are simply
working corrections to the diatomic potentials and
their accuracy in predicting mixed force constants
is their main justification. They appear to rep-
resent contributions to the vibrational energy from
the "valence" electrons. For the purposes of
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this work it is convenient to speak of "core" and
"valence" orbitals and electronic charge densities
when referring to rigid and deformable densities
which may exist during vibrations. There is some
evidence for a correspondence such that a rigid
core exists for different spectroscopic valence
states in a diatomic molecule.

V. RESULTS AND DISCUSSION

Predictions using Keating's two-parameter po-
tential function [Eq. (1)] and our two-parameter
function [Eq. (15)] for carbon and silicon are in
Table L Except for one or two cases Eq. (15)
gives much better predictions. The angular de-
pendence of Eq. (1) seems poor. The small ex-
perimental values of k». , which are in fact nega-
tive, are surprising. Since a part of k». , is pro-
portional to k& which is large and positive and fit
exactly by Eq. (15), it is expected, if the pairwise
interaction model is valid for bends, that the pre-
dictions would be accurate. The effect of the
choice of the particular six quadratic force con-
stants on the value of any particular force con-
stant in the method of Tubino et al. ~ is unknown.

It is perhaps surprising that the model valence
force field potential function for these solids con-
tains the same terms as those which worked well
for gaseous CO& and CSz. ' However, the generali-
ty of the Poisson equation model leads one to sus-
pect bonded interactions should be describable in
terms of ground-state diatomic potentials even in
covalent solids. The additional terms, represent-
ing valence electron energies, are reasonable in
covalent solids due to Keating's proof that the
bonded interactions are central at the harmonic
level. This is not to say that variations on Eq.
(15) could not produce better results even without
increasing the number of parameters. In Ref. 10

it is shown that variations are necessary for bent
molecules due to the lone-pair electrons. Befor e
modifying Eq. (15) it would be best to compare the
cubic force constants, which are easily evaluated
by taking further derivatives, with experiment.
Further tests on other solids would be worthwhile.
Although force constants are available for solid
germanium and tin, ~ Eq. (15) could not be parame-
trized because the diatomic molecules are unknown.

It is nothing new to suggest that valence energies
are important to force fields in covalent solids.
Localized hybridization effects have been mentioned
as important in solids already by Keating and
Tubino et al. The well-known "shell model"
may be viewed as containing valence effects and
"core" interactions. In the present work the core
interactions with a neighboring atom are handled
with the Poisson equation. Equation (15) suggests
there is simplicity and generality to potentials for
molecules and covalent solids. The inverse R&&

terms are like steric interactions and the inverse
(R&+R&) are like an angle-independent orbital en-
ergy on the central atom. Energies of hybridiza-
tion, which are almost certainly important for tri-
atomic molecules with lone-pair electrons on the
central atom, ' may be contained partially in these
terms. Perhaps introducing a purely hybrid term
could improve predictions of k«. . Greater under-
standing will come with further work on potentials
in solids.

There is reason to be optimistic about using
formulas similar to Eq. (15) for metals and ionic
solids. For detailed discussions of the past work
on the microscopic theory of force constants in
solids the reader is referred to the work of Pick
et al. ,

4 Phillips, Smith et al. , and references
in these papers, and finally to Pauling's stimulat-
ing book. '
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