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The helicon-wave problem is solved exactly for a sphere having an isotropic conductivity. The method

involves the construction of a complete set of solutions of the helicon wave equation in spherical

coordinates, a coordinate system in which the equation is not separable. Fitting the boundary condition

at the surface of the sphere results in an expression for the induced ac magnetic multipole moments in

the form of a ratio of two inflate dete~in~nts. Numerical results are presented for the induced dipole

moment as a function of frequency and the strength of the applied dc magnetic field. A classification

of the resonances in the dipole moment is proposed, and a table of resonant frequencies is given.

Representative results for the induced octupole moment are displayed. The even-1 2'-pole moments are
zero. A pre»~&nary comparison with the resonant frequencies observed by Rose with Na spheres in a
field of 50 kG and with our own data on a small K sphere in a field of 2.5 kG shows an excellent

agreement.

I. INTRODUCTION

Low-frequency electromagnetic oscillations of
a plasma in the presence of a magnetic field have
long been of interest. ' When the plasma is the
electron gas of a metal or semiconductor these os-
cillations are called helicons, and they have proved
to be an important and useful probe for studying the
electrical properties of solids at low temperatures.
Maxfield gave in 1969 a review of the theory and
some of the experimental techniques which is an
excellent introduction to the helicon problem. The
experiments are always done by placing a sample
in a dc magnetic field and exciting helicon current
oscillations with a weak time-varying magnetic
field. The difficulty has been that although such
experiments are necessarily done on samples of
finite size, no exact solution of the electromagnetic
boundary value problem previously has been ob-
tained for any finite geometry sample.

The purpose of this paper is to present an exact
solution of the helicon problem for the sphere.
This problem is not separable in spherical coordi-
nates because of the presence of the Hall term in
the conductivity, and this is the source of its diffi-
culty. An obvious approach is to use the separa-
bility in Cartesian or cylindrical coordinates and

fit the boundary conditions with a superposition of,
say, plane waves. We have, however, chosen in-
stead to attack the problem directly by constructing
a complete set of solutions in spherical coordinates.
The application of the boundary conditions then is
straightforward.

In Sec. II we write the basic equations for the
helicon waves and exhibit the known solutions for
two cases: plane waves in an infinite medium and

the sphere with no dc magnetic field. In Sec. GI
we first construct the complete set of solutions in
spherical coordinates. Writing the general solu-
tion as a superposition of these functions we deter-
mine the particular solution for the sphere by fit-
ting the boundary conditions. The result is an ex-
pression for the induced magnetic multipole mo-
ments, in the form of a ratio of two infinite deter-
minants. In Sec. IV we evaluate this expression in
the limits of high and low frequencies and of zero
dc magnetic field, recovering results obtained by
other methods. Section V is devoted to the numeri-
cal evaluation of the expressions for the induced
moments and a discussion of the results. Compo-
nents of the induced ac magnetic dipole moment are
plotted as functions of the dc magnetic field and the
exciting frequency, tables of resonant frequencies
are given, and selected results for the induced ac
octupole moment are displayed. In Sec. VI we give
a brief comparison of the theory with some prelim-
inary experimental results, and finally, in Sec. VII
make some concluding remarks on possible exten-
sions of our work. In Appendices A, B, and C we
collect a number of useful formulas on spherical
Bessel functions, vector spherical harmonics, and
the coupling of simple coil configurations to dipole
and octupole fields.

II. BASIC EQUATIONS, ELEMENTARY SOLUTIONS

A. Helicon-Wave Equations

Helicons are low-frequency solutions of Max-
well's equations for the special case of a highly
conducting medium in the presence of a strong ap-
plied dc magnetic field. For fields varying as e '"'
Maxwell's equations (in Gaussian units) reduce to
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Faraday's law

curl E = (i(u/c) 5,
and Ampere's circuital law (for a medium of unit
magnetic permeability)

cur15 = (4v/c) j (2)

In Ampere's law we have neglected the displace-
ment current, which is a very good approximation
at the low frequencies of interest. ~

The connection between the electric field and the
current density is the Ohm-Hall law,

OE=j+Q) Tz X] (3)

where o is the conductivity, r is the carrier relax-
ation time, and ~,(= eBo/mc) is the cyclotron fre-
quency for the carriers of charge e and mass m in
the dc magnetic field 5o, whose direction without
loss of generality has been taken to be the positive
z axis. (Note that up, is negative for electrons. )
In the cyclotron frequency we neglect the small con.
tribution of the ac magnetic field. The Hall coef-
ficient R„=u, T/oBo in this notation.

Eliminating the electric field E between (1) and

(3) we get

B = (c/iaro)curl(j + oo,rz x j) (4)

Inserting this expression in (2) we get

curl curl( j + &u,rz & j ) —
qo j = O,

where the complex wave vector qo is given by

q', = i(4')o/c') (8)

ePQ I'

the helicon-wave equation becomes

(8)

(q —qo) j;+q (u,r(q ~ z)qx jr=0 (9)

Thus, q ~ j~=0; the waves are transverse. Solu-
tions of this homogeneous equation exist if and only
if the wave vector q satisfies the dispersion rela-
tion

qo =qoo/(I —it(u r)

where

Equation (4) together with (5), which we call the
helicon-suave equation, constitute the basic equa-
tions describing the helicon.

For a finite sample, the field outside the sample
is governed by the equations

curlB =0, divB =0 (7)

The boundary condition is that the magnetic field
B is continuous at the surface of the sample.

8. Plane-Nave Solutions

If we seek plane-wave solutions of the form

qe2

The solutions are then (apart from a multiplicative
amplitude factor)

jq=Z —q o Z q +Sq XZ ~ (12)

The simplest boundary value problem for which
these plane-wave solutions are useful is that of an
infinite slab with the dc field perpendicular to the
slab and a uniform ac magnetic field lying in the
plane of the slab. A superposition of four plane
waves of the type given by (8) provides an exact
solution. For details of this see Maxfield's pa-
per. To satisfy the boundary conditions for a
sphere an infinite number of waves of the form (8)
would be required.

C. Low Field Limit

5=M[3(2. r)r z]/r'+B, z .- (i4)

Using (13), the magnetic field inside the sphere is
calculated from (4) and we find

5= (c/3i&uo)Aqo[jo(qor)(3z ~ rr —z)

+ 2jo(qor)z]

where we have used the elementary properties of
the spherical Bessel functions. Requiring that the
magnetic field be continuous at the surface of the
sphere, i.e. , that the expressions (14) and (15) be
equal at r= a, determines A and M:

3 ivaBq, o jo(qoa)
2 cqo jo(qoa)

'
jo(qoa)

(18)

Figure 1 shows the frequency dependence of the
real and imaginary parts of this induced ac mag-
netic dipole moment. A detecting coil (or solenoid)

In order to gain some additional insight we solve
the helicon-wave equation for the sphere in the
limit (d,7 = 0, a problem whose solution is given in
the book by Smythe. Consider a conducting sphere
of radius a placed in a uniform ac magnetic field of
amplitude 8&. Without loss of generality, we take
5, to be directed along the z axis. It is clear that
the exciting ac magnetic field will induce eddy cur-
rents to circulate about the z axis. We therefore
expect the current density j to have only an azimuth-
al component.

A solution of (5) which has this symmetry is

j = Aj, (qor)z && r (13)

Here j, is the spherical Bessel function (see Appen-
dix A). The unknown coefficient A is to be deter-
mined from the boundary conditions. The simplest
solution of Eqs. (7) for B(r) outside the sphere is
the sum of the field of a dipole, of strength M, ori-
ented in the z direction and the uniform applied ac
magnetic field, that is,
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whose axis is along z can be used to directly mea-
sure M. At low frequency ImM is linear in ~, and
ReM is quadratic in (d, in fact,

A. Solution Inside the Sphere

To construct the general solution, regular at
r=0, of Eq. (5) we introduce the vector function~:

and

ImM =(Bta /30)(4)t(dca /c )

HeM = —(Bta~/315)(4tt(uaa /c )

(17)

(18) xYt t t . (20)

Thus, at low frequency the ratio

ReM 2 4 a)ImM 21 c

This ratio is independent of detector geometry and
serves as a direct measure of the conductivity o.
Even in cases where I qoal is large and it is diffi-
cult to get into the low-frequency regime, the
curves shown in Fig. 1 can be used to calculate
the conductivity from the measured ratio of the
out-of-phase to the in-phase signals. The tech-
nique has been successfully used previously.

III. FORMAL SOLUTION OF HELICON PROBLEM FOR
THE SPHERE

In this section we construct a complete set of
solutions, regular at the origin, of Eq. (5) in
spherical coordinates. We then write a complete
set of solutions, regular at infinity, for Eqs. (7).
Finally, we expand j inside the sphere and 5 out-
side the sphere in terms of these complete sets
and determine the unknown coefficients by requir-
ing that 5(r) be continuous at the surface of the
sphere.

)+1 ~/2
~B, (r) = jt.t(qt') Yt, t t+ jt-t(q&)

C, (r) =j, (qr) Yt t

xYl, i-1 (21)

(22)

Here the j& are spherical Bessel functions, and
the Yl, are vector spherical harmonics. These
special functions are discussed in Appendices A an
and B. The set of the X, , Bt, C, (with l=0, 1,
2, . . .; m =0, + 1, . . . + I; and the continuous param-
eter q) form a complete basis for vector functions
of spherical coordinates. The members of this
set are linearly independent and have been con-
structed so as to have the following simple vector
analytical properties:

div Xt = 0, div 5t = —qj, (qr) FP, div V~t = 0, (23)
and

curlAt = iqC, , cur15t = 0, curl lt = —iqA, . (24)

These expressions follow directly from the formu-
las given in Appendices A and B. We will also
need the following expressions:

(25)

which have been obtained using Eq. (B15) in Appendix B for 2x Yl, t. Here 5„. is the Kronecker 6, and

(l+ 2)(l —m+ 1)(l+ m+ 1) / (l+ l)(l —1)(l —m)(l+ m)
(1+1)'(2l+1)(2l+3) ' " 1'(2i -1)(2l+1) (26)

[(l+ 1)/ll Mt, t+t5v, t+t + [I/(I+ 1)] (27)

2«. = —[(l+1)/(l+ 2)] M, t+& 5t. t+t+ [l/(l —1)] Mt, t x5t', t-t- (28)

Turning now to the construction of the general solution of the helicon-wave equation, we begin by expand-
ing the current density in the form

g( mAm mP~)

Here 5t does not appear, since div J=O. Then, using (25) we have

(29)

J+(d, Tz&J= 2 [(at [I —z&u, 7[m/l(i+I)]] 5„, +i(d, -ct Mtt. )At. +iur, t(at [m/[l(i+I)] /Q5«. +c, LPt, )B~t,
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+ (c& (I —i(d, r[m/l(1+ 1]}5» —i(d, r d&" M(( )~& ]
and then, using (24) we have

curl(J+(d, rzx J) =iq Z [(a, [1—i(d, r[m/l(1+1)]}5„.+i&e, r c( M(, .) 0(.
t

3V05

(so)

- (c) (I —i&u, r[m /l(l + I)]}5„.- i ur, r a ) AP„.)A, , ] . (31)

Finally, using (24) once again the helicon-wave equation becomes

0 = curl curl(J + (d, rz x J) —qoJ = 2 [(aP I q —
qo

—i (d, rq [m/l(l + 1)]}5„+i(d, rq c, M), .) A, .
l

+ (c, (q —
qo —i(), (rqz[m/l(i+ 1)]}5„.—i&@,rq d," 11P«.) C,.] . (32)

Since A) and 0, are linearly independent, their coefficients in this equation must separately vanish. If we
put

these conditions become

1 —gA.w, ~ (33)

P((X —[m/l(l+1)]}5„.a, . —M„. c& ) = 0,
(l=

I ml, Im
I
+I )

Z((X —[m/l(1+1)]}5„,c(. +M(,. a(.)=0,
gt

(34)

(A)(. —X5g„)di, =0, (35)

where

IP„.= [m/l(l+1)]5, g, + (-)'AP„. . (37)

The matrix whose elements are K„.is real and
symmetric; the eigenvalues X will therefore all be
real, and corresponding to each X and its corre-
sponding eigenvector d, (X) we have a solution of (5)
given by

J„=Z d;(~)V, + Z d, (~) A, . (33)
L odd l even

Note that the eigenvectors d) (&) appearing in this
equation are independent of the two parameters ~ T

and q(), they are simply the solutions of the eigen-
value problem posed in (36).

where we have used the antisymmetry of M». . For
each m this is an infinite set of coupled homogeneous
linear equations for the coefficients a", and c, . For
every value of X for which these equations have a
nontrivial solution there is a corresponding solu-
tion X,

" of Eq. (5).
Note that M, J connects only values of l with oppo-

site parity. Hence, the solutions of (34) are of two
kinds: Even, for which c, =0 for odd l and a& =0
for even l; and odd, for which a, =0 for odd l and
c, =0 for even l. We will only be interested in the
odd solutions. (A uniform ac magnetic field does
not couple to the even solutions. ) We therefore put

d = „- l„,„(35)
Equation (34) can then be written as an infinite ma-
trix eigenvalue problem:

Using the formulas for div and curl given in Ap-
pendix B, it can be verified that the vector func-
tions

(41)m=0 ~], . .. , ~l
are solutions, regular at infinity, of Eqs. (7). The
magnetic field outside the sphere must be the sum
of a uniform exciting ac magnetic field 5~ and an
induced magnetic field which is a superposition of
the vector functions (41). That is,

(42)5= 2'F;(./~) 'V;„,.0, .
The constant vector 5& may be expressed in terms
of the vector spherical harmonics. From Eq. (B4)
of Appendix B we see that

Supposing for the moment we have solved this
eigenvalue problem, then the general odd-parity
solution of the helicon-wave equation may be writ-
ten as the superposition

I(r) =—Z q G; J„ (»)
Inserting this result into Eq. (4), and using (31),
(34), and (35) we obtain for the magnetic field in-
side the sphere

B(r)='EG, —r d, (z)A, ~ 2 d;(z)0, ) . (40)
)1, m l Odd ) even

The coefficients G„are to be determined from the
boundary condition that the magnetic field inside
the sphere must equal the magnetic field outside
the sphere at r=a. In Sec. III B we write the gen-
eral solution for 5 outside the sphere.

Solution Outside the Sphere
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V, 0=(411) '"e
where the unit vectors g are

el = —(2) '~ (x+ iy), e0= 3, e 1= (2) '~ (x —iy) .

Thus,
+1

5 = (4rr) ~ Z e~ ~ 51Yr ii

(44)

(45)

QG„d, (il)x i—(6rr)r "e* Br 6„,j, qa), l even
(48)

which follows from the equality of the coefficients
of V. r 1 and Vr r. We should emphasize that q de-
pends upon X through (33), that is,

C. Satisfying Boundary Conditions
(i r '/c') "'

qa=
i 1 —iA(d, r (48)

The magnetic field must be continuous at the sur-
face of the sphere. Therefore the expressions (40)
and (42) must be equal at r = a, that is

ZG; Z d;(~)A; —Z d;(~)V;
)t, nt L even r=a

1

=s mY~ + 4w '" e* Ym

(46)
This relation determines the coefficients G„and
F, . Using the expressions (20) and (22) for A, and
01 and the orthogonality of the Yz, » we obtain d (~)x jr r(q,a), l odd

jr (qaa), l eveu
(5o)

Here the choice of the sign of the square root does
not matter since only spheri'cal Bessel functions of
even order occur in (47) and (48).

Equation (48) is an infinite set of inhomogeneous
linear equations for the determination of G~. Note
that the coefficients G, for different m are not cou-
pled together, and also that G, is zero for [nzl &1.
The matrix of coefficients in these equations is

L
1/2-i ZG„d„(ll)j,, (qa), l odd

0, l even
(47)

in which the rows are labeled by L and the columns
by the eigenvalues A.,(k= 1, 2, . . . ) determined from
(36). By Cramer's rules the solution of (48) is

which follows from the equality of the coefficients
of Y, g, 1, and

cofactor (Xr, )
d t(Xiii)

Inserting this result in (47) we have

~l(~1)jr+i(qrrr)

da (l rba(qre)

ds(~rba(qre)

d4(l 1b4(qr41)

di (~abr, r(qae)

d;(~,)j,(q,.)

ds (l aba(qadi)

d4(&sb4(qadi)

di (~sbr, r(qadi)

da (&sba(qse)

ds (&sba(qse)

dr (~4b1.r(q4e)

ds(~4ba(qse)

ds(&4ba(q4a)

d4 (its)j4(qsa) d4 (X4)j4(q4a)

dl (~rb0(qr ) 1 (~ab0(qa ) dl (~3)j0(qs ) 1 (~4)j0(q4 )

(52)

ds (&rba(qre)

ds (&rba(qre)

d4(~rb4(ql~)

da ().3)js(qsa)

ds (&3)ja(qsrr)

d4 (llab4(qae)

da (Xa)ja(qsa) ds (X4)j a(q4a)

ds (its)js(qsa) ds (X4)js(q4a)

d4 (&3)j4(qsa) d4 (X4)j4(q4a)

Here the denominator is the determinant of the ma-
trix Xr» given in (50) while the numerator is the
determinant of the same matrix but with the first
row replaced by dr (X,)j„r(q,a); k= 1, 2, . . . . This
completes the formal solution of the problem.

D. Auxiliary Eigenvalue Problem

In order to evaluate the ratio of the determinants
given in Eq. (52) we must first solve the auxiliary
eigenvalue problem (36). The exact solution to
this problem is that the eigenvalues X are continu-
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M, ((u) = (a'/4v'")(Fg —Fg )

M ((d) = (ia /47r ~ )(F +F, )

M, (ar) = 0

(59)

Thus the induced dipole moment is always in the
x-y plane, i. e. , normal to the dc field 50.

The vector M(t) will move on an ellipse in this
plane. The eccentricity z and the angle P between
the major axis of this ellipse and the x axis are
given by

Im(F'F ~ )
R (+~ F ~*)

(iF,'i iF, 'I)'"
(60)

Here the asterisk(*) means complex conjungation.
For the longitudinal geometry the induced dipole

moment is along z and is given by

For the transverse geometry F, =O, and the com-
ponents of the magnetic dipole moment are

There are two parameters in our problem: The
first is

V—=
~ qoa

~

= 4v~aa /c (= pgooaa in mks units), (63)

which is a dimensionless measure of the frequency
of the applied ac magnetic field. Note that V is
(aside from a factor of 2) the square of the ratio
of the radius of the sphere to the classical skin
depth. The second parameter is

W= &u, 7 = eB07/mc (64)

shown in Fig. 2; the arrows indicate the direction
perpendicular to the current loops, i.e. , the equiv-
alent magnetic dipole of each loop of circulating
current. For the transverse case [Fig. 2(a)] the
axis of the arrows rotates about Bo with frequency
u/2v in a manner completely analogous to the time
dependence of the dipole moment. Thus, the octu-
pole moment can also be viewed as describing an
ellipse in the x-y plane as a function of time. The
axis of the octupole moment in the longitudinal ge-
ometry is fixed (independent of time) and is always
the z axis.

IV. RESULTS IN VARIOUS LIMITS

M, ((u) = —a'(Sv) '~'Fo, (61)

The behavior of the higher moments is similar
to that of the dipole moment. The quadrupole mo-
ment (l=2), the hexadecapole moment (l=4), and
all higher even / 2r pole moments are zero. A
vector moment in analogy with (58) can be defined
for the higher odd-l 2'-pole moments:

M"'= —a"(Sv) '" 0F e
m=-r r

The configuration of the induced current loops
which give rise to the calculated octupole field are

which is a demensionless measure of the dc mag-
netic field. In this section we obtain expressions
for F, in terms of these parameters in three limits:
low frequency, high frequency, and zero dc mag-
netic field. The object here is to compare these
expressions with known results in these limits.

A. Low Frequency

Consider first the case l= 1 (dipole moment). In
the first two gows of the numerator and denomina-
tor determinants of (52) we use the power series
expansion of j„(qa) [Eq. (A4)], keeping only the
first two terms. We then have

~ ~ . xq(l —)Vxq)d„(X~). . .
. . . x, (I-QVx, )dg(~, ). . .

(2v)
m' 1 . . . (1 —) Vx)) d, (Xq) . . ~

. . . x~ (1 —$ Vxq) dm (&q). . .

(65)

where in the determinants we have indicated the
typical elements in the first two rows, and

x~ ——i/ (1 —iX~ W) (66)
We now rearrange the denominator determinant by
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Bac J. Bdc Bacll Bdc Thus, if the frequency is sufficiently low, the in-
duced ac magnetic dipole moment is 90' out of
phase with the driving field.

%'hen W'=0, M, =O, and the expression for M,
becomes the same as Eqs. (17) and (18). With in-
creasing dc magnetic field ImM tips out of the x-z
plane, with tipping angle

I

x-y plane x-y plane ImM„
(72)

OCTUPOLE CONFIGURATIONS

(o) (b)

FIG. 2. Array of magnetic dipoles equivalent to the
octupole moments. They are completely described by the
vector moment given in Eq. (62).

multiplying each element of the second row by
W[+4 —m )]'~, adding the result to the first row,
and then using the first of the infinite set of equa-
tions (36):

gg(y ) = —[2O/(4 —m )] (~~ +i/W+ I/Wx~)di (X~)

(67)

The typical element of the first row can then be
written in the form

87t &a'(T a',
N, = (M&&5O) =— (73)

The frequencies involved in these experiments are
always low enough so that the higher-order terms
in V are negligible. "

For the longitudinal geometry (gii ii Bo) the low-
frequency expression for M, obtained from (61) and

(70) is"

and at the same time this moment decreases mono-
tonically. Note that ReM„changes sign at W= 2,
and ReM, has a maximum at W= 2/3'~i, effects
which give a convenient measure of 8'= ~,T. %'e

have experimentally observed these low-frequency
effects in potassium at 4. 2 K.

These results can also be applied to induced
torque experiments in which the SB/St is created
by rotating field 5o at angular frequency &u about a
fixed sample. If the axis of rotation is y and the
instantaneous direction of 5o is z, then sB/st
= &uBox, and the y component of the torque is (in
lowest order in V)

~

~

2 V,'mW+i+—~— (1x-* Vx, )d, (~,) .
14 &y

M, = giB, Va-QB, a V + ~ ~ . (74)

(68)
But, neglecting terms of the order Va, this is just
the factor

—(-,' m W+ i + g$ V) (69)

times the typical element of the first row of the
numerator. Therefore,

(2ii)'i „- 2 V 4 V

++2 ~
2~ m++2

where again we have neglected terms of relative
order V2.

Using (59), the components of the induced ac
magnetic dipole moment for the transverse geome-
try are

M. -i~Bia 4, Wi -s+sBia (4, Wa)a
+

Note that this result is independent of ~, 7; and is
therefore identical to the zero applied field results
(17) and (18). Hence by measuring the ratio of the
out-of-phase to the in-phase signals at low frequen-
cies one can directly measure the magnetic field
dependence of the conductivity, i.e. , the magneto-
resistance.

The leading term in the higher-l 2'-pole moments
depends on frequency as ~"",as is easily es-
tablished directly from (52). Thus, as soon as the
term quadratic in frequency becomes significant in
the dipole moment, the octupole field begins to de-
velop.

B. High Frequency

At very high frequency, the arguments of the
spherical Bessel functions are large, so we can
use the asymptotic form

M, = —if Bia 4 q++ Bi a
4 i)i+ ~ ~ ~ (71)

8'V 8'V
j„(q,a) —(-)"~ sin(q, a)/q, a, n even (75)

MR=0

Note that the imaginary and real parts of M are,
respectively, linear and quadratic in frequency.

Thus, we can factor out sin(q, a)/q, a from each col-
umn in the numerator and denominator determinants
of Eq. (52). In the remaining determinants we can
iactor —1 from those rows where the index of the
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Bessel functions is twice an odd integer. For P,"
this leaves the determinant of the matrix d, (&&) in
both the numerator and denominator. Therefore

F =(2v) e ~ 5 (76)

and the induced dipole moment is identical with the
high-frequency limit of (16):

16.0

I4.0-

I2.0-
Reat

(I,o)

~c~= 60
N= I5

D IPOLE

M= —o'a 5g (77)
8.0-

The higher moments are zero in this limit, since
for E, , the first row of the numerator matrix is
the same (up to a sign) as the lth row. We see then
Lhat at both low and high frequencies, the magnetic
field due to the higher moments approaches zero
asymptotically.

C. Zero dc Field

When (d, T= 0, the spherical Bessel functions can
be factored from the rows of the determinants in
Eq. (52) since their arguments q,a = qoa, indepen-
dent of the index i. For I j this again leaves the
determinant of the matrix d, (X, ) in both numerator
and denominator so
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FIG. 4. Real and imaginary parts of M as a function
of V = 4muoa /e for W= c' v'= 60.
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'

The induced dipole moment is

ohio(qo~)

g
i o(qo~)

(76)
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I

)I
( 2,0)

I, (I I)
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Imag/
l~ I I I T ~ I 2 I W ~~ I 1 ~ 0

I ~ ~ I ~ I

which agrees with (16). The higher moments van-
ish.

V. NUMERICAL RESULTS

Experimentally, one is interested in the magnet-
ic induction field 5(r) outside the sphere or, equiv-
alently, the induced magnetic multipole moments.
These are completely specified by the coefficients
F, which depend on the two parameters V=4vu&aa /
cS and W=&u, r. In this section we discuss the re-
sults of numerical calculations for these coeffi-
cients.

A. Transverse Geometry

-80-
I I I I I i I I I I I I I I I I I

0 IOOO 2000 5000
4 macr 0 /c

FIG. 3. Real and imaginary parts of M„(in units of
gB~a ) as a function of V=4~urcra /c for 8'=a~7=60 in
the transverse geometry. The resonance indexing
scheme is given by Eq. (80). Note that the calculation is
done for positive ur, 7, i. e. , positive carriers. Changing
the sign of 8' has the effect of changing the sign of M„.

In this geometry we take the strong dc magnetic
field in the g direction and the applied ac magnetic
field perpendicular to it in the x direction. The re-
sults of a representative calculation are shown in
Figs. 3 and 4. There the real and imaginary parts
of the x and y components of the induced dipole mo-
ment are plotted as a function of V for ~, 7. = 60.
The series of peaks shown in these figures have an
obvious structure: a large "fundamental" reso-
nance af V= 295 followed by a number of smaller
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FIG. 5. Eccentricity
& and the angle P as given
by Eqs. (60) as a function
of V for m~v=60.

"satellites, " then another fundamental resonance
at V=1820, again followed by a number of satel-
lites. This same structure persists and can be
followed out to very large values of W. There the
resonances can be neatly classified according to
the structure of the magnetic field inside the
sphere: We simply count the number of nodes in
Im(B, +iB,) along the z direction and then the x di-
rection. The resulting pair of indices

(number of nodes along z, number of nodes along x)

(80)
serve to label the resonances. ' The peaks in
Figs. 3 and 4 are labeled according to this
scheme. Note that the fundamentals have second
index zero and the satellites of each fundamental
have the same value of the first index and second
index=1, 2, . . . .

In Sec. GI E we saw that the locus of the induced
dipole moment M(f) is an ellipse in the xy plane,
characterized by its eccentricity z and the angle
p between its major axis and the x axis. The de-
pendence of c and P on V is shown in Fig. 5, again
for ~,T = 60. At very low frequencies z =1 and the
angle P=-88' (= -tan ' —,'m, r), in agreement with
the low-frequency results of Sec. IVA. At higher
frequencies the resonant structure shown in Figs.
3 and 4 is reflected in the behavior of z and P. The
essential feature seems to be that the motion of
M(t) becomes less eccentric at the resonances, and
t.hat between the resonances the moment is almost
linearly polarized in the x direction. Of course,
&- 1, P- 0 at high frequency in agreement with the
results of Sec. IVB.

The development of resonant structure with in-
creasing magnetic field is shown in Figs. 6 and '?,

where ImM„and ReM, are plotted as functions of

m"' = (a'/4v"') (F' F')
M' ' = (ia /4w' ) (F'+ F ')

(82)

These moments are shown in Figs. 9 and 10 for
co, T = 60. There is clearly a connection between
the resonant structures of the octupole and dipole
moments, but it does not appear to be simple.
Note that in the region between the first and second
fundamental dipole resonances, the octupole field

V for various values of (d, T. For ~, T=O, M, =O

and M, is given by the low-frequency result (18).
As , T increases the low-frequency peak in ImM„
sharpens and develops into the first fundamental
helicon resonance peak. The frequency ~„at which
this peak occurs varies with (d, 7. as shown in Fig.
8. At large values of ~,~ this peak frequency is
asymptotically linear in ~,T~ we find numerically

4z(u, o'a /c = 4. 9020(u, r (1+2. 90/(u~r ) . (81)

The satellites and the higher fundamental peaks ap-
pear to grow out of the same zero field peak. The
peak frequencies and the corresponding peak
heights of all of the resonances become asymptoti-
cally linear in , r. It is interesting to note that
the satellite structure continues to develop with in-
creasing ~,T; even at ~,~ = 60 the satellite peak
(1, 3) is just visible. It appears that the complete
resonant structure at very high ~,T consists of
three satellites between the first and second funda-
mentals, two satellites between the second and
third, and one between the third and fourth. Table
I contains a list of the high field limit of 4w&u„aa /
c ~,T for these resonances.

As indicated in Sec. IIIE we can characterize
the induced magnetic octupole moment by a vector

(M ' whose components are
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2.0

Boc~ Bdc

FIG. 6. Development of
the helicon resonant struc-
ture with increasing dc field
{co~7') for the transverse
geometry. ImM„ is in
units of 4B&a . The lowest
frequency peak is the first
fundamental resonance,
i. e. , (1,0). It occurs at
progressively higher fre-
quencies as cucv is in-
creased; its location in
frequency is given by Eq.
(81) at high e~v, and by
Fig. 8 for low &,7. The
calculations were done
with N =11 for cu~v «20
and with N=15 for ~~1'
=40 and 60.
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is comparable to or even larger than the dipole
field.

B. Longitudinal Geometry

In the longitudinal geometry' both the ac and dc
applied fields are in the z direction. In Fig. 11 the
imaginary part of M, is plotted as a function of V

for various values of ~,v. As in the transverse
case there is again an obvious resonant structure.

The most striking differences are the absence of
the large fundamental resonances and the fact that
the low-frequency peak is essentially independent
of &,7. We already remarked in Sec. IVA that this
latter feature permits a direct measure of the mag-
netoresistance; a change in signal level can occur
only if cr is magnetic field dependent. In this geom-
etry we classify the resonances in terms of the
number of nodes in ImB, along the z direction and

14.0-

12.0—

10.0—
(dc 7

ac j- dc

8.0—
Real M&

6.0— 60

FIG. 7. Development of
the helicon resonant struc-
ture with increasing ~~v
as observed in ReM~. Note
the similarity to Fig. 6.
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in units of 4B,a, for the longitudinal geometry the
peak heights of ImM, are in units of &B,a .

It is clear that at some large matrix size, nu-
merical divergence must occur since rounding er-
rors become important. We have found that this
divergence occurs in a. rapid and obvious manner
in the region 19 ~N —25 depending on the choice of
parameters V and W. All computations were done
on a PDP-10 computer in single precision (eight
significant figures) and require about V sec of CPU
time for a given V and W for N= 15.

FIG. 8. ~ 7 dependence of the position of the first
helicon peak in the region of low ~~7.

then the x direction. That is to say the indexing
rule (80) applies here as well. These indices are
shown in Fig. 11. (We do not apply this indexing
scheme to the low-frequency peak which is clearly
of a different character. ) These resonances are
comparable in amplitude to their counterparts in
the transverse case. The peak frequencies and
amplitudes again are asymptotically linear in &,7.
For the (1, 1) resonance we find numerically

4v(u„oa/c =21.781(u, 7. (1+3.83/(g~v ) . (83)

Table I contains a list of the high field limit of
4v&u„oa'/c ~, 7 for these longitudinal resonances.

C. Numerical Convergence

It is difficult to give a general rule for the speed
of convergence in this problem. However, a num-
ber of reasonably general statements can be made.

The low-frequency results of Sec. IVA are inde-
pendent of matrix size N. Thus, as long as one
can neglect terms cubic in frequency, a calculation
with N= 1 yields very accurate results.

As the parameter V (frequency) increases, pro-
gressively larger matrix sizes must be used.

As the parameter W (dc magnetic field) increases
progressively larger matrix sizes must be used.

Convergence occurs more rapidly for the funda-
rnental resonances than for the satellite resonances
for the transverse geometry. For the longitudinal
geometry convergence occurs most rapidly for the
(l, l) resonances. For example, the peak height of the

(1, 0) transverse resonance is calculated to an accu-
racyof 1partin 3000 forN=5 forvalues of W~ 1000.

Higher multipoles require a somewhat larger
matrix size. However, the octupole results shown
in Figs. 9 and 10 calculated with N= 15 are indis-
tinguishable on the scale of the drawing from those
calculated with N= 13.

A more precise indication of the accuracy of our
calculations can be obtained from Table G. This
table contains values of V/W at resonance; for the
transverse geometry the peak heights of Iml„are

VI. PRELIMINARY COMPARISON WITH EXPERIMENT

TABLE I. Resonant frequencies. V„/W=47t &„Oa /
C h)c~'

2

Resonance

(1, 0)
{1,1)
{1,2)
(1,3)
(2, 0)
(2, 1)
(2, 2)
(2, 3)
(3, 0)
(3, 1)
(4, 0)

Transverse
V„/W

4. 9020+
10.58+
16.45+
22. 42+
30. 35+
47. 02+
64. 10+

0. 0002
0 ~ 01
0. 01
0. 02
0. 02
0. 02
0. 02

75. 21 + 0. 01
102.4+ 0. 3

139.75+ 0. 01

Longitudinal
V„/W

21.781 + 0. 005
33.29+ 0. 02
45. 05+ 0. 03

62. 21 + 0. 01
84. 24+ 0. 04

We show in Table III a comparison of the reso-
nant frequencies observed by Rose' in transverse-
geometry helicon measurements on two spheres of
sodium metal at 4. 2 K in a field of 50 kG with the
calculations presented in this paper. The frequen-
cies are normalized to the (1, 0) resonance. The
rms difference between theory and experiment is
3.9/p for the 9.63-mm diameter sphere and 2. 8/p

for the 6.38-mm diameter sphere. The compari-
son is made with the resonant frequencies in the
hi gh-&u, r limit (Table I). Since the detector was
not an infinite solenoid (see Appendix C), an octu-
pole contribution to the signal was present which

may distort the observed resonances. The partic-
ular method of locating the resonant frequency is
also important. In light of these comments, we
regard the agreement as excellent. Although sig-
nal amplitude data are not given by Rose, his corn-
ments "strong" and "weak" on the relative ampli-
tudes is in agreement with our classification "fun-
damental" and "satellite. "

In Fig. 12 we show some preliminary data on a
spherical sample of potassium metal at 4.2 K in
a, field of 2500 G. The sample's resistivity ratio
is about 3000 and its diameter is 3.8 mm. The
solid and dashed curves are the results of a theo-
retical calculation of the induced magnetic dipole
moment. The circles and triangles are data
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TABLE II. Dipole-moment numerical convergence.

Resonance Peak
Ã=13

y /~ Peak
N=15

y /g Peak

Transverse geometry

(1,2)

(2, 0)

40
100
40

100

16.5395
16.4665
30.4046
30. 3473

0. 3242
0. 5640
2. 1784
4. 9743

16. 5460
16.4668
30. 4035
30. 3585

0. 3242
0. 5622
2. 1875
5. 2112

16.5417
16.4661
30.4027
30. 3540

0. 3241
0. 5586
2. 1843
5. 2106

Longitudinal geometry

(1, 3)

40
100
40

100

21. 8362
21.7906
45. 5504
45. 4140

0.4849
1, 1589
Q. 1090
0. 2110

21. 8362
21.7870
45. 3267
45. 1126

0. 4849
1.1597
0. 1035
0. 1912

21.8296
21.7907
45. 3297
45. 0767

0. 4849
1.1590
0. 1031
0. 1884

points. The ordinate was scaled so that the peak
of the first resonance matched the data in milli-
volts. The abscissa scale and the choice of &,~
were adjusted so that the resonant frequency and
width of the first peak matched the experimental
data. Thus, we have forced the large peak in
ImM„ to agree with experiment. The detailed
agreement with theory is impressive: The long
tail on the first resonance, the location and size
of the second resonance, and the diffuse character
of the third resonance are all accurately predicted.
The corresponding structure in ReM„ for which
no adjustments have been made, is predicted al-
most precisely.

The small deviations of the data from the theory
may be due to the octupole field. The detector was
a pair of coils placed on either side of the sample,
with their axes along y. The octupole contribution
to the signal does not cancel for this detector. At
this low field, calculation shows that the octupole
field is small, but nevertheless of the order of the
deviations seen in Fig. 12. It should be pointed

out that the value of 0 inferred from the fitting pro-
cedure used here is somewhat smaller than the
value oo as measured from the ratio of the in-phase
to the out-of-phase signals in zero dc field. This
is due to magnetoresistance. We will defer a dis-
cussiop of our current and continuing measure-
ments on the magnetoresistance of potassium metal
to a later paper.

VII. CONCLUDING REMARKS

Our purpose in treating this problem in such
great detail has been to allow a direct unambiguous
quantitative analysis of helicon experiments, which
are necessarily performed on finite geometry sam-
ples. The reason such experiments are interest-
ing is that they can give a precision contactless
measurement of the magnetic field dependence of
the resistivity and the Hall coefficient for the alkali
metals. The observed high-field nonsaturating
magnetoresistance of potassium remains a funda-
mental problem of metal physics. '

There are a number of extensions of our calcu-
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FIG. 9. x component of
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lations which we have not pursued and which would be
of interest. One expects there exist simple analyti-
cal expressions for the resonance structure at high
magnetic fields, e. g. , the linear growth of the peak
heights and Q's of the resonances. The answer to
this and similar questions might be found by study-
ing the free helicon oscilla5ons of the sphere,
which are related to the zeros of the denominator
determinant in Eq. (52). It would also be interest-
ing to explore other techniques of solution of Eq.
(48) as we suggested in Sec. IIID.

We would like to point out three related problems
of interest. It would clearly be important if one
could extend the calculations to include an aniso-
tropic conductivity of the sample. Nonlocal effects,
which we have neglected, would be important if the
electron mean free path were comparable to the
radius of the sphere. Finally, we have neglected
quantum effects, i. e. , the deHaas-van Alphen and
Shubnikov-deHaas effects.
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APPENDIX A: SPHERICAL BESSEL FUNCTIONS

The spherical Bessel functions' are solutions of
the differential equation:

d u 2du I(I+ I)~+——+ 1 —
2 u=O

dp pdp p
(A1)

mhere l is a non-negative integer. The solutions
regular at p=O are given by the Rodrigues formula

(A2)

Their behavior for small p may be inferred from
the formula

Their relation to the ordinary Bessel functions of
half-odd integer order is

(A8)
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FIG. 11. Development
of the helicon resonant
structure with increasing
ma7' for the longitudinal
geometry. ImM» is in units
of 2B~ a . The resonance
indexing scheme is given
by Eq. (80). Compare the
amplitudes of the reso-
nances here with those in
Fig. 6 and 7, noting the
difference in scale between
these figures.
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TABLE III. Comparison of theoretical resonant frequencies with the experiments of
Bose {Ref. 14) on Na spheres at 4. 2 K in a field of 50 kG. The numbers given are normal-
ized to the first (1, 0) resonance.

Resonance Sphere diam=9. 63 mm Sphere diam=6. 38 mm Comment Theory

(1, o)
(1,1)
(1,2)
(1, 3)
(2, o)
(2, 1)
(2, 2)
{3,o)
(3, 1)
(4, o)

1.000
2. 27
3.35

6. 41
10.1

15. 9
22. 0
29. 5

1.000
2. 2

3.4

6. 3
9. 7

16.
22.

strong
weak
weak

strong
weak

strong
weak
strong

l. 000
2. 158
3. 356
4. 574
6. 191
9. 592

13.08
15.34
20. 89
28. 51

jr(p)=(rp) ql 3 P1(1+2 p), r(-,') 1 2
I' i+ —,

For large p their behavior may be inferred from
the formula

(A4)

where

(l + 2k)!
o.o (2k)! (l —2k)!

(l + 2k + 1)! 2A 1

~o (2k+ 1)!(l —2k —1)!

(A6)

The spherical Bessel functions satisfy the recur-
sion relations

A.i(p) +jl-1(p) = [(2l + 1)/P]j,(P}, (A7)

j, ,(p) = p
' '

d
p"'i &(p) . — (A8)

j,(p) = p
' [P, (p) sin(p ——,

' la)+Q, (p) cos(p ——,
' lx))

(A6)

(l+m)(i+m+1) '~

2(l +1)(2l + 1)

(l —m+1)(i+m+1) '~a

(l+1)(21+1) r o

(l —m)(l -m+1)
2(l + 1)(2l + 1)

(l+m)(l —m+1) '~', „m
2l(l+1) ' ' [l(l+1)]'

(l —m)(i+m+1) '~o

2l(l + 1)

(l —m)(l —m + 1)
21(21 + 1)

(l —m)(l +m)
l(2l + 1)

(l+m)(i+m+1)
2l(2l + 1) ' ' ~

d -rj,.&(p) = p'd p'j&(p-) . — (A&)

For further details see the references.

APPENDIX B: VECTOR SPHERICAL HARMONICS

The vector spherical harmonics' are constructed
from the complex basis vectors

My

[ mV]

K- 200
cr =8.00

Bd
= 2500 gauss

e, = —2 ' (x+ly), eo=z, e, =2-'~ (x —iy) ) (B1)

and the usual (scalar) spherical harmonics:

1/2
Y (e )=(-() ((

)( ) p (c m)e'o
4a(l + m)!

(B2)
in which P, is the associated Legendre polynomial
defined by the Rodrigues formula

(1 xo}m/2 d(+m
P( (x)=, , „(x —1)'

The vector spherical harmonics are defined by

0,
d
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FIG. 12. Comparison of the results of an experiment
on a small sphere (a=1.9 mm) of potassium metal at
4. 2 K with theory. The experiment was done in the so-
called "crossed-coil" configuration in which the dc field
is along P, the applied ac field along %', and the y com-
ponent of M is measured. The dashed line is the imag-
inary part and the solid line is the real part of M„.
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Equivalent definitions are

-t-1 v r tr 8t-l, l [f(2f f))t/2 l 1(-) 9 ) (B9)

The orthogonality relation for the vector spherical
harmonics is

23' Wgzg
dy d8 sine YI... r' YL„t = &I, 'L, &t't &~2m ~

(B10)

r' Y™ v t+'F" 81+t, l [($+1)(2$ ~ 3)]1/2 teal ( ) 'P) ) ( )

t 1 ~ l mr Yt, t= —i
[f(&

1)t/zrxvr Yt (8, (/))

(1+1)(f—m)(t+ m) '"- m. -
t 1) f2(2f+1) 1 t f

Yg lt ~

APPENDIX C: DETECTOR COUPLING COEFFICIENTS

Consider first the coupling of the dipole and oct-
upole fields to a single-loop coil of radius R placed
a distance h from the center of the sphere. We
take the coil to be oriented so that the plane con-
taining the loop is perpendicular to the line joining
the center of the sphere and the center of the coil.

According to Eq. (42) the dipole (l = 1), octupole
(l = 3), and higher-moment magnetic fields outside
the sphere are

They have the following simple vector analytical
properties:

1
B"'=(u/r)t'2 ZS;Y;„, .

fn=-1,
(cl)

(Bl1)divR(r) Y, , =O

1/2
divR(r) Y, , 1= r' ' r" R—(r) Yt (8, (/))

1/2
|R R( )Y", „,= —

C
r ' —r' R(r)Y, (9, (r),

The flux threading the coil due to the 2'-pole mo-
ment is

4(t) f dg B(l ) (c2)
Using Eq. (Cl), the definition (62) of the multipole
moment vector, and the formulas in Appendix B,
we find for the di.pole flux

1/2
r r)R(r)Y". .., =i(g r ' '—r' R(r)Y", ,

curlR(r) Yi, (=i
2f 1

r —r 'R(r) Yt „1
(B12)

(1) (1)4 = 2)t h ~ M (~ 2)3/2

and for the octupole flux

4, (3) R (R )
([5( h)2 3] . h

" . Q(3)

(c3)

~ ~+1 -t1 d 2+1 m
1/2

+i 2l+1 r drr' R r Y

1/2
cul'lR(r) Yt g 1=i

2f 1
r r R(r) Yt 1 ~

l + 1 , , d t+1

Also useful is the formula

l+1 1/2
r

d
(r) Yt (

1/2

+ dr
(B13)

(c5)

%e find for the dipole field

+(-')"'[5(z.h)'-1]h (M"' —0 M "2)]
(c4)

where h. is a unit vector normal to the plane of the
coil. The dipole moment M=—M"'.

Consider now a solenoid of radius R, length 2H,
n turns per unit length, with its axis along k, and
the sphere placed at its center. The signal due to
the 2'-pole moment is

V"'=t~n f dh4"'
-0

With the aid of the simple result

zxe = —ime

we can show from (B4)-(B6) that

(B14)

V' ' = i4tr(i)ggh ~ M(1' [H/(R +H )1 ]

and for the octupole field

(c6)

m + l(l —m+1)(i+m+1) '/2+
1+1,I f 1 1+1, 1 (f 1)2 (2f 1) 1, 1

l (l —m + 1)(f + m + 1) 1/

(l+1) (2l+1)

PB

f(f+ 1) l, l

(i+1)(f-m)(i+m) '"-.
l (2l+1) t-1,t

V"' = — /, „,[[5(2. h)' —3]z ft z M"'

+ (-)'"[5(z h)' —l]h (M"'- 2 ~ M"' z)}
(C'1 )V"' will be in volts if Bt is in Wb/m2 and all

lengths are in meters. Note that the signal due to
the octupole moment is zero for an infinite sole-
noid. This is, of course, also true for the higher
moments.
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