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We have calculated numerically the conductivity of a system of random points connected by
conductances that decrease exponentially with the separation distance. We compare critically various
methods that have been proposed to solve the problem of hopping conduction in amorphous
semiconductors and observe that the numerical results can be quantitatively understood using ideas
based on percolation theory.

I. ?NTRODUCfION

There has been considerable recent interest in
the problem of electrical conduction in amorphous
semiconductors. A model for the material, which
has been widely used as the starting point for cal-
culations of the conductivity, was proposed by
Mott and used by him to predict the empirically
successful formula
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In the model, charge is assumed to be transported
by the hopping of electrons between localized states
that are randomly distributed in position and ener-
gy. The essential difficulty that has plagued all
attempts to improve upon Mott's treatment of his
model is precisely this randomness, which cannot
be dealt with by reaching into some standard bag of
mathematical tricks. Thus, although several in-
vestigators ~ have published what are claimed to
be more systematic justifications of Eq. (l. 1),
every derivation contains more or less uncontrolled
approximations and there are large differences
from one treatment to the next in the relationships
obtained between the quantities 00 and T0, and the
microscopic parameters of the model.

In this paper we attempt to arbitrate between the
various calculational schemes alluded to above by
the use of numerical methods. Previous numerical
studies' related to this problem have appeared.
None of them, however, incorporates the random
nature of the hopping, which we consider to be the
essential feature of the problem and have insisted
On retaining. On the other hand, in the interest of
numerical conclusiveness we have been willing to
~ake other simplifying assumptions. Thus, to
peep the computations manageable, we have omitted
the energy dimension from the conductances g&z as-
sociated, through arguments given originally by
MiQer and Abrahams, 6 with every pair of sites in
Mott's model:
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where the sites are separated by the distance r&&,
and E; and E& are their energies. This simplifica-
tion does not compromise the comparison we wish
to make, as a11 theoretical methods of interest can
stiQ be applied, and they again lead to predictions
which differ widely from one another.

In our model, then, we consider a number N
(- 1000) of random points enclosed in a cube and
periodically extended in all directions. The points
are connected by conductances g&&, which depend on
the separating distances according to the relation
e "t&. With the aid of a computer we calculate the
current through this system when a voltage is pe-
riodically applied across it, i.e. , each point and
its forward periodic image in the z direction are
maintained at a potential difference U0. A com-
parison of our results with various predictions is
given in the following sections. In brief, our com-
putations show that the conductivity of the model
system has a leading exponential dependence of the
form e" "c, where r, is a number well explained by
the ideas based on percolation theory developed in
Ref. 2. As applied to the present model, these
ideas require r, to be the separation distance up to
which pairs of the randomly distributed points
would have to be connected to obtain a nonzero
probability of a cluster of connected points extend-
ing across the system. Holcomb and Rehr~ have
studied precisely this question and have found that
such a system has a "percolation threshold, " de-
fined in the preceding sentence, when 0.30 points
on the average are enclosed in a sphere of radius
r, /2, i.e. , P, =(N/V)+~v(r, /2)'=0. 30, N/V being
the density of points. Our value for r, obtained
from the conductivity agrees well with this formula.
Thus, in retrospect, it appears that we have pro-
vided a method for obtaining the threshold for per-
colation in a random system.

We iso had the aim of learning something about
the nonexponential prefactor of the conductivity.
In this we failed because of inherent limitations in
the numerical approach. Thus, from our numeri-
cal study per se, we have nothing to say about the
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prefactor, although some general thoughts on this
subject are given in Sec. II and in an appendix.

In Sec. II of this paper we present our results
and discuss their accuracy and their relation to
percolation. Sec. III contains a critique of the dif-
ferent theories in light of the numerical results.
Finally, there are four appendixes: Appendix A
deals with the details of our numerical algorithm;
Appendix B, the derivation of the predictions of the
method of Brenig eE al. 4 applied to our model; Ap-
pendix C, the nonexponential prefactor; and Ap-
pendix D, a commonly used random-number gen-
erator which we found afflicted with a significant,
albeit mild, correlation.

II. NUMERICAL RESULTS AND DISCUSSION

We began with N randomly distributed points hi
a cube of unit volume and their periodic extensions.
Each pair (ij ) of points was, in principle, connected
with conductances of the form
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and a was allowed to vary. The conductivity of the
system was computed by assigning voltages to each
site and solving the network equations iteratively,
insisting that there be a potential difference Uo be-
tween every point and its next periodic image in the
z direction. [We discuss this technique in more
detail in Appendix A. ] From the potentials so ob-
tained we computed the current crossing a face of
the cube perpendicular to the z direction.

We chose to work with systems of N= 2000, N
=1000, N= 500, and N=200. The results are given
in Fig. 1. Figure 1 shows the current as a func-
tion of n/p'I' (where p is the density of points).
Here, for practical reasons, only about eight near-
est neighbors have been linked by the conductances
(2. 1). This completely warps the picture for small
e, where the conductance must increase without
bound as N is increased with all pairs linked. For
large g, however, the results are unchanged as all
neighbors up to a given distance have been included
and the long links become extremely weak.

A remarkable property of the plot of log, oI vs
o/p'~~ in Fig. 1 (where I is the current in units of
goUO) is that all the asymptotes at large o/p'~3 in-
tersect the line e =0 at log,oI=0. After observing
this feature it is possible to understand it. As o
grows larger and larger, the potential difference
must all concentrate on one single conductance in
the cube. The current will choose the path in which
the longest hop is as short as possible because all
other paths will become infinitely worse as 0.
grows. For the same reason all the other conduc-
tors along this chain will finally become infinitely
better and all the potential difference will become
concentrated on the weakest link of the best chain.
In the limit e -~ the current will thus behave like
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FIG. 1. Logarithm of the current I, in units of gpUp,
vs 0,'/p for several systems of 500, 1000, or 2000
nodes. The percolation threshold po is calculated from
the slope of the asymptote.

(2. 2)

where r, is the longest hop in the best chain. It is
clear that the logarithm of the asymptotic form,
Eq. (2. 2), if extrapolated to a=0, will intersect
this line at log&OI= 0. It is also clear from the
above discussion, and the line of argument given in
the Introduction, that r, is the distance up to which
points must be connected for percolation in the fi
nite systems we are considering. One is naturally
led to ask how much the value of r, is influenced by
the finiteness of the model systems. Empirically
we found that we could not discern any systematic
variation in P, =—(N/V) +3 v(r, /2)' between our net-
works with N=1000 and N= 2000, though p, seemed
to increase slightly as N was lowered to 500 and
200. A systematic extrapolation to bigger N turned
out to be difficult. For small N the scatter from
one array to the next was large, and obtaining a
true ensemble average would have been prohibi-
tively expensive in computer time. In the case of
the N= 1000 arrays, of which we tried three, al-
though the scatter in p, from one to the next
seemed smaller, we were limited in accuracy by
the imperfect convergence of our numerical pro-
cedure at large a. Thus all we can say with con-
fidence is that the large-N limit of p, determined
by this method is p, =0.30+0.015. As we have al-
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ready remarked this result agrees well with anoth-
er calculation of the percolation threshold in a
random system. ~

Some further discussion is needed to relate the
results of these computations to the thermodynamic
limit of the conductivity of a large system. One
may understand how to pass to this limit by real-
izing that increasing N at fixed n/p t P and fixed
volume is, by a change in the scale of lengths,
equivalent to increasing the volume at fixed densi-
ty. More precisely, if one views the calculation
as determining the ensemble average of the dimen-
sionless conductance I (i.e. , the current through
the system divided by gpUp) as a function of the
three variables o,/p~tP, N, and V (the volume of the
box), scale invariance implies that

I(a/p't', N, V) =I [(a/X't')(p/1) 't', N, XV]

=I(o/p t, N, XV), (2. 3)

where X is an arbitrary scaling parameter. [Equa-
tion (2. 3) simply says that increasing the separa-
tion of the sites, keeping the number of sites fixed
but at the same time changing the length I/o over
which the conductance (2. 1) varies, does not change
the impedance of the system. ] In ca,lculating the
thermodynamic limit one requires N and V to in-
crease proportionately. Thus the thermodynamic
limit of the conductivity oth corresponding to a den-
sity p is given by

o~h(p, o/p'") =»m (p/N)"'gpi(pip'", N, Nlp) .
(2 4)

By the change of scale (2. 3) we may relate the
terms of the sequence in (2. 4) to the calculations
at fixed (unit) volume that we have done. Thus

o,h(p, n/p't') = lim(p/N)'t gpI(a/p' ', N, I) ~

(2. 5)

Examining a term in the sequence in Eq. (2. 5) for
large but fixed N shows now that the asymptote {at
n -~) of the logarithm of the conductivity inter-
sects the line a =0 at log, p(gp p'tP/N't'), i.e. ,
lower down for larger ¹ On the other hand, one
would certainly expect, as discussed above, that
the slope of the asymptotic curve would become in-
finitesimally smaller as V increases because in-
cipient percolation should be slightly easier in a
larger system. However, for small z the differ-
ent terms in the sequence for a must lie on top of
each other. Finally, one expects oth to stay above
each term in the sequence when z- because, for
finite N, the current paths are always limited.
These observations suggest that in the thermody-
namic limit logo&h will not have a straight line as-
ymptote as o -~ but a continuous curvature. A

possible form would be

oth~gpp' '(I/or, )"e "' v ~0.

Indeed (2. 6) can be made consistent with (2. 5) by
interpreting the thermodynamic-limit curve as ap-
proaching the support curve formed by the succes-
sive asymptotes in the sequence (2. 5). Making this
assumption r, can be shown to vary as r, (N) = r, (~)
+ (const)x (N) 't'". From this consideration and our
few runs with N smaller than 1000 we conclude that
v &1.

To test whether the nonasymptotic part of our
calculations contained any information about the
preexponential factor, we ran a system in which
we kept track of 16 nearest neighbors instead of 6.
We found that this altered the calculated I for o,/
p

tP & 9. Examination of Fig. 1 shows that for o/
p' &9 one is already very close to the straight-
line asymptote. This indicates that information
about the power v in (2. 6) is not contained in the
curves of Fig. 1.

In spite of the limitations of these calculations,
which we have emphasized, the result that emerges
forcefully is that the leading exponential behavior
is given by the percolation threshold. Any theory
which does not give this dependence correctly can-
not be trusted to give information about the non-
exponential pref actor.

III. COMPARISON WITH THEORIES

Here we summarize the predictions that various
methods which have been used to analyze the hop-
ping conduction problem would give for our model.

A. Percolation Theory

There is little need to say more on this approach,
which we have had to discuss extensively in Sec.
11 in presenting the results of our computations,
except to discuss approximate methods for calcu-
lating the percolation threshold. We have relied
on the numerical agreement of our results and the
computation of Holcomb and Rehr. ~ Obviously, it
would be satisfying if some analytical progress
could be made.

(i) Effective medium theory. p-In this method one
imagines embedding conducting and nonconducting
spheres in an otherwise uniform virtual material
whose conductivity is such that the net effect of the
two types of embedded particles provides no change
of resistance. The result of the calculation is o
o- (p ——', ), i. e. , one finds p, = 0. 33.

(ii) Pollak's method. Accepting as his sta. rting
point the idea of percolation, Pollak tries to set up
a formalism to actually calculate the percolation
threshold for which he obtains a lower bound. He
then treats the essential quantity, equivalent to
SP„asa parameter. Instead of 2. 4 he estimates
this to be equal to 1.7, obtaining the result quoted
in Table I.
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Percolation
(our results)

Effective medium

Pollak

Brenig et al.

Fibich and Ron

1.34

1.38

1.19

0. 89

(1~ )1/2

t'4m

0. 30

0. 33

0.21

0. 087

TABLE I. Results.

preexponential

tivity of a chain of links, then one will not avoid
dead ends from which there is no exit except by
means of a link of very low conductance. Our com-
puter experiments rule out the dependence pre-
dicted by this method.

The results of the methods discussed above are
summarized in Table I.
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APPENDIX A

B. Theory of Brenig et ul. (Refs. 4 and 9)

In this method the problem is reduced, making

general and plausible assumptions, to the problem
of calculating the velocity of sound of a random
harmonic crystal with, however, force constants
that depend exponentially on the separations. The
details of this method and the application to the
model of the present paper are given in Appendix

B. The result is of the form

o=croe

where

P, = (N/V)+v(r, /2)'=0. 087 .
As shown in Appendix B, the method is expected

to give an upper bound to the conductivity. The
discrepancy between r, and the correct percolation
value r, is so large as to render the bound meaning-
less. Brenig et al. also attempt to calculate the
prefactor &rp in (8.1). The lowest upper bound one
can obtain by this method predicts a oo which has
no 0, dependence. The arguments given in Sec. II
lead us to doubt that this can be correct. Unfor-
tunately, therefore, although the method strikes
us as being elegant and ingenious, it seems to have

little quantitative value.

C. Method of the Most Probable Value

Ron and Fibich have recently suggested that in
the Mott model one obtains the correct result by
considering the probability distributions of the con-
ductances between neighbors, and taking the re-
quired conductivity to be proportional to the most
probable value of these conductances. This hypo-
thesis leads to a functional form different from

(T /T)1/3
(1); viz. , it leads to the form ope ' P~ ' . Ap-
plied to our model, the hypothesis predicts cr

~3/t. (4gp) -1 /2~e ' "' . In the large-cy region, n» p,
this result predicts a much smaller conductivity
than given by the percolation threshold. The error
in this method lies in the fact that if each link is
optimized without regard to the over-all conduc-

To solve for the potentials of the N nodes we

used a Gauss —Seidel" iteration procedure in stan-
dard or over-relaxed form. In the context of our
problem this corresponds to calculating a potential
for each site according to Kirchhoff's rule,

V =K(yg/Rgg) Z(R;g)
f

(A1)

and setting the new potential at that site equal to

V( +1) V( & (y V«) ) (A2)

where V&"' refers to the potential of the ith site af-
ter the nth iteration, R;& is the resistance between
sites i and j, and w is the over-relaxation param-
eter (1 & m & 2). In each iteration all the poten-
tials are set to new values using as the potentials
of the neighboring points the instantaneous values
irrespective of whether they date from the previous
iteration or have been changed in the course of the
current one. We carried out the iteration in the
original (random) numbering sequence of the nodes
always in the same direction or back and forth, with
no perceptible difference in the rate of convergence.
It seems from our experience that a large w(-1. 6)
is advantageous at relatively low values of the pa-
rameter a (a/p' ~'

& 15). As one would superficially
expect from the general criteria for determining
w, at large n the optimum value of w approaches
unity.

It is easy to understand that the case of large z
presents the convergence problem of long paths of
low resistance with a dead end or large regions of
equal potential connected only at a single point to
a real current-carrying path. For large enough
0, this completely wrecks the method in the form
we used it as we found no simple way of eliminating
the dangling paths or areas.

We started the iteration with the obvious guess

(Ep = Up /length) V&P' ———Ep z,

and took the previous potentials each time we in-
creased a. At the end we calculated the current
through several successive cross sections of the
cube for an estimation of accuracy after termina-
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ting the iteration on a criterion that the average
absolute change in the voltages be smaIler than a
set limit.

It generally turned out that if convergence was
not reached in about 300 interactions, subsequent
progress was extremely slow.

meENnjX s

In the following we summarize the application of
the methods of Brenig et al. 4 to our problem.
What we seek, and what the computer program
simulates, is a time independent solution to the
equation (Eo = Uo /length)

d
C« —5V« = -EOZ G«&(z« -z«) +Z G««(5V& —5V«) .

(Bi)
Above, we have written the potential at site i as
Vi = —Epzi + 5Vi. The periodic boundary condition
requires that if i + N labels a repetition of the site
i then

The attempt is to calculate the logarithm of the
eigenvalue in Eq. (B3). This is facilitated by in-
troducing as a mathematical device a parameter X

in the following way. Replace the conductances
G««GQ e '««by G«&(X) = Go e ""«& Then one has

PP PP (1) PP(2)
i i +

where

(B9)

«Zs««G«« I
"«u« I

-Zs«fp«,P P 2 P

2y i
(B7)

where we have written sif = ~r, f, i refers to the
nearest neighbor of the site i, and the real positive
quantity Pi is evidently

P 1P, =,ZG„
I

u« -u,
I2y

(BS)

[Note that g«P« = 1.] After some simple manipula-
tions in which the reality of Pi, Gif, Ci, and y'
are useful one can write

5Vi,g=5Vi . (B2)

[The consta. nts C«, formally capacitances, have
been chosen in the computer calcuiation to facilitate
convergence. ] Equation (Bl) can be put in corre-
spondence with the kinetic equation [Eqs. (1) and

(7)] of Ref. 4, called BDW in this appendix. By
following the analysis of Sec. 3 or Appendix A of
BDW one obtains the formula

and

P'"'=C Iu'I'

ZP,'"'=0 .

Pn(2& QG (I P I2 I~a
I

2)
2y

We note that

(B10)

(B12)

««=+ —lim —Z
I

(e' '),
I
zy',

VqP k& P
(B3)

Further, using an obvious symmetry,

where p refers to the eigenvalue equation

Z G««(u« —u«) = y C«u«
f

(B4)

Here the prime on the summation symbol means
that the sum is only over one periodicity volume.
The eigenvectors ui are normalized according to

Z (u f)*C«u« = 5~ (B5)

and the expansion coefficients (e'"), are defined by

&««N«g(&«ks) uu
P

(B6)

Equation (B3) casts the problem into an extremely
elegant form, but it is evident that further analyti-
cal progress is likely to be difficult. Indeed, we
shall show that the very ingenious approximation
schemes invented by Brenig and co-workers are
quantitatively not very successful. In the following
we shall give a slightly modified version of these
approximations which shows that they give a result
which is likely to overestimate the conductivity.
From our numerical work we have seen that this
is the case, and the amount of the overestimate
has been discussed in the main text of this paper.

C (B14)

Using this form in (B10)and (B7) one then finds

By /~s
y BX N

(B15)

where N is the number of sites in the periodicity
volume. [For lack of a better symbol we have used
an inequality sign in (B15).] The right side of
(B15) is independent of G«& (and thus X) and is easily
evaluated by using the Poisson distribution. The
result is that the exponential dependence of the con-
ductivity is given as e '"m«~, where r „=(3/4««p)'«~

(p) 1~s«-Pl'"=
2 ~ ~(s r s)«(l-u'« I'- Iu« I')

(B13)
which shows that the largest Gif, namely Gi,-,
makes no contribution to the P' ' part of the upper
bound in (B7). We also note that for a regular ar-
ray of sites Pi ' =0. These observations suggest
but do not prove that in the low-density limit n «o
one may neglect P«2«. The remaining term is in
fact the BDW approximation to the first expression
in (B7). The approximate expression is then evalu-
ated by taking for the eigenfunctions in question the
long-wavelength limit
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x I'($). This value has been discussed in the main
text.

It is instructive to use our model to discuss a
calculation of the preexponential factor by Brenig
and co-workers. This calculation proceeds by
writing the identity

1 8
y(X= 1)= y(X) exp dX', —,y(X'), (B16)

using (B15) to evaluate the exponential factor and a
straightforward variational estimate for y(X) based
on the trial function (B14). The value for y(X) is
thus clearly an upper bound, but it is expected to
be most successful when X is small, i.e. , when

(aX) ' is large. Carrying out this calculation one

finds from (BS)

G I -(1-&)
6 ' (ax)'

(B17)

In this appendix scaling arguments will be sug-
gested which give plausible bounds to the power v

of the nonexponential prefactor in Eq. (2.6). The
full four-dimensional problem incorporating the
energies of the sites wiLL briefly be discussed at
the end.

The scaling argument hinges on the observation
that there will be a smaller and smaller density of
links which carry an appreciable current and have
a large potential step across them as z grows larg-
er. These power dissipating links will be called
active in the following. Their lengths are distrib-
uted over a small increment of order I/a around
r„aslarger links are very bad and shorter links
very good conductors compared with the critical
links for percolation. Some active links are
shorter than r„asthey have not yet, at a given 0(,
become essentially perfect conductors compared
with the critical links and, conversely, some active
links are larger than r, . It is not clear whether
the distribution is centered at exactly r, .

Imagine now a multiplied by some factor m.
Roughly the fraction 1/m of the former active links

The inequality has to be qualified as indicated be-
low (B15). In all the above work X has not had to
be specified very precisely. In Ref. 10 the pre-
exponential factor quoted is obtained' by an opera-
tion equivalent to setting Xzr &, = 1. On the other
hand (B1V) would suggest varying X to minimize the
right-hand side, which would lead to X~r &,=5,
and reduce the preexponential factor by more than
two orders of magnitude. This sensitivity of the
approximation scheme to the joining point seems
to us a dangerous sign. %'e are, as mentioned in
the main text above, skeptical of both the functional
dependence and the numerical value of preexponen-
tial factors obtained by this method.

APPENDIX C

Rqq j E; ) + I Eq f + ) E; -E~ f

Rm~ 2 Em~

where

(C2)

8 = (I/a)ln(y /I', ), (C2)

E = k Tln(yo /I', ) . (C4)

The conductivity varies as e ' 0 ' or ln(yo/I', )
-(T /T )1/4

will remain in the range where they can qualify as
active. If they actually did qualify, scaling up the
volume by the same factor would produce a system
where the number of active links would be un-
changed. Assuming that the general topology of the
islands of constant potential between the active
links would not change drastically, this would lead
to a system of the same impedance, apart from the
exponential factor, and therefore to a conductivity
scaled down by an inverse length of m '~'.

The scaling argument in the above form rests on
three assumptions: The active links decrease ex-
actly as 0. ', the general topology of the system is
invariant to scaling, and the exponential variation
does not introduce additional powers of 0. . The
first assumption is clearly not strictly correct.
All former active links will not qualify in the new
system. A link longer than r„when it falls out-
side the domain of those active, can sever a whole
path of current and render a host of other links
useless. Also a link shorter than r, can short out
a formerly active parallel conductor. Therefore
the number of real active links will decrease faster
than 1/a, and the conductivity correspondingly
faster than (I/o)~~3, i.e. , v) 3. The remaining
two assumptions in the argument are the equality
of the general topology, which although plausible
cannot be rigorously justified, and the tacit asser-
tion that the exponential factor will not change any-
thing. If the distribution of the active links is not
exactly centered on r„the exponential factor will
be of the form

e-fx (~z)+A/fr+0(1/e ) -fMf ~ A+0&1/a)

=e "&e"[1+0(1/a)]
and this wiLL not alter the argument. Ne therefore
conclude that v & 3 based on the assumption that the
general shape of the regions of constant potential
wiLL not change in the process of scaling.

Consider now the full four-dimensional problem
of Eq. (1.2). Proceeding according to Ref. 2 we
can say that smaller conductors than those just
needed for percolation contribute little and we write
for the conductors that do contribute

«*~+(I« I+ I « I+ I « -&f
I
)/2k&(»(yo/r, ),

(Cl)
where I', = kTG, /ez and G, is the critical conduc-
tance for percolation. In dimensionless form
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gal/4
gg e m+x (C6)

where

S,„=nR (To) To~ = (I/k)E (To) To ~ (C&)

is a distance in the four-dimensional space, where
one keeps looking at a larger and larger volume
and smaller and smaller energy range when T
grows smaller compared with some arbitrary ref-
erence To. By analogy with Eq. (2.6) one expects
a nonexponential prefactor of the form (T ~ /S )",
v' &0. Together with the power 4 of T this gives a

varies as T '~'. Therefore, from Eq. (C3), R
varies also as T and E,„asT . The per-
colation criterion can be expressed as

(2pOEmax)Rmax vq 1

where po is the density of states per unit energy
and volume and v, a dimensionless constant. The
criterion remains satisfied at all temperatures,
with the quantities in it varying as described above.

When the temperature is lowered by a factor nz

the energy range - (kT) ' of the active traps is
narrowed or the spatial density of active traps is
lowered by the factor (I/m)'~'. Again the spatially
equivalent situation can be recovered by looking at
a larger volume by m3~ . By the same argument
as in the three-dimensional case the conductivity
will then carry the factor T apart from the ex-
ponential variation.

The above discussion is equivalent to taking into
account the geometrical factor p'~' in Eq. (2. 6) for
the conductivity since a real reduction in the den-
sity of active traps has taken place. In fact Eq.
(2. 6) suggests that the reduction of the density
should lead to an even higher power of T in front of
the expression, since the prefactor (I/r, u)" de-
pends on p as ff' ~~, or on T as T"~'. However, this
last point should be discussed in the full four-di-
mensional case. Through making use of the depen-
dences of 8 and E on the temperature, the
four-dimensional exponential factor can be written
as

prefactor T' '" ' . Not knowing v' we may conclude
that there is a positive power of T larger than or
equal to 4 in the prefactor of the full four-dimen-
sional case. The inverse power of T in the factor
e /kT of Eq. (1.2) will of course also carry over
to the conductivity.

APPENDIX D

We found a subtle systematic correlation in the
IBM-360/65 random number generator RANDU:

IX=IX+65539 (65539= 2 6+ 3)

IE(IX) 1, 2, 2

1 IX=IX+2147483647+1

2 RAN = IX+4. 656612 E —10 (0 & RAN & 1) .

In one computation we kept track of nearest
neighbors of nodes up to a given radius, which for
X=1000 we chose such that each node would be con-
nected, on the average, to 8. 15 correspondents.
We then generated the x, y, and z coordinates of
the first node, the x, y, and z of the second, and
so on, in this order, with RANDU up to 1000 nodes.
With five different seeds (the first IX's specified
by us) we counted 8. 56 nearest neighbors on the
average, with a variance of cr=0. 06, enclosed in
spheres of the chosen radius centered on each
node. Changing the number of nodes or the radius
always lead to a similar result: The mean number
of nearest neighbors was systematically several
standard deviations (when the seed was varied)
smaller or larger than the exact statistical result.

We therefore used a more complicated proce-
dure, suggested by Nickel, "to generate our ran-
dom numbers which passed the above test. We
first composed a table of 256 RANDU numbers and
then picked our random numbers from this table
with the aid of a similar generator (with the multi-
plier = 2~ + 3) to give us a random index varying
from 1 to 256. Finally we replaced the number we
picked with a new RANDU number. In this way we
destroyed the correlation between the nth and the
(n+3) rd RANDU numbers.
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