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The method of lattice statics is applied to calculate the lattice relaxations in the vicinity of a vacancy
or an interstitial defect in aluininum. A least-squares fit to the phonon specturm obtained by Steclmann
and Nilsson was used, in conjunction with the elastic constants as constraints, to derive the dynamical
matrix including up to eighth-neighbor interactions. The interionic interaction was obtained by using
Harrison's model pseudopotential, with parameters adjusted to give a best fit with the phonon data. For
a vacancy, the relaxations are found to be 2% (of the lattice constant) or smaller. For the nominal

interstitial, the first neighbors are found to relax by 17% and the rest of the neighbors by 3% or less.

I. INTRODUCTION

Lattice defects in the form of vacancies and in-
terstitials play an important role in the properties
of metals. In particular, the annealing process
depends on the mobility of defects and the forma-
tion energies; the mechanical and electrical proper-
ties depend on the formation and migration ener-
gies through the dependence of cluster formations
and of defect concentrations on these energies.

The changes in interatomic interactions in the
vicinity of a defect cause the atoms of the lattice
to readjust their positions, giving rise to the lattice
relaxation. In some cases this relaxation can be
rather large and must be taken into account in any
meaningful studies of the defect. Most of the pre-
vious work on interstitials and vacancies in metals
have used the semidiscrete approach' to the atomic
displacements in which one divides the crystal into
two regions: region I, consisting of the defect and
a few close neighbors, and region II, consisting of
the rest of the crystal. The atoms in region I are
treated as discrete, and the atoms in region II as
a continuum. Due to the complexity and number of
equations to be handled, only a few neighbors have
usually been included in region I. This unrealistic
approximation and the difficulty in obtaining a satis-
factory matching of the unconstrained displace-
ments in region I to the constrained displacements
in region II make the method of lattice statics, pro-
posed by Kenzaki, a better choice.

The lattice statics method enables the calculation
of the actual displacements of all atoms from their
Fourier transforms. The lattice equilibrium equa-
tions are solved in reciprocal space and transformed
back to the real space by summing over the allowed
wave vectors in the first Brillouin zone. This
allows the reduction of 3X&3N array of linear equa-
tions (for a "supercell" with the defect and contain-
ing N unit cells) which determine the direct space
displacements to N 3x 3 arrays, one for each Fou-
rier amplitude. Section II gives a short review of

this method and the generalization to integration
instead of summation of discrete wave vectors to
avoid having an artificial periodicity of a "super-
lattice" imposed on the lattice relaxa.'~ons.

Section III deals with the dynamical matrix and
its evaluation using the phonon spectrum, while in
Secs. IV and V the actual relaxations in the vicinity
of a vacancy and an interstitial atom, respectively,
are considered. In the latter case, an explicit
form of the interionic interactions is required.
The evaluation of such an interaction based on
pseudopotentials is also discussed in Sec. V. Re-
laxations around a vacancy or an interstitial are
computed using both the empirical force constants
(phonon fit for up to eighth-neighbor interactions)
and the semiempirical approach (pseudopotential
fitted to pnonon spectrum).

II. REVIEW OF LATTICE STATICS METHOD

In this section the method of lattice statics as
proposed by Kenzaki and later used extensively by
Hardy and his co-workers is briefly reviewed.

A defect introduced into a crystal will interact
with the host lattice atoms by means of an effective
pairwise potential. Taking the defect itself as the
origin of the coordinate system, the position of the
lth atom of the host lattice will be given by a vector
(r'+ g'), where r' is the position vector for this
atom in the perfect lattice and $' is the displace-
ment caused by the presence of the defect.

The potential energy of the distorted lattice can
be written

U=flo —Z E~(r')g~+ — Z ZA~~(l, l )$~4, (1)
ly a ly l~ at0

where UI) is the potential energy of the perfect lat-
tice (undistorted), F(r') is the force on the lth atom
due to the defect; n, P run from 1 to 3 and refer
to the Cartesian components and
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gives the force-constant matrix for the perfect
lattice (the subscript 0 indicates that the derivatives
are evaluated in the undistorted configuration).
These quantities are symmetric in their indices,
according to their definition, and depend only on
the difference of position vectors (r' —r' ),

A s(l, l )=As (l', l) .

Q(q}=[v(-q}] F(q) . (9b)

v„,(q=o}=o, (loa}

and on forces and displacements,

Invariance of the potential energy under rigid trans-
lations gives the conditions on the dynamical matrix

The equilibrium value of the displacements can
be obtained by minimizing U with respect to the .
displacements which imply

F (q=0) =0,

q. (q=o) =0

(lob)

(loc)

BU

a(. ='
~ (4)

for all values of a and P.
Inserting (9b) in (6) we finally get

Qq(q) e"", (6)

where N is the number of atoms in the supercell
containing the defect and q are the wave vectors in
the first Brillouin zone (at a later stage in the com-
putations, we let N- ~ and convert discrete sums
over q to a Brillouin-zone integration); Q(q), the
normal coordinates, are, in general, complex and
must satisfy

Q(- q) =Q'(q) (V)

to ensure that the displacements are real.
Defining the Fourier transforms of other quan-

tities in a similar fashion as Eq. (6) we have

F,(q) =Q F„(r')e "",
1

v.,(q}= Z A.,(l, I')e-"" -'&
(1 J')

(8a)

(sb)

where in (8b) we take a Fourier transform with re-
sPect to (r' —r'). V s(q) can be rearranged [since
A„s(ll') depend only on r' —r' ] to give

V s(q) = Q A s(0, l') e "' (8c)

Equations (5) now become

F.(q) =Z V.s(-q) Qs(q), (9)

where we have used the fact that q lies within the
first Brillouin zone. In matrix form Eq. (9) is

which becomes

F (r') = Z A s(l, l') $s (5)

Equations (5) are the fundamental equations of the
problem and are linear because all terms beyond
the second degree in the Taylor expansion of the
potential energy in Eq. (1}have been neglected.

In order to perform the actual calculations, how-
ever, the displacements are expanded in terms of
the normal coordinates, i.e. ,

h'„= —2 [v(- q)] ', F,(q) e"' .
as&

Thus the displacement of any atom may be obtained
from (11) once the dynamical matrix and the Fou-
rier transform of the forces exerted by the defect
are known, without relaxing the whole lattice ex-
plicitly.

As pointed out by Boyer and Hardy, ' relation (11)
gives displacements that have the periodicity of the
superlattice where a unit supercell contains N
atoms, and fails to give the continuum results for
the isotropic lattice. This can be overcome by
letting the volume of periodicity become infinite,
lses]

0
(2 )s

BZ

(12)

where f(q) is any function with the periodicity of
the reciprocal lattice.

Due to the singularity in V ' at the corners and
the origin of the integration volume, we need a
denser sample in both of these regions. Thus using
x; and ze; as the abcissas and weights for a Gaus-
sian quadrature with n positive roots, we have

—Q f(q) = — Z f(x,', x,', x,')n&,'w,'svs, (14)
a fs jsk

where 0 is the volume per atom (2a for aluminum,
where 2a is the lattice constant) and the integration
is over the first Brillouin zone (BZ}. However,
since the integrations must be performed numeri-
cally in most problems, any choice of q vectors on
a regularly spaced basis will bring back the prob-
lem of supercell periodicity. Fortunately, this
can be avoided by performing integrations by the
Gaussian quadrature method after first changing
the integration to a cube (c) inscribing the first
BZ and using the fact

1 f(q}~a= 'jf(q)d'q, -

F(q) = v(- q) Q(q)

and can be inverted to give

(9a)
where i, j and )'s are summed from —2n to 2n (ex-
cluding zero) and
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i + i+Ay i&-n

Q)lp i ~Pl

gg; „, i &n

, so&,„, i&-n.

X ] +Ql ~p g. )g (14a)

(14b)

which gives
lg

I 1 rgA„IQ, l)=-, u„, , —5
)It I

l ~

& +2ls-1 ~t' 2Ir I

where
1 SV(r)

Q2l —2—r er r. lrl I

and

(16)

(16a.)

However, the symmetry of the problem can be used
to reduce the actual number of terms to be evalu-
ated for the sum in (14).

III. DYNAMICAL MATRIX

One of the basic necessities of this calculation
is the dynamical matrix defined by E4ls. (Sc) and
(2). Various attempts have been made~' ' at eval-
uating this quantity in terms of central as well as
noncentral forces.

We will assume the central-force model for the
pairwise interactions, i.e. ,

as V(r)
&2r-1=2

8 2
r~l rl I

subject to the condition (10a). This gives us
48

V g(l) = ~
48

~ e s(nsg —ns4 g)
7'~1

„{r").(yr")
I
yls0 I2 2 2l ett

+ Z —' (2n„+ n„,}5.„

(16b)

V(~r+5~) = V(r}+

1 BV(r) (5xr) 1 8 V(r) (5 ~ r)
2 Br r 2 Br

+ (15)

where r' is some vector chosen out of the star of
r, the atoms in the lth neighbor set consisting of
n, atoms (for convenience we choose r„"~ r,'P
& r,"& 0) and y's run over the 48 operators of the
cubic group. Performing the summations explicitly
in (17) we have (for interactions up to eighth neigh-
bors)

V44(41) = 2n4+ 4ns —(n, + n, ) (cosq,a+ cosqsa} cosqsa —2ns cosqsa cosq,a

+ ns+ 2n4 ns cos2qsa —n4{cos2qsa+ cos2q, a) +4(n, + 2n, ) —3(ns+ 5ng)

x (cos2qsa cosq, a + cosqsa cos2q, a) cosq, a —f (2n, + ng)

x cos2q, a cosqsa cosqsa+ 2n, + 2n, (2 —cos2qsa cos2qsa) —(ns+ ns)

x (cos2qsa+ cos2qsa) cos2q, a+ 4(ng+ 2n4p) 4 (9ns+ n4p)

x (cosqsa+cosq, a) cos3q,a ——,'(np+9n, p) (cos3qsa+cos3qsa) cosq, a

—2nip(cos3qsa qsa+cosqsa cos3qsa}+ s (nz&+2n») —
s (n44+ 2n, s)

x cos2q, a cos2qsa cos2q, a+ 8(n„+2n«} —
~ (9n„+5n, 4)

x (cc s2qsa cosqsa+ cosqsa cos2qsa) cos3qsa —
7 (2n»+ 5n14)

x (cos3qsa cosqsa+ cosq, a cos3q, a) cos2q, a —,(n„+13n,4)

x (cos2qsa cos3qsa+ cos3qsa cos2qsa}cosq, a+ {n»+2n, g)

—n» cos4q, a —n, g(cos4qsa+ cos4q, a), (18a)

V»(q) = (n4 —ns)sinq, a sinqsa+ 3(ns ng)

x [sinq, a sinqsa cos2qsa+ 2(sin2q, a sinqsa + sinq, a

x sin2qsa} cosqsa]+ (n7 —ng) sin2q4a sin2qsa+ —', (ng —n4p)

x [sin3q, a sinqsa + sinq, a sin3qsa]+ f(n„—n, s) sin2q, a sin2qsa

x cos2qsa+ f (n, s —n, 4) [(sinq, a sin2qsa+ sin2q, a sinqsa) cos3qsa

+ —,(sin3q1a sinq2a + sinq1a sin3q2a} cos2qga + 3(sin3q1a

x sin2qsa + sin2q4a sin3qsa) cosqsa], (18b)
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and the symmetry relations

V22(ql q2 h} Vll(q2 q8, ql}

V33(ql q2 q8) Vll(q3 ql q2}

V18(ql, q2 q8) 12(q8 ql q2)

V23(ql q2 q8) V12(q2 q3, ql}

(18c)

V(q) e(q) = m&02(q) 5(q), (20)

where 07(q) is the frequency of a phonon of momen-
tum q and polarization e(q), and m is the mass of
the atoms in the lattice. Relations (20) can be re-
written

m&02(q) = Z 4 (q)V 8(q)48(q) Z 8'(q)~ . (21)

In the limit q-0, we compare the coefficients of

q qz in the expansion of V z with the corresponding
coefficients in the elastic equations to obtain the
elastic constants in terms of the force constants,
l. e. )

C44 = 2 (nl+ 3n8) + 2n4+ 3n5+ 9nB+ 2(n7+ 3nB)

+ 5 9 5 10+ 8 (nil+ 2n12}

+ 14(n13+ 3n14}+8n18 (22a)

C12+C44 (nl 2)+6( 5 nB)+4( 7 8)

+ 5 (n9 n10}+ 3 (nil n12}~1

+ 28(n„—n,4), (22b)

Cll —C44 = 2 (nl —n8) + 2(n8 —n4) + 3(n5 —nB)

+ 2(n7 nB}+~5(n9 nlo}

+ 14(n18 —n«) + 8(n15 —n18}. (22c)

A least-squares fit to the phonon spectrum obtained

by Stedmann and Nilsson at 80 'K (taken from
plots given by Gilat and Nicklow'), with Eqs. (22)

~28 ~82 z ~12 ~21 p ~18 ~81 '

To obtain V(q) for any vector q in the Brillouin zone
in terms of the value for q in the irreducible sub-
zone (q„~q, ~ q, & 0 with q„+q, +q, ~ 377/2a}, we
have the matrix form

V(rq) = &(7) V(q) ff'(7),

where U(y) is the matrix representation of the
cubic group operator y.

The force constants a1 to n«are evaluated using
the dispersion curves for phonons given by the
matrix equation

as constraints, was used to obtain the empirical
force constants n; (i = 1-16). The results are shown

in Table I for both the anisotropic aluminum and
the isotropic aluminum (using C«= C,2+2C44) so
that the relaxation results can later be compared
with the relation $(r) ~ r/7' valid for an isotropic
elastic medium.

Our values of the force constants are compared
in Table I with the "corresponding" values obtained
by Boyer and Hardy' (using only up to fifth-neigh-
bor interactions) as well as the results of Gilat and
Nickklow. ' Also shown are the force constants from
a pseudopotential approach (described in Sec. V),
which we refer to as the semiempirical force con-
stants.

The reproducibility of the phonon spectrum is
shown in Figs. 1-3 for the three principal direc-
tions [100], [110], and [111]as a plot of m40

against q. Results from both the empirical and
semiempirical (pseudopotential) approach are com-
pared with the experimental data as well as those
from the Boyer and Hardy' (BH) force constants.
The present calculation gives a much better fit than
the results of Boyer and Hardy and should lead to
improved relaxation values than previously avail-
able. The pseudopotential method does not give
the proper elastic constants and will be expected
to fail in the long-range effects (such as for re-
laxations reasonably far from the defect).

We have found that the force constants are ex-
tremely sensitive to the phonon frequencies used
for the least-squares fit. All three cases discussed
above (empirical, pseudopotential, and BH) repro-
duce the phonon curves within a reasonable accu-
racy but have widely different values for the force
constants.

IV. RELAXATIONS FOR A VACANCY

Once the dynamical matrix is evaluated, the cal-
culation of the lattice relaxation still needs the
defect potential. In the case of a vacancy, this
can be obtained from the force constants, which
give the magnitude of the forces at lattice points
up to eighth neighbors of the vacancy. From sym-
metry considerations, we know that the forces on
the first, second, fourth, sixth and eighth neigh-
bors due to the vacancy are radial. Since the
force constants for the third, fifth, and seventh
neighbors are small, we assume the forces on
these neighbors to be radial also. Then we find

E,(q) = i(2&2f, sinq, a(cosq3a+ cosq, a) + 2f2 sin2q, a

+ 8 v 6f3 [2 sin2q, a cosq2a cosq8a+ (cos2q8a cosq8a + cosq2a cos2q8a}

& sinq, a]+ 2&2f,(cos2q8a + cos2q8a) sin2q, a + 5 M10f5 [3(cosq2a + cosq8a) sin3q, a

+ (cos 3q2a + cos3q8a) sinq, a]+g v 3fB sin2q, a cos2q2a cos2q8a +,~14f7
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x (cos3qaa cosq~a+cosqza cos3q, a) + (cos3q2a cos2q~

+ cos2qaa cos3qea} sinq, a]+2f, sin4q, a} (23a)

and

F2(ql q2 i 4) Fl(q2 qs q|)

F~(qi, qp & qQ) =F1(q» q~, qg)

(23b)

(23c)

where f, is the magnitude of the radial force on the
lth-neighbor atoms. For any vector q in the Bril-
louin zone we have [similar to relation (19) for V

matrix]

F(rq) = ff(r) F(q) . (24)

However, the forces to be used in Eq. (11) have to
be evaluated at the relaxed positions, i.e. , fg will
be given by

(26)

The sign of the term on the right-hand side is posi-
tive since this is the force on the neighbors due to
the absence of one atom. From (26) we obtain one
set of equations connecting f, and g (the radial
displacement under assumed radial forces on all
eight sets of neighbors}:

fl a2I I

r'
I

+ la2i 1 I &,'I, & = 1, 2, ",6.

The other set of equations is obtained from (11)
under the radial displacement assumption giving
a total of 16 equations in the 16 unknowns f, and
$„' for l =1-8. These equations are solved simul-

taneously and then the displacements of the lattice
are obtained by relation (11) for both isotropic and
anisotropic aluminum.

The results are shown in Fig. 4 for the isotropic
aluminum in the three directions (100), (110), and
(111) and are compared with the corresponding re-
sults obtained by Boyer and Hardy. We have
plotted (1/a)[$(l~, lz, fs)](l~+lz+la) against l for
points a(l, 0, 0), a(f, l, 0), and a(l, l, l). The con-
tinuum value is obtained much faster in our results
than those of Boyer and Hardy. A negative sign
indicates the displacement is towards the origin
(defect).

For the anisotropic aluminum, the relaxations
are shown in Table II for neighbors at lattice sites
a(l, , fz, l~) for points f, +lz+l~2~66. The first
neighbors show the largest displacement (2. 5% of
the unit a).

V. INTERSTITIAL DEFECT

The location of an interstitial atom for aluminum
is not known experimentally. The lattice relaxa-
tion and the formation energy will depend on the
choice of its position. For symmetry reasons, we
have chosen the interstitial atom at the body center
of the aluminum unit cell, the nominal interstitial.
However, the present calculation can be easily ex-

TABLE I. Values of the force constants defined by Eqs. (16a) and (16b) for eight neighbors
in units of dyn/cm. Results of the present empirical fit are compared with the semiempiri-
cal pseudopotential approach and previous results of Boyer and Hardy (BH) and those of Gilat
and Nicklow.

Isotropic
Present
work BH BH

Anisotropic
Present

work

Gilat and
Nicklow
(80 'K)

Pseudopotential
case

P =47. 5, r, =0.2765

Q(
Q2

Q3

Q4

Qg

Q6

Q7

Qs

Q9

Qco

Qis

Qi5

Q~6

42891
-2617

5331
—1097
-1950

140
916
456

775
155

—927
488

44
-205
—828
—37

43008
—3627

3268
—457
—151

510
—1196

1116

175
-666

42927
—2536

5427
—1398
—1956

123
1042

509

S29
269

—786
571

—20
—253

—1315
—37

43232
—3403

1919
217

—779
-118

—1533
778

692
—149

43102
—2674

4904
—1058
—1840

—68
442
642

980
396

—152
502
-68

—236
—1068

—232

42912
—3121

5808
—346

—1870
89

569
—70

423
34

—693
3

186
—21
384

7
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tended to other choices of the interstitial location.
With this choice, the first five neighbors are

(inunits of a) at (1, 0, 0), (1, 1, 1), (2, 1, 0), (2, 2, 1),
(3, 0, 0) and at the positions in the star of these
vectors, (the body center is now being used as the
origin). The last two are at the same distance
from the defect and will have the same force ex-
erted in the absence of relaxation (central-force
approximation). However, since the two sets of
atoms may relax differently, we will allow these

to be two separate sets of neighbors (one can caQ
them neighbors 4a and 4b).

Due to symmetry considerations, the forces on
the first, second, and fifth (or 4b) neighbors will
be radial. The forces on the first neighbors can be
expected to be quite large compared to the others,
so an approximation of taking the forces on all five
neighbor sets to be radial is justifiable. Using
F, for the magnitude of the force at the 1th neigh-
bor, we get [equivalent to Eq. (23) for vacancy]

F,(j) = f(2S, sinq, a+, v 3 &p sinq, a cosq,s cosq,s

+ 5 v 5 san[2(cosqza+ cosqsa) sin2q~a+ (cos2qaa+ cos2qaa) sinq~a]+~ &4 [2(cos2qza cosq~a

+ cosq~a cos2qsa) sin2q, a+ (cos2qza cos2q, a)sinq, a]+ 2&, sin3q, a}, (27)

I 8.0

I 6.0—
o Experimental

I 4.0—

I2.0—

10.0—E

0
C

8.0—
O

ee

6.0—

and the same symmetry relations (23b), (23c), and
(24) as in the case of the vacancy.

In the case of the vacancy, we expanded the forces
f, at the relaxed positions in terms of their values
(and the derivatives) at the unrelaxed positions
which were available from the dynamical matrix.
However, in the present case, the unrelaxed posi-
tions are not the regular lattice sites (in terms of
the new origin) and thus we require some knowl-
edge of interionic forces at distances other than

I

the nearest-neighbor distances.

A. Interionic Forces

Previous work on a similar problem' (interstitial
Cu atom in Cu) used the Born-Mayer potential for
the pairwise interaction and obtained the values of
forces F, by differentiation of that function. In
view of the oscillatory behavior of the force con-
stants evaluated from phonon-fitting studies, such
a potential is seen to be a very crude approxima-
tion. The interpolation of the force constants for
distances other than regular neighbor distances
may be acceptable for second and further neighbors
of the interstitial, but extrapolation of the force
constants to first neighbor, distance a, using val-
ues that are available at v 2a and larger distances
cannot be relied upon due to the very large values
of the second derivatives.

Numerous studies have been made' "of the
interionic potential in aluminum based on various
forms of pseudopotentials and the screening fac-
tors. The interionic potential V(r) is written as a
sum of two terms, one the direct Coulomb interac-
tion and the other the indirect ion-electron-ion
interaction (also referred to as the band-structure
contribution), i.e. ,

V(r) = Z«'e'/r+ V„,(~), (23)
4.0—

2.0—

0.0
0.0

I I I I I

0.2 0.4 0.6 0.8 I.O I.2

tqOO~(~ICI)

where Z* is the effective charge, and the indirect
contribution is given as an integral

«I

with F(q), the energy wave-number characteristic,
defined in terms of the local bare pseudopotential

FIG. 1. Values of m~ for phonons along [100] direc-
tion. The present empirical fit is compared with experi-
mental data of Stedmann and Nilsson along with pseudo-
potential curves and those from Boyer and Hardy force
constants.

F(q) = — '(q)
Sve 0 ' 1+ [1—G(q)]1(q)

' (30)

In Eq. (30) y(q) is the Lindhard expression for the
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I 8.0 O. I4

I 6.0—
o Experimental

Present work
Pseudopotential
BH

O. IO
—&'tOO&

(gg0) PRESENT

gg gg) WORK

I 4.0—

I2.0—

E~ IO. O

8.0
O

6.0
E

4.0—

2.0—

I

I 0 I.2

free-electron susceptibility

4 l l 4-y~ 2+y
wkrso y 2 Sy 2-yyq)= ~ —+ ln

I8.0

I 6.0—

l4.0—

12.0—

I 0.0—E

a
C

8.0—
O

Of

6.0—

0.0 I I I

0.0 0.4 0.6 0.8
rqqo&re (~ra)

FIG. 2. Comparison of phonon m~ values along [110]
direction.

0.06

0.02
+

+ —0.02

O
4V

-0.06

I

I-0 I8—
'x/

-0.22
I 5 7 II

-O. IO -'
l

l-O. I 4 —'

- —(goo&
(pgp) B.H.

——(tf t)

I

15

I

l9

FIG. 4. Lattice relaxation along the (100), (110),
and (111)directions for isotropic aluminum. Present
results are compared with those of Boyer and Hardy.

(32)

with y = q/kr, and ao is the Bohr radius. The
quantity G(q) in Eq. (30) is a static term to correct
the charge densities for the effects of exchange and
correlation. Various forms of v, (q) and the screen-
ing have been used in the literature to obtain V(r),
which oscillates after a certain distance from the
origin. This is of course the result of the Cou-
lombic term being effectively canceled out by the
screened indirect contribution leaving behind the
effect of the well-known long-range oscillations
in the charge density of an electron gas. The point
at which these oscillations in V(r) start to show up
depends more on the screening factor than the
bare pseudopotential. "

For this study, we have chosen the Harrison
model potential'

40—

2.0—

00 I I I I I

0.0 0.2 0.4 0.6 0.8 I.O

tqqa) IA (~jt3)

l.2

FIG. 3. Comparison of phonon m~ values along [111]
direction.

with P and r, as adjustable parameters, and the
screening given by Toigo and Woodruff~~ [the nu-
merical values of G(q) suitably interpolated for
q & 3. 5k'], evaluating the q integral in Eq. (29) to
40k&. The values of P and r, were varied over a
fairly large region to obtain the best possible fit
of the phonon spectrum generated by this interaction
[the force constants of the dynamical matrix are
derivatives of V(r) with respect to r] with experi-
mental data of Stedmann and Nilsson. These
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TABLE II. Lattice relaxation for vacancy for points

a(li, l2, l3) for neighbors with li+l2+l3 «66.
3.0

2.5—
Lattice points

(li, l2, l3)

Displace ment components

],/a h2/a $3/a 2.0—

(1, 1, o)
(2, 0, 0)
(2, 1, 1)
(2, 2, o)
(3, 1, o)
(2, 2, 2)
(3, 2, 1)
(4, o, o)
(4, 1, 1)
(3, 3, o)
(4, 2, o)
(3, 3, 2)
(4, 2, 2)
(4, 3, 1)
(5, 1, 0)
(5, 2, 1}
(4, 4, o)
(4, 3, 3)
(5, 3, 0)
(4, 4, 2)
(6, o, o)

(6, 1, 1)
(5, 3, 2)
(6, 2, 0)
(5, 4, 1)
(6, 2, 2)
(6, 3, 1)
(4 4 4)
(5, 4, 3)
(5, 5, o)
(v, 1, o)
(6, 4, o)
(5, 5, 2)
(6, 3, 3)
(v, 2, 1)
(6, 4, 2)
(v, 3, o)
(6, 5, 1)
(7, 3 2)
(8, o, o)
(5, 5, 4)
(v, 4, 1)
(8, 1, 1)

—O. 0174
—0. 0185
—0. 0050
—0. 0013

0. 0009
0. 0077

—0. 0075
—0. 0001
—0, 0010
—O. 0023
—0. 0022

0. 0004
—Q. 0033
—0. 0029
—0. 0008
—0. 0014
—0. 0016
—0. 0010
—0. 0015
—0. 0006
—0. 0003

—0. 0007
—0. 0016
—0. 0009
—0. 0016
—0. 0012
—0. 0011
—0. 0009
—0. 0008
—0. 0011
—0. 0005
—0. 0011
—0. 0007
—0. 0010
—0. 0007
—0. 0010
—0. 0008
—0. 0010
—0. 0009
—0. 0005
—0. 0006
—0. 0008
-0.0005

—0. 0174
0. 0

—0. 0017
—O. 0013
—0. 0024

0. 0077
—0. 0054

0. 0
—0. 0002
—0. 0023
—0. 0011

0. 0004
—0. 0019
—0. 0025
—0. 0002
—0. 0005
—0. 0016
—0. 0010
—0. 0009
-0.0006

0. 0

—0. 0002
—0. 0011
—0. 0003
—0. 0014
—0, 0004
—0. 0005
—0, 0009
—0. 0007
—0. 0011
—0. 00003
-0.0007
-0.0007
—0. 0005
—0. 0002
-0, 0007
—0. 0003
—0. 0008
—0. 0004

0. 0
—0. 0006
—0. 0005
—0. 00006

0. 0
O. 0
0. 0017
0. 0
0. 0
0. 0077
O. 0025
0. 0
0. 0002
0. 0
0. 0
0. 0015
0. 0019
0. 0006
0. 0
0. 0003
0. 0
0. 0010
0. 0
0. 0007
0. 0

0. 0002
0. 0006
0. 0
0. 0003
0. 0004
0.0002
0. 0009
0. 0005
0. 0
0. 0
0. 0
0. 0004
0. 0005
0. 0001
0. 0004
0. 0
0. 0001
0. 0003
0. 0
0. 0005
0. 0001
0. 00006

I.5—

I.O-K
'O

0.5—

B. Relaxation

Once V(r) and its derivatives are known, we pro-
ceed as in the case of the vacancy (with a sign
difference for the force)

s V(r)
r-)R'+)' I

(33)

where R' is the position of the 1th neighbor of the
interstitial. Defining quantities similar to n&

earlier,

and

2 sV(r)
+zr =

BJ ~RtI

s'v(r)
o'zs-1=2 ~ z

r~lR

(34a)

(34b)

we get

& =-l ~l IR'I --.'~2, -, 1&„'I, (34c)

with g„being the radial displacement of the lth
neighbor of the interstitial. Since the force F& on

-0.5—

-I 0 I I I I I I I I

l.35 l.68 2.02 2.35 2.68 3.02 3.35 3.68 4.02 4.35
'/a

FIG. 5. Interionic potential for aluminum as a func-
tion of distance, from the semiempirical fit of pseudo-
potential to the phonon spectrum.

curves are shown in Figs. 1-3 for the parameters
p=47. 5 Ryao and r, =0.2765ao. The force con-
stants obtained are compared in Table I with those
from a least-squares fit of phonon curves for 16
parameters (empirical force constants for up to
eighth-neighbor interactions) and with those of pre-
vious workers.

The interionic potential V(r) is plotted against
r in Fig. 5 and shows the first minimum slightly
past the second-neighbor distance, in agreement
with Duesbery and Taylor. "

Lattice points
(Ei, l2, l3)

Force at
relaxed position

(dyn/cm)
Displacement components

$l/8 $2/0 $3/0

(1. 0, 0)
(1, 1, 1)
(2, 1, 0)
(2, 2, 1)
(3, o, o)
(3, 1, 1)

19507
830

—180
7. 4
5.6

0. 1738
0. 0088
0. 0279
0. 0071
0, 0140
0. 0097

0. 0
0.0088
0. 0210
0. 0071
0.0
0. 0039

0. 0
0. 0088
0. 0
0. 0041
0.0
0. 0039

TABLE III. Lattice relaxation and the forces at the
relaxed positions for the first few neighbors of the
nominal interstitial.
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the first neighbors will be much larger than the
force on any other neighbors, we take only up to l
= 5 and solve (34c) simultaneously with Eqs. (11).
However, the displacement of the first neighbor
being fairly large (approximately 0. 15a} and V(&)

changing rapidly for small r, we replaced (34c) for
l=l by

3'i = --' PoI R'+ (o I

—'Pil h,'- (o I
(35)

where $0 is a displacement of the first neighbor
from the use of (34c). Actually, we evaluated the
values of sV/sr and s V/sr at intervals of 0. 1
(units of a) and used successive values (P's are
same as e's except evaluated at the point 8'+ $0
instead of R') until a reasonable convergence was
reached.

The results obtained for forces at the five neigh-
bors and the relaxations of the first six neighbors
are shown in Table III. A comparison was made
using the dynamical matrix obtained from the
pseudopotential instead of our eight-neighbor fit with
the results differing by 0. 5% (of the unit a} or less,
indicating the dominating effect of the large forces
between the interstitial atom and its first neighbors.

VI. CONCLUSIONS

We have found that the phonon spectrum of
aluminum can adequately be reproduced by the
Harrison pseudopotential except for deviations in
the elastic constants confirming the usefulness of
the pseudopotential to give interionic interaction
for problems where long-range effects {q-0) can

be ignored.
The lattice relaxation in the vicinity of a vacancy

has been evaluated using a more reliable eight-
neighbor interaction dynamical matrix, fitting the
experimental phonon spectrum as well as the elas-
tic constants. The results show a much better
convergence for the elastic continuum result for
isotropic aluminum than previously obtained. The
lattice relaxation is found to be 2. 5% (of the unit a)
for the first neighbors and smaller for the other
neighbors.

In the case of an interstitial atom at the nominal
site, we have found that the large interaction
between this atom and its first neighbors dominates,
as should be expected. The lattice relaxation ob-
tained is about 1V% for the first neighbors while the
largest value for the rest of the lattice is only
about 2. 6%.

We repeated the calculations using the dynamical
matrix from the pseudopotential to check for possi-
ble differences in relaxations between the more
accurate empirical eight-neighbor fit and the semi-
empirical two-parameter pseudopotential interac-
tion. We found that the relaxations varied by a
maximum of 1% (of the unit a) for either of the two
defect cases (vacancy or the nominal interstitial)
even though the force constants varied by large
amounts.
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