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The use of the new transition-metal model potential {TMMP), developed in the preceding paper, in
nearly-free-electron second-order perturbation theory of the electronic structure and properties, in

particular the phonon spectra, of the transition metals is discussed. It is pointed out that, as a
consequence of the strong nonlocality (b dependence) of the TMMP parameter, A,Q) ~ (b —h„) '

near the position 5„of the d -band resonance, first-order (nearly-free-electron) perturbation theory
involving the diagonal matrix element &/VS& of the TMMP breaks down at 8~& = h„and hence
describes s-d hybridization, but second-order terms involving the off-diagonal matrix elements

I&hIvtk+ q&I' =IV(q)I' are off resonance, i e., 5„+-, Q Bd, and therefore small. Thus
electron-phonon-interaction matrix elements, proportional to V(q) in the diffraction model, can be small
in the transition metals. On the basis of this property of the TMMP perturbation method, systematic
trends in the lattice dynamics of simple and transition metals of the 3d, 4d, and 51 series in the
Periodic Table are compared in the jellium model, and first-principles calculation of the phonon spectra
of ten transition metals —Cu, Ag, Ni, Pd, Fe, Cr, Mo, W, Nb, and Ta—are performed in local TMMP
approximation. The theory provides a sound basis for quantitative understanding of the lattice dynamics
of these metals, and agreement with the observed phonon spectra is quite good.

I. INTRODUCTION

In the preceding paper, ' the quantum-defect con-
cept was extended to the transition metals and used
to set up a transition-metal model potential (TMMP
of the Heine-Abarenkov type~' for 30 group-B (ex-
cepting the rare-earth) metals. As is well known, '
a model-potential form factor V(q) represents the
Fourier transform of the effective electron-ion po-
tential in a crystal, and in the diffraction model,
V(q) is proportional to the electron-phonon interac-
tion matrix element corresponding to a phonon state
of wave vector q. Consequently, V(q) determines
not only the electronic energy bands of the perfect
crystal but also the electronic contribution to the
dynamical matrix for phonon spectrum~'~ the elec-
trical resistivity and thermoelectric power of the
solid or liquid metal, the transition temperature
for superconductivity, and many other aspects of
the electronic structure and properties of meta1. s.
Of all these properties, the phonon spectrum is the
most sensitive to the details of V(q), inasmuch as
it samples I V(q) la throughout q space.

In view of this fact, we proceed in this paper to
apply the TMMP method presented in the preceding
paper to first-principles calculation of the phonon
spectra of the following ten transition metals-
Cu Ag 'Ni ' Pd Fe Cr Mo W Nb
and Ta —which have been measured by various
workers. ' ' The underlying assumption we make
here is that the electronic contribution to the dy-
namical matrix can be calculated by means of sec-
ond order Perft-trbation theory in V(q) and the Har-
tree or Hartree-Fock self consistent field aPProxi
mation, in the manner previously reported by Ani-

malu et al. for the simple (nearly-free-electron)
metals.

As a justification for this assumption, it should
be pointed out that, as a consequence of the strong
nonlocality (8 dependence) of the TMMP parameter
[As($) o- (h —8, )

' near the position 8, of the d-band
resonance], 'c such a TMMP perturbation method
breaks down in the first order, but the second or-
der terms which determine the electronic contribu-
tion to the phonon spectrum are small. For, in
such a (nearly-free-electron) perturbation series:

~a= Ts+(" I V I "&+~
I
V(q)

I
/(Ts —Ts")

alt0

(Tt = h s ks/2m),

the diagonal matrix element (k I Vl k) and the off
diagonal matrix elements (kI VI R+q& = V(q) are of
the following orders of magnitude near 8&.

(klvlk&=c(k, k)/(s;-g, );
v lk+q& = c(k, k+q)/(h-„„-- h, ),

where V acts to the right. Thus, the former can be
on resonance at 8„"=8„, and therefore large, while
the latter is off resonance (g-„,s & Ss) and therefore
small. Consequently, s-d hybridization is de-
scribed by first-order TMMP perturbation theory;
The equation

h, = T-„+(klvlk),

reduces, by virtue of Eq. (l), to the usual equa-
tion~'.

(g„-—T„-) (Ss —Ss) = C(k, k) . (2)

It should be cautioned, however, that V is non-Her-
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mitian and hence I V(q) iz in the second-order term
is really (kl Vlk+ j) (k+ql Vlk)*, rather than sim-
ply I (kl Vlk+q) I: the smallness of V(q) will
therefore make sense only if V(q) is evaluated at a
fixed off-resonance energy, e.g. , in a local TMMP
approximation with 4 = hz (the Fermi energy). This
consideration is the essence of the TMMP perturba-
tion method and the motivation in Ref. 1 for using
local TMMP approximation to calculate the off-
resonance, off-diagonal matrix elements (k I V 1 k
+ j) defining the TMMP form factor V(q).

The outline of this paper is as follows. In Sec.
II, systematic trends in the lattice dynamics of
simple and transition metals of the 3d, 4d, and 5d
series will be compared in the jellium xnodel. The
phonon-dispersion relation in local TMMP approxi-
mation will be described in Sec. III; and numerical
calculation of the phonon spectra of the ten transi-
tion metals listed above wiQ be presented and dis-
cussed in Sec. IV. Conclusions will be drawn in
Sec. V.

II. COMPARISON OF SIMPLE AND TRANSITION METALS
IN THE JELLIUM MODEL

In this section, systematic trends in the lattice
dynamics of simple and transition metals of the 3d,
4d, and 5d series will be compared in the simplest
possible (albeit realistic) approximation provided
by the jellium model. The motivation for this com-
parison is to shed some light on the effective chem-
ical valence (z) of the transition metals, which de-
termines the number of electrons that may be
treated as nearly free" in the sense of random-
phase-approximation (RPA) dielectric formulation
of dynamical screening in lattice dynamics. ~

The basis of the comparison is provided by the
usual sum rule connecting the longitudinal and
transverse phonon frequencies in the so-called
Coulomb lattice, i.e. , a lattice of ions of chemical
valence z interacting via long-range Coulomb poten-
tial, (ze) /R, between pairs at separation R. The
sum rule is

& ((u'„)'=(oj', , (3)

To interpret this result, physically, we compare

where s is the longitudinal or transverse polariza-
tion-mode index and

(4)

is the ion-plasma frequency, 0 being the atomic
volume and M the mass of the ion. Equation (3) as-
serts that if the frequencies are sheared equally be-
tween the three polarization modes (in the manner
of.Einstein's model), then the mean (Einstein) fre-
quency, (d&, of the Coulomb lattice is

the Einstein temperature of such a lattice, 9~
=h&z/kz, with the Debye temperature (6v) for
three simple metals of the Sd, 4d, and 5d series:
9&=277, 165, and 125'K for Ca, Sr, and Ba, re-
spectively, while 6& (experimental)= 330, 147, and
110 'K. The differences are small, and (as ex.-
pected) 6z &6v. The Debye temperature is a mea-
sure of the mean interatomic force (including the
contribution from electron-dielectric screening)
while the Einstein temperature is a measure of the
bare" (Coulombic) interatomic force. According-

ly, one can hope to improve on the agreement be-
tween the theoretical estixnate of the lattice temper-
ature (6z) and the experimental lattice temperature
(6v) by screening the ions.

We proceed therefore to consider a new (jellium)
temperature, 0&, defined as follows. In a jellium
model, one disregards the lattice and therefore the
jellium frequency which is purely longitudinal be-
comes ~~/(z(q))', where z(q) is the dielectric
function of the free-electron gas screening the ions.
Accordingly, in a real lattice it is reasonable to
suppose that the analog of Eq. (3), which leads to a
Debye-like spectrum for small q, will be obtained
by replacing the right-hand side of Eq. (3) by &oz~/

e(q). If we again shear the maximum jellium fre-
quency equally between the three modes of polariza-
tion, then we will be led to define the jellium tem-
perature:

6z = k ~p/kz(3& (qv )) (6)

where qv = (6z z/&)'~' is the Debye wave number.
Like 9&, this can be calculated theoretically from
the physical constants of the metal displayed in
Table I below. The dependence of 9& on the chem-
ical valence z along an isoelectronic sequence,
i.e. , elements characterized by the same inert-gas
core in the periodic table, is displayed graphically
in Figs. 1(a)-1(c) and compared with the experi-
mental 9z.

From the remarkable agreement between 9& and
9& for the transition metals of the 4d and 5d series,
we arrive at the surprising conclusion that the jel-
lium model is better for the transition metals than
for the sixnple metals of these series. The fact that
9& versus z is linear has implications for the sys-
tematics of the superconducting transition tempera-
ture (T,) for amorphous transition-metal alloys, z

which we shall discuss in a later publication of this
series.

III. LATTICE DYNAMICS IN LOCAL TMMP
APPROXIMATION

%e now turn to the lattice dynamics of the transi-
tion metals in local TMMP approximation. The ten
transition metals chosen for this study have fcc or
bcc Bravais lattices (with one atom per unit cell).
Thus in the framework of the Born-Oppenheimer
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TABLE I. Parameters of the jellium model. p is the mass density in g/cm [from C.

Kittel, Introduction to Solid State Physics, 4th ed. (Wiley, New York, 1971) p. 39); 27|v&
= [4x(ze)2/MQj ~ defines the ion-plasma frequency, v& (in 10 2 HE); k~= (37|2z/0) (a.u. ) is
the free-electron Fermi wave number„qz= (671 /0) is the Debye wave number; E(q) is the
Hartree dielectric function (with modification for Hubbard-Sham exchange) defined by Eq.
(A7) of Ref. 1 with e*=e; O~z is the jellium temperature (in 'K) defined by Eq. (6); and V(qg)
(in Ry) is the screened TMMP form factor (Appendix A of Ref. 1) evaluated at q&, which is
included here for comparison of the strength of electron-phonon interaction in simple and
transition metals: It may be verified that V(q~) vs z is linear along an isoelectronic sequence
(cf eq vs z in Fig. 1).

K'
Ca2+

Sc+
Ti"
yQ

Cr+
Mn+
Fe~
Co
Ni

Cu'

Zn
Ga"

4t

Se~

0.91
1.53
2.99
4.51
6.09
7.19
7.47
7.87
8.90
8.91

8.93
7.13
5.91
5.32
5.77
4.81

Vp

3.955
10.006
18.678
28. 747
39.189
25.211
16.228
24. 339
16.256
16.534

7.655
13.337
17.057
20.749
26.037
27.361

0.395
0.587
0.807
0.998
1.164
1.033
0.898
1.036
0.925
0.930

0.720
0.834
0.878
0.921
1.006
0.993

q~/2k~

0.630
0.500
0, 437
0.397
0.368
0.437
0.500
0.437
0.500
0.500

0.630
0.500
0.437
0.397
0.368
0.347

2.409
2.659
2. 641
2. 649
2. 672
2. 266
2. 055
2. 262
2. 022
2.016

1.735
2.140
2.503
2.795
2.945
3.269

70.6
170.0
318.4
489.4
664. 2
464. 0
313.6
448. 3
316.7
322. 6

161.0
252. 6
298.7
343,9
420.4
419.3

V(q&)

-0.039
-0.090
—0.256
—0.387
—0.521
—0.316
-0.1SS
-0.300
—0.220
—0.220

-0.028
-0.206
—0.269
—0.327
—0.403
—0.433

Rb
Sr+
Y
Zr~

Mo+
Tc+
Ru"
Rh
Pd2t

Ag'
Cd
I gt

Sn"
Sb"
Te~

Cs'
Ba~
La~

Ta"
w"
Re '
Os"

Pt"

1.629
2. 58
4.48
6.51
8.58

10.22
11.50

12.36
12.42
12.00

10.50
8.65
7.29
5.76
6.69
6.25

1.997
3.59
6.17

13.20
16.66
19.25
21.03
22. 58
22. 55
21.47

2.421
5.948

11.539
18.136
25.559
32.310
38.850

22. 486
16.696
10.560

4.857
8.529

ll. 512
16.678
17.211
19.160

1.724
4.520
8.698

13.313
18.342
23.322
27.919
16.127
16.020
7.716

0.369
0.538
0.736
0.910
1.069
l.190
1.290

1.088
0.886
0, 842

0.635
0.742
0.797
0.867
0.899
0.921

0.341
0.519
0.706
0.924
1.069
1.186
1.278
1.077
l.074
0.835

0.630
0.500
0.437
0.397
0.368
0.347
0.329

0.397
0.437
0.500

0.630
0.500
0.437
0. 397
0.368
0.347

0.630
0.500
0.437
0.397
0.368
0.347
0.329
0.397
0.397
0.500

2.515
2.819
2.810
2.816
2.827
2.880
2.944

2.507
2.329
2.129

1.840
2.291
2. 633
2. 910
3.188
3.453

2. 652
2.891
2.890
2.788
2.827
2.886
2.963
2.523
2.527
2.138

42. 3
98.1

190,7
299.4
421.1
527.5
627.3

393.5
303.1
200. 5

99.2
156.1
195.4
270. 9
267. 0
285.7

29.3
73.7

141.7
220. 9
302.2
380, 3
449.3
281.3
279.2
146.2

—0.036
-0.074
—0.166
—0.229
-0.312
—0.407
—0.463
—0.229
—0.160
—0.164

—0. 024
-0.185
-0.226
-0.280
-0.324
-0.364

-0.031
-0.055
-0.175
—0.247
—0.319
—0.396
—0.482
-0.257
-0.256
—0.240

Au+

Hgh
Tl+
Pb~
Bi"

19.28
14.26
ll. 87
11.34
9.80

3.609
6.096
8.250

10.607
12.117

0.637
0.721
0.774
0.835
0.852

0.630
0.500
0.437
0.397
0.368

1.838
2.331
2.716
2.988
3.314

73.8
110.6
138.7
170.0
184.4

—0.032
—0.206
—0.236-0.273
—0.300
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and harmonic approximations, the phonon disper-
sion relation, cd vs q, takes the form of a 3& 3 ma-
trix equation

[M&ua 5&„-D»(q)]e~=0, (7)

where e;, is the p. component (p. =x, y, z) of the unit
polarization vector of index s and q is the phonon
wave vector restricted to the first Brillouin zone.

The solution of the dispersion equation rests upon

FIG. 1. Variation of the experimental Debye tempera-
ture (8&) and the jellium temperature [ez, defined by
Eq. (6)] with chemical valence (z) for elements having
the same inert-gas core in the 5d, 4d, and 3d series.
The value of the chemical valence is indicated in the fig-
ure and the other parameters used for evaluating Oz are
displayed in Table I. Observe that extrapolation of Sz
to zero valence (z = 0) in Figs. 1(b) and (c) are approxi-
mately in agreement with the ez for the inert-gas solids,
Xe, and Kr.

2 — 2+ 2 2 (8)

where ~~=-M 'D', etc. If the ion cores are small,
so that there is no substantial overlap between
core" wave functions centered on neighboring at-

a knowledge of the dynamical matrix D„,(q). In
Toya's self-consistent-field method, 2' D is split
notationally into three more or less distinct contri-
butions, viz: (i) a Coulomb part D„', arising from
the direct Coulomb interaction between bare ions of
effective valence z; (ii) a (repulsive) Born-Meyer
part D~„arising from the exchange-overlap interac-
tion of core wave functions centered on neighboring
atoms; and (iii) an electronic part D„'„due to the
polarization of the conduction-electron gas by the
vibrating ions. D&'„depends on the pseudopotential
carried rigidly by the ions, i.e. , on the electron-
phonon coupling matrix elements. 5'7

In a crystal with cubic symmetry, Eq. (7) factors
in the principal crystallographic directions [100],
[110], and [111], so that the solution may be written
(symbolically )
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FIG. 2. V(q) and G(q) for Cu, Pd, and Fe. V(q) is
evaluated from the expression in Appendix A of Ref. 1
and G(q) from Eq. (11), using the model potential param-
eters displayed in Table I of Ref. 1; V(q) is in Ry, while

G(q) is dimensionless.
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function is given by the expression~9:

-0 25 —-0.25

0.5 1.0
q /2kF

I

1. 5
I

2.0 2.5

orna, then &u, will be negligible in Eq. (8) and we

would have simply

~ a I q+Hl'

where H is a reciprocal-lattice vector, and the t"

CO
= (d —(d

We shall return to the small-core approximation
below.

The form of the Coulomb frequencies in cubic
crystals is well known (see, for example, Ref. 24,
Table I). Thus in local TMMP approximation, we

are primarily concerned with the calculation of the
electronic contribution to the dynamical matrix,
which is of the form

Here V (q) is the Fourier transform of the full
"bare" ion-model potential, consisting of the
TMMP, V, the usual orthogonalization correction
V„(with which one associates an orthogonalization
charge a~, ), and the usual correlation correction
V„; Explicit expression for V'(q) has been given
in Appendix A of Ref. 1. e(q) is the Hartree di-
electric constant with the usual Hubbard-Sham mod-
ification for exchange and correlation via the func-
tion f(q). Since the local TMMP approximation has
been used in the derivation of Eq. (11), the
screened TMMP form factor is given simply by

V(q) = V'(q)/&(q) . (12)

We have discussed the motivation for using the
local TMMP approximation in Sec. I. So we need
only discuss the small-core approximation, 4'~~ and
its implications for the d-d exchange overlap con-
tribution D' to the dynamical matrix D in Eq. (7).
To elucidate the essence, consider Fe with outer
electronic shell configuration 3d s~. In the TMMP
calculation, we take z=3, i.e. , five d electrons
associated with the half-filled 3d shell are treated
as core" electrons: If we had used z=s, then we
would have to include the effects of these 'core"
electrons in each of the three contributions, D,
D', and D", in a self-consistent manner so as to
yieM the same result as z = 3, assuming that the ac-
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tual value of z is indeed 3 in the crystal. Quantita-
tively, the size of an ion (for given z) is measured
by the ratio, (R, /R, )'=-2u«of Ref. 3, Table 4 (for
simple metals), and Ref. 1, Table I (for transition
metals), where R, is the empirical Pauling radius
of the ion, and R, is the radius of the atomic
sphere. For both simple and transition metals, ex-
cepting the Group-IB-and-IIB metals —Cu, Ag, Au,
Cd and Hg —this ratio is no more than 20%. For ex-
ample, in Fe (z=3), (R, /R, )'=0. 144. We conclude
therefore that the small-core approximation is val-
id for most transition metals and, for purposes of
phonon-spectrum calculation, we may set D"=0 to
obtain the final expression (9) to which the rest of
this paper refers.

IV. NUMERICAL RESULTS AND COMPARISON WITH
EXPERIMENTS

In this section, numerical results based on the
local TMMP theory of Sec. III will be presented and

compared with the observed phonon frequencies of
the ten transition metals —Cu, Ag, Ni, Pd, Fe, Cr,
Mo, %, Nb and Ta. The calculations of the
screened TMMP form factor, V(q), from Eq. (12),
and the G function from Eq. (11), using the TMMP
parameters displayed in Ref. 1, Table I, and the
analytica, l expressions given in Ref. 1, Appendix A,
were performed with the aid of the IBM-360 com-
puter at Lincoln Laboratory. Typical results for
Cu, Pd, and Fe are displayed in Figs. 2(a)-2(c).

The calculations of the phonon-dispersion curves
in the principal crystallographic directions for the
ten transition metals were based on Eqs. (9) and

(10), and the Coulomb frequencies tabulated in Ref.
24, Table I. The ion plasma frequency (v), = &~/2z)
corresponding to the valence of the transition-met-
al ion were taken from Table I of this paper. The
results for the fcc metals-Cu, Ag, Ni and Pd —are
displayed in Figs. 3(a)-3(d); and those for the bcc
metals-Fe, Cr, Mo, %', Nb and Ta-are displayed
in Figs. 4(a)-4(f). Experimental points for the re-
spective metals and their sources in Refs. 10—18
are also indicated and compared with theory (con-
tinuous curves).

A few general remarks about the calculations of
the phonon spectra should be made, before turning
to details applicable to the individual metals. The
metals chosen for this study are grouped as fol-
lows: Cu, Ni, Fe, and Cr from the 3d series; Ag,
Pd, Mo, and Nb from the 4d series; and %, and Ta
from the 5d series. In each series, the TMMP pa-
rameters, A, (l = 0, 1, 2) are linear functions of zz

(the square of the chemical valence z), as indicated
in Figs. 4, 10, and 11 of Ref. 1. The linearity
holds over a range, R, &R &R„of values of the
model radius R . These TMMP parameters could
be determined, as discussed in Ref. 1, from the
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FIG. 3. Phonon dispersion curves for fcc metals, cal-
culated (continuous curves) and measured for Cu, Ag, Ni

and Pd. The experimental points are taken from Ref. 10
for Cu, Ref. 11 for Ag, Ref. 12 for Ni, and Ref. 13 for
Pd. Summations in Eq. (10) were carried up to 235 re-
ciprocal-lattice vectors.

systematics of the atomic-spectroscopic data, but
the available data for the 4d and 5d series were not
sufficient to determine the position and slope of A&

vs z with sufficient precision. However, it was
discovered during the preliminary testing of the
TMMP parameters with various properties, that
the phonon spectrum could be moved up and down

over a limited range by adjusting R and either A.o
or A„subject of course to the linearity of A& vs z,
in an isoelectronic sequence. Accordingly, the
TMMP parameters in the 4d and 5d series were
fixed in part by tuning" the local TMMP model to
fit the longitudinal phonon frequency at X for the fcc
or at H for the bcc structures.

Bearing this fact in mind, the overall good fit to
the longitudinal frequencies in Figs. 3 and 4 are
not surprising. But it is most remarkable that such
a fit with local TMMP theory is possible at all: it
is as remarkable as the relation 6&=6& found in
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FIG. 4. Phonon dispersion curves for bcc metals, cal-
culated (continuous curves) and measured for Fe, Cr,
Mo, %', Nb, Ta. The experimental points are taken from
Ref. 14 for Fe; Ref. 15 for Cr, Ref. 16 for Mo and Nb,

Ref. 18 for Ta, and Ref. 17 for %'. Summations Iin Eq.
(10)]were carried up to 326 reciprocal-lattice vectors.

the )cilium model [Fig. 1(a)], for the 5d series.
Another important point is the reproduction of the
diverse features of the phonon spectra of the transi--
tion metals. The phonon spectra of Cu and Ag are
similar and free from anomalies, in agreement
with experiment. The phonon spectra of Ni and Pd
are similar and also free from anomalies: in Pd,
we also obtain good agreement between theory and
experiment for the transverse branches. [Observe
in passing that the form factor V(q) for Pd does not
cross the q axis for q & 2k& in Fig. 2(b)]. Thus both
theory and experiment agree that the phonon spectra
of the fcc transition metals are free from anoma-
lies.

The situation is very different for the bcc transi-
tion metals-Fe, Cr, Mo, %, Nb, and Ta. The
phonon spectrum of Fe [Fig. 4(a)] does not have
anomalies, whQe the spectra of the other bcc met-
als have a variety of peculiarities. Because the
spectra for the bcc metals are worked out by the
same computer program, the replication of anoma-
lies in all but Fe, is a direct evidence that these
peculiarities are not spurious effects in the compu-
tation. The spectra of the group-IVB metals, Cr,
Mo, and W, have Kohn anomalies, as Pb, ~~ i. e. ,
the longitudinal branches "soften" before reaching
the zone boundary. The longitudinal and transverse
[100]branches of the spectra of the group-VB
metals, Nb and Ta, cross over (also as a result of
"softening" of the longitudinal branch) before reach-
ing the zone boundary, as Li. ' These effects
arise from the electronic contribution to the dy-
namical matrix involving the electron-phonon-in-
teraction matrix elements.

Finally, the theory tends to disagree in details
with the observed transverse phonon frequencies,
especially in the bcc structures, neat the zone
boundaries. This signals the fact that some impor-
tant factor must have been left out in the local
TMMP approximation used in this calculation. How-
ever, it was not considered instructive to attempt
to force agreement between theory and experiment
at this stage of the TMNP method. Obviously, the
nonlocality ()c dependence as opposed to 8 depen-
dence) of the TMMP form factors can make impor-
tant contributions, but these contributions are not
expected to be dominant, if our past experience
with simple metals is taken as an indicator. The
d-d exchange overlap contribution may also be im-
portant, but a priori calculation of this contribution
is, at best, nonexistent in current literature. The
somewhat arbitrary choice of the chemical valence
also deserves more systematic investigation, which
is now in progress.

V. CONCLUSIONS

It has been shown in this paper thai, as far as the
phonon spectrum is concerned, the transition-met-
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al model potential (TMMP) works in much the same
way for transition metals as the Heine-Abarenkov
model potential for simple metals. This is to be
expected in a unified treatment of simple and tran-
sition metals which has been the keynote of the gen-
eralized quantum-defect law of Paper I: It follows
naturally from the fact that the nearly-free-electron
perturbation is also applicable to the transition
metals. However, the dingo'/ matrix element,
(k1V Ik), normally considered unimportant for sim-
ple metals, now contains information about s-d hy-
bridization, as discussed in Sec. I, while the off-
diagonal matrix element, (kl V 1 k+ q) defining the
TMMP form factor V(q) is small, as in simple
metals. Inasmuch as the fitting of the phonon spec-
trum, especially with regard to the features arising
from the electronic contribution to the dynamical
matrix, is by far the most delicate test of how ac-
curately the electron-phonon-interaction matrix
elements have been constructed, we expect the
TMMP method to play a key role in future first-

principles investigation of strong-coupling (transi-
tion-metal) superconductivity. The calculations of
the resistivity and thermoelectric power of liquid
transition metals, the binding energies, and struc-
tural phase transitions are now in progress and will
be published in later articles of this series. From
preliminary results of such calculations and those
reported in this paper, it appears reasonably safe
to suggest that the TMMP method may weQ provide
the answer to several questions surrounding the
electronic structure and properties of the transition
metals.
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