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Recent applications of the concept of quantum defects in setting up model pseudopotentials for simple
or transition-metal ions presuppose that the atomic-spectroscopy data of such metals can be expressed
in terms of certain quantum defects. Experience indicates, however, that the old quantum-defect idea
applies only to group I and II metals at best, but not to metals of higher chemical valence (z & 3, z
being the nominal valence given by the group number, IA or B, IIA or B, etc. in the Periodic
Table). In this paper, a generalized quantum-defect law applicable to elements having z & 2 is deduced
empirically from an extensive study of the spectroscopic data of the first six rows of the Periodic
Table. The empirical law states that the energy levels F. „I of a single electron in the field of the
positive ions of elements having the same inert-gas core, e.g., the elements of the isoelectric sequence,
Li+, Be'+, ~",F'+, which are given (in the Heine-Abarenkov model-potential method) by the
spectroscopic term value of the ion plus one electron, i.e., by the term values of Li, Be+, ~ ~ ~,F +,
by the term values of Li, Be', ', F ', obey the relation E„,=-z /(n —5„,) +6„,, z —2, for the same quan-
tum defects (5 „6,). The old quantum defect (5,) and the new quantum defect (6,, equivalent to an
"atomic core shift") thus represent the deviation of the atomic potential of a given inert-gas configuration
from a Coulombic potential due to a nuclear charge z[e~. On the basis of this empirical law, the parameters
of a transition-metal model potential of the Heine-Abarenkov type, adjusted to the energies'„,:—E„,—0„„
have been calculated for all 30 group-B (excepting rare-earth) metals of the Periodic Table; and it has been
found that the 1 = 2 model potential parameter A reflects the Ziman-Heine-Hubbard resonance model of s-d

hybridization through its strong energy dependence of the form ($-b „)' for the 3d series, and similarly for
the 4d and 5d series. The application of the new model potential to the calculation of the various aspects of
the electronic structure of solids will be presented in the next and subsequent papers of this series.

I. INTRODUCTION

In this and subsequent articles, ' the electronic
structure of the transition metals will be studied
in the pseudopotential approximation based on a
new transition-metal model potential (TMMP) of
the Heine-Abarenkov type' '.

V =-ZA~P, for r R~
1

= —z/r for r &R

The symbols have their usual meaning: I', is the
projection operator that picks out the lth angular-
momentum component of an incident one-electron
wave function, A, (which depends on / as well as on
energy E) is a parameter representing the depth of
a potential well for given model radius 8„., and z
is the chemical valence of the isolated ion of the
metal. The TMMP represents the bare (un-
screened) electron-ion-interaction potential energy
at a separation x, and has to be screened by the
dielectric constant of the valence-electron gas in
order to obtain the effective (screened) or self-
consistent potential seen by a single valence elec-
tron in the metal.

In extending the model-potential method to the
transition metals, several questions arise. The
model potential parameters A, are to be determined
at the observed atomic-spectroscopic term values
E„, for the isolated ion or atom and extrapolated to

the appropriate energy, say E~, of the electron at
the Fermi level in the solid in the spirit of the
quantum-defect method (QDM). Thus, in the first
place, the quantum-defect concept should be ex-
tended to the transition metals, which is the prob-
lem tackled in this paper of the series. The next
basic question concerns the screening of the TMMP
and the application of the screened TMMP form
factors V(q) to calculation of solid-state proper-
ties: we choose for this purpose the calculation of
the phonon spectrum of the transition metals which
will be presented in Paper II of the series. ' Final-
ly, the question of electronic energy-band structure
and the characterization of s-d hybridization will
be discussed in Paper III. Each question will be
introduced more fully in respective Papers I, II,
and III.

It should be stressed that although our primary
interest is the transition metals, the present study
has been motivated by the systematics of the spec-
troscopic data of 56 elements, including both simple
(mostly group A) and the transition (excepting the
rare-earth) metals. The spectroscopic data indi-
cate that the relevant factor correlating the be-
havior of elements along a given row of the Periodic
Table is the common inert-gas structure of the ion
cores as well as the chemical valence (z), and
hence the atomic number. As a result, most phys-
ical properties turn out to depend on z in a simple
way for elements characterized by the same inert-
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gas core: unfortunately, z varies considerably for
the transition metals and we have had to use the
chemistry of the transition-metal ions and other
empirical data to choose this important parameter
of the TMMP.

We now turn to introduce the quantum-defect
question more fully in the context of the Heine-
Abarenkov (HA) method. Even for the simple met-
als, the HA prescription ' for applying the QDM
raises the question: does the concept of quantum
defect apply to all nontransition (group-A) elements
of the Periodic Table, and if so in what form? The
failure to answer this question first, before the
model-potential calculations of Animalu and Heine,
meant that the extrapolation of model-potential pa-
rameters in the spirit of the QDM remained an un-
defined concept. The question became exacerbated
the more in earlier attempts' to extend the HA

method to the transition metals: does the concept
of quantum defect apply to both simple (group A)
and the transition (group-B) metals of the Periodic
Table? It is true, however, that a solution of the
problem for the simple metals was eventually
found empirically by looking at the spectroscopic
term values of over 30 elements of the Periodic
Table: the solution wa, s that if R =R, (the ion-core
radius), a linear extrapolation of A, as a function
of the energy E is satisfactory, except (as pointed
out later by Shaw ) for d-shell electron-energy
levels. But the reason for this has remained ob-
scure to date, and as a result a natural extension
of the HA method to the transition metals could not
be founded on familiar grounds.

The aim of this paper therefore is to answer this
basic question first and (because the answer turns
out to be simple) then extend the HA method to the
transition metals. The basic question of extending
the concept of quantum defect to all elements of the
Periodic Table can be phrased somewhat more di-
rectly as follows: how seriously does the potential
of an electron in the neighborhood of an isolated
positive ion of an element, in particular a transi-
tion metal, differ from a Coulomb potential due to
a nuclear charge z I e I? Since the QDM is expected
to work only if the potential eventually becomes
Coulombic within a Wigner-Seitz atomic sphere of
radius R, &R so that a model radius R can be
found in the range R ~R &R„ the question boils
down to one of estimating the size of the ion core
R, in relation to R,.

According to Harrison, it is the small-core
approximation (R, /R, = 0. 5 for K', a simple metal
ion) which breaks down for transition metals (R,/R,
=1, for Cu', a typical group-B metal, according
to the estimate based on the renormalized-atom
method of Hodges, Watson, and Ehrenreich").
These theoretical estimates of R, in transition
metals are, however, at variance with the empiri-

cal Pauling radius' (R,/R, =0.41 for K', R,/R,
=0.54 for Cu'), on which the model potentials'4
are based. In other words, while the renormal-
ized-atom method" suggests that the atomic poten-
tial hardly becomes Coulombic inside the Wigner-
Seitz sphere for transition metals, empirical
Pauling radii suggest that the deviation from Cou-
lombic behavior must be of a simple nature.

A way of obtaining experimental evidence, for or
against the large-core model'0'" of transition met-
als, is to examine the accuracy of the quantum-
defect concept when applied to the transition met-
als. To the best of our knowledge, no previous
application of the QDM to the transition metals
exists in current literature: the most recent effort
by Seaton' had led to an extension of the QDM to
divalent metals, for atomic scattering rather than
solid-state applications. It is therefore to be ex-
pected that a successful extension of the quantum-
defect concept to the transition metals will be of
interest in solid-state physics, atomic physics and
chemistry. Such an extension will be presented in
Sec. II.

The outline of the rest of this paper is as follows.
The application of the extension of the quantum-
defect concept to the construction of the transition-
metal model potential will be discussed in Sec. III.
Numerical results will be presented in Sec. IV and
conclusions will be drawn in Sec. V.

II. QUANTUM-DEFECT LAW FOR ELEMENTS OF
ISOELECTRONIC SEQUENCE

The concept of quantum defect was introduced
for central potentials in the early days of atomic-
structure calculations by Hartree, ' and has been
used since then to explore solid-state properties
(as the QDM ), and more recently autoionization
cross sections" in atomic physics. The essence
of the concept is to utilize the spherical symmetry
of an atom in exhibiting the close resemblance of
the optical spectra of the alkali metals and the
spectra of hydrogen atom: Since the alkali metals
and hydrogen belong to the same column (group IA)
of the Periodic Table, and the positive ions of the
alkali metals, Li', Na', K', etc. , are simulated
by H' closely, the resemblance in question corre-
lates the elements on the basis of their common
chemical valence (z = 1).

In this section, we shall try instead to correlate
elements along a rase of the Periodic Table in the
spirit of Moseley's law as applied to an isoelec-
tronic sequence by Bowsen and Millikan. " The
motivation, physically, is that a valence electron
outside an inert-gas shell (characterizing a row of
the Periodic Table) tends to be kept out from the
core by the Pauli exclusion principle and will there-
fore feel a Coulombic potential due to a nuclear
charge z I el having the same configurational dis-
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Z„= —z'/X' = —z'/(n

The parameter

5„=n -N,

(4)

(5}

called the quantum defect, provides a measure of
the difference between V(r) and the Coulomb poten-
tial —z/r But, as i.s well known, this works
perfectly well only for the alkali metals (for z = 1).
(The quantum defects are slowly varying functions
of energy: a fact on which the success of the QDM
depends. ) However, for complex atoms having
more than one valence electron (z = 2, 3, . . .) out-
side the inert-gas closed shell, the spectra become
bewilderingly complicated and the quantum defect

tribution along a row of the Periodic Table. To be
explicit, we shall bear in mind two isoelectronic
sequences of simple and transition metals: these
are the second-row sequence,

Li' Be' B C' N' O' F'
7 7

and the Group-8 elements of the fourth row,
Cu' Zn ' Sc ', Ti ' V ', Cr ', Mn ',
Fe" Co ', ¹i' (3)

It should be observed, however, that Cu' and Zn '
have the configurations 18 2s 2p 38 3p 3d',
whereas Sc ', Ti ', . .. , Ni ' have the configuration
1s 2s 2p63s 3p, i.e. , have ten electrons less than
Cu+ and Zn +. Thus, Cu+ and Zn + do not, according
to our definition of isoelectronic sequence, belong
to the sequence of Eq. (3); instead, K and Caz' (in
the same row of the Periodic Table), which are
simple metals, do belong to the sequence of Eq.
(3), while Cu' and Zn ' logically belong to Ga ',
Ge ', As ', Se ', Br" isoelectronic sequence. We
shall return to this point in the last few paragraphs
of Sec. III.

Now, because of the spherical symmetry of an
atom, the spectroscopic term values can be labeled
by the usual quantum numbers (n, I, m) of the hy-
drogen atom. In the case of spin doublets, a
weighted mean of the two levels may be used to
characterize a state of pure l. For an electron
moving in an attractive Coulomb potential —z/r,
the energy levels are

E„=-z /n (Ry),

where n is an integer that increases by unity be-
tween adjacent terms of the same series. [We
shall work throughout in atomic units e = I= m = 1,
but E„will be expressed in rydbergs, so that 2E„
is the energy expressed in the atomic units (har-
trees)].

For a modified central potential V(r) which tends
to the form -z/r for large r, the eigenvalues may
be expressed in terms of an effective quantum
number ¹

seems no longer to work. The presence of more
than one electron outside the inert-gas shell intro-
duces exchange and correlation effects causing V(r)
to deviate appreciably from a central potential.
There is no systematic way of seeing how the quan-
tum defect is modified by this. But we have found
in the course of the present attempt to extend the
model-potential method to the transition metals
that the required modification is as follows:

E„,= —z /(n —5„,) +&„,. (6)

Here E„, is the energy level of a single electron in
the field of a positive ion, such as Be ', which (in
model-potential theory ) is given by the spectro-
scopic-term values of the positive ion plus one
electron, i. e. , by the term values of Be'. ~„, is
the old quantum defect and &, a new quantum de-
fect, which may be interpreted as an "atomic"
core shift, because of its connection with the Lin-
Phillips core shift of pseudopotential theory': the
two quantum defects have the remarkable property
that they are separately the same for fixed (n, l}
for a given inert-gas configuration, i.e. , for posi-
tive ions of an isoelectronic sequence, such as (2}
and (3), for z ~2.

The impressive accuracy of the generalized
quantum-defect law (6) is exhibited in Figs. 1(a)
and l(b), for the isoelectronic sequences (2) and

(3), using the observed spectroscopic data. '
Basically, Eq. (6) asserts that a plot of E„, versus
the valence z will be linear, with a slope deter-
mining 6„, and an intercept on E axis determining

Unfortunately, Moore's atomic-energy levels
are incomplete, and so it is not possible at this
time to test the validity of the empirical law (6) for
Co ' and Ni': However, the fact that Fe fits the
scheme rather well suggests that (6) may be used
to predict the expected values of the spectroscopic-
term values of Co ' and ¹i' . The possibility of
predicting yet unobserved spectroscopic-term
values with the aid of (6) is perhaps the most im-
portant consequence of the relation. Observe that,
in general, 4„, is small = —~ Ry: If it is neglected,
then E„,will scale with z in the same way that the
original Rydberg formula scales with the atomic
number Z . We believe that Eq. (6) is new.

III. TRANSITION-METAL MODEL POTENTIAL FOR
POSITIVE ION S

We next turn to the question of setting up a model
potential V, defined by Eq. (1), to simulate the
information contained in the quantum defects (5„„
5„,) about the nature of the true atomic potential
V(r) In view o.f the fact that 5„, represents a shift
of the zero of energy E„,for a given set of quantum
numbers (n, I) describing the state of a single elec-
tron in the field of a positive ion, it is apparent that
the QDM should refer to only the Coulombic part
of the true potential. Accordingly, we may write
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the true one-electron atomic potential for the elec-
tronic state (n, l) as

V„g (r) = V„g(x) + 2&„, (a. u. )

and the true radial wave equation as

(
z d' l(l + 1)+ ~ + V„g(r) P,~(r) = z(E„, a-i)P„g(r),

(6)
where V„, is Coulombic for r greater than R, (the
ion-core radius). It is the potential V„, that we
wish to represent by the model potential (1), so as
to reproduce the eigenvalue S„,—=E„,-4„, exactly,
within the framework of pseudopotential theory and
QDM.

The model potential for a positive-transition
metal ion, for a given angular-momentum state
is thus [at arbitrary energy, 8 = E--& (Ry)]

V' =-A, ($) for r~R
= —z/r for x &R (9)

and the model radial-wave equation is

—'+ + + + v.' x r =-,'Sx r .zd I(I+1)
(10)

in atomic units. The model wave function for the
lth angular-momentum state on which it acts (in an
isolated atom or ion) is of the form

]

(a)

Under the scale transformation

r - p = zr, 8- 8' = 8/z',
14
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K
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(b)
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Eq. (10) reduces, for r &R, to the radial-wave
equation for a hydrogenic atom of effective nuclear
charge z = 1. As a result, A, /z' is a function of
the reduced energy 8' at the scaled-model radius
zR, and is the same for all elements of an iso-
electric sequence, such as those in Eqs. (2) and

(3), at the equivalent atomic-term values 8„',. This
is a consequence of the generalized quantum defect
law of Eq. (6}.

Given this model, the determination of the mod-
el-potential parameters becomes equivalent to that
outlined by Heine and Abarenkov: we treat Eq.
(10}as an eigenvalue equation for 8, if A, is known
at given R, or conversely, as an eigenvalue equa-
tion for A, at given R for values of S equal to the
appropriate spectroscopic-term value of the free
atom or ion. As a matter of fact, the three param-
eters, A„S, and R are not independent: if we de-
fine the variable

10
K

W
8

20 40
Z2

60 80 100

FIG. 1. Spectroscopic term values E„& [of Kq. (6)] as
function of the square (z ) of the chemical valence (a) for
the isoelectronic sequence of Kq. (2), and (b) for the iso-
electronic sequency of Kq. (3). E„, for Be ', say, is ob-
tained from the term values of Be' (called Be xz in Ref.
5) and expressed in Hy, using 109737.3 cm =1 By,
relative to the spectroscopic limit (E2~); E2& is the
weighted mean, 3 N2p(&/2) +2E2&~3j 2~) of the doublet Enl
with total spin j=l +g() =1); and similarly for E&. Open
circles, triangles, and squares represent observed term
values for s, p, and d levels, respectively.

X=R (

then it is readily shown [Ref. 2, Eq. (16)] by
matching the logarithmic derivatives, X'/X of the
interior solution (r ~ R ) and the exterior solution
(r &R ) of Eq. (10) that one obtains an eigenvalue
problem for X,

Xj, ~(X) OD'(zR )+y(N, l) 'D'(zR )
j,(X) U'(zR )+y(N, l)'U'(zR )

Here, the functions U' and 'U' are the Coulomb
wave functions (tabulated by Blume et al. ) which
are, respectively, regular and irregular at the
origin, ' their respective derivatives (also tabulated
in Ref. 17) are the D' and 'D', where D' = p(dU'/dp);
and the j,(X) are spherical Bessel functions which
can be written in terms of sines and cosines. The
ratio y(N, l) of the two Coulomb wave functions is
the usual one that involves the quantum defect (6„,)
via the effective quantum number N =-n —6„„ in the
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QDM (Ref. 6, pp. 14V-14S):

I'(N —l) tanv(N —l —1)N"'
ryr+I+ I) (14)

12

10

K
6

4J
I

10 20
Z2

l

30
I

40

FIG. 2. (a) E'„& vs z is the same as in Fig. 1(a), but
also shown is the Fermi energy E& of an electron rela-
tive to an ion f.as calculated in Bef. 8, using Eq. (23) of
Ref. 4 and experimental data]. (b) Model potential
parameters A& vs z at E& for the R 's of Bef. 4 (Table
4) and Ref. 18 (Table 1); observe that zR~= 2. 8 for Li,
4. 0 for Be, and 6. 0 for B and C [see Eq. (11)).

The ratio gives the appropriate linear combination
of the Coulomb wave functions which decays expo-
nentially at infinity (at atomic-term values 8„,).

The numerical solution of Eq. (13) is quite te-
dious, '8 but the results have simple limiting values
that can be readily understood, viz. , when R falls
at a turning point, so that X '(R„)= 0, and when R
falls at a radial mode, so that X(R ) = 0. In the
first situation, Eq. (13) reduces for l =0 to

XcotX= 0,
which has an obvious solution X=0, and hence by
virtue of Eq. (12),

A, =-,')S). (15

This simple result asserts that Ao will have the
same dependence on z as the spectroscopic term
values 8„for elements of an isoelectronic sequence
independent of the value of R satisfying y. '(R ) = 0.
It is apparent from Fig. 2 showing E„,vs z' [Fig.
2(a)] and A, vs zz [Fig. 2(b)], based on the model-
potential parameters for the nontransition metall'

(Ref. 4, Table 4 and Ref. 16, Table 1) at E=Es,
that the proportionality of A, to h in Eq. (15) is
close to the physical situation in a crystal. It
should be recalled that in Refs. 4 and 18, R has
been chosen for the nontransition metals so that
the model wave function has no radial node in the
region r R (a condition that was easily fulfilled
in the computer programs ) which is tantamount to
choosing R close to the first turning point of the
model wave function, usually outside R,.

In the second situation, such that }t(R ) =0, the
logarithmic derivative y'/X becomes infinite and
hence, for l =0, Eq. (13) reduces to sinX=0. The
roots are X„=nz, n being an integer (or zero), and
hence by virtue of Eq. (12),

A, = —.
'

~

S ~+ —.'(ns/R. )'. (16)

In this situation, Ao vs z will again be linear for
elements of an isoelectronic sequence and have a
nonzero intercept on the A axis that depends on R .
As a result, if R„ is exactly the same for all ele-
ments of such a sequence, the linearity of A, vs z
will be maintained.

It is also valuable to establish a general condition
for the model potential to be continuous (A, = z/R ).
Suppose that X~ = zX is any eigenvalue of Eq. (13).
Then, by virtue of Eq. (12), we must have

A, =-.'
~

S~+-.'(~z/R )'. (1V)

Thus, if A, is to be equal to z/R, then we should
satisfy the quadratic equation

&'(z/R ) —2(z/R )+ iSi=0.
Naturally, we demand that this equation should have
only one root; this is the case if X~S = 1, and the
common root is z/R = I 8!(=A,). In short, the
depth of the model-potential well A, (measured in
atomic units) has to be numerically equal to the
magnitude of the electron energy 8 (measured in

Ry).
Turning now to the results of numerical solution

of Eq. (13) tabulated by Abarenkovz (Fig. 3}, we
see, in addition, that A, ($) may become infinite at
some atomic-term values, h„,. Figure 3(a} shows
Abarenkov's A, vs 8 for / =0, 1, 2 and the spectro-
scopic term values of Cu (appropriate for the model
potential of Cu'), viz. , the 4s, 5s, 6s; 4P, 5P, 6P; and
3d [estimated from Eq. (6)], 4d, 5d, for the actual
values of E„,= 8„,+4„,. In this plot, we see that
Ao and A& vary smoothly with energy through the
atomic-term values, while A~ goes through infinity
at E«and Es„, but not at the expected position of
the d-band resonance, E3 . However, as we have
pointed out, we should really set up a model poten-
tial for the "core-shifted energies, " 8„, (rather
than the actual E„,); if this is done, using the fact
that —&3~= z (Ry} [from Fig. 1(b)]=E«-E,z (from
spectroscopic data ) i.e. , 63~ =E4~, then the net
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E„[calculated as in nontransition metals, from
Eq. (23) of Ref. 4] are shown in Fig. 4(a), while
the A, vs z' for the sequence of Eq. (3) (at Er and

approximately the same R of Table I) are shown

in Fig. 4(b) (dashed line). The A, vs z shows a
discontinuity at z = 2 (independent of the choice of
R ).

The discontinuity at z = 2 is a new feature pecu-
liar to the transition ~etals which has provided a
clue to the physical significance of the "atomic-
core shift" 4 in the determination of the TMMP
parameters A, . From Eq. (16), it is clear that
the sloPe of A, vs z' can be chosen to be indepen-
dent of R, while the intercePt on the A, axis de-
pends on the choice of R and therefore reflects
the inherent arbitrariness of the pseudopotential:
the intercept may therefore be interpreted as an
analog of the Lin-Phillips core skiff "Thus. , the
key distinction between the transition- and simple-
metal model-potential theories is provided by the
size of the core shift; and a parallel displacement
of A, vs z (dashed line) for z &2, so as to eliminate
the discontinuity at z = 2 is tantamount to using the
same core shift for all group-8 metals of the Sd
series in Fig. 4(b) (solid line): it guarantees that
the parameters for Zn (considered as a simple

0 I

La Hf Ta
I I I I I I I

W Re Os Ir Pt Au Hg

ATOMIC NUMBER (A)

FIG. 5. (a) Illustration of the principle of analytical
continuation of model-potential parameters A&, as func-
tions of the chemical valence z in an isoelectronic se-
quence, from simple metals (including Zn, Cd, and Hg),
to group B (mostly transition metals) (also including Zn,
Cd, and Hg). (b) Chemical valence (z) of transition-
metal ions used in Table I, as function of the atomic num-
ber (A).

4

I

of the resonance will be presented in Paper IQ.
Finally, we turn to the difficult question of ex-

trapolating the A, (h) to the energy 8~ of the elec-
tron at the Fermi level in a crystal. First, we
use the actual E rather than 8, as in Ref. 8. The
procedure adopted in Ref. 8 is illustrated by the
straight lines joining the three actual s levels, E4„
E,„andEz, in Fig. 3(a), i. e. , theterm values lie on a
linear A, -vs-E curve at the term values E=E„,.
From such a straight line, A, can be obtained at
any neighboring energy, in particular E~. The re-
sult of carrying our this procedure using the actual
spectroscopic term values of the transition metals
(instead of the shifted energies, h„,) is illustrated
in Fig. 4. The spectroscopic data, together with

3

10
I

20
Z2

I

40 50

FIG. 6. (a) E„& vs z for the group-A elements of the
third row; observe breakdown of Eq. (6) for z &2, as in
Fig. 4(a). (b) A& vs z for the following values of R;
3.4 for Na, 2. 6 for Mg, 2. 0 for Al, Si, and P at Ez.
Parameters are taken directly from Ref. 4 (Table 4).
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FIG. 7. (a) E„& vs z for the group-A elements of the
fourth row. (b) A& vs z for the following values of R
4. 2 for K, 2. 6 for Ca, 2. 0 for Ga, Ge, As, and Se,
from Ref. 4 (Table 4) (except Ga, which has been re-
calculated at R = 2. 0, in order to exhibit the effect of
keeping R~ the same for z ~ 3). (o)

I

E5 E

metals'" and transition metals [see Fig. 5(a)], and
the R 's may be varied within R, R &R„over
which range we expect A, vs z to be linear, just
as in sinLple metals.

(iii) The slope of A, vs z (z ~ 3) may be deter-
mined when spectroscopic data are not available by
comparing elements of the same column (i.e. ,
same chemical valence) in the Periodic Table; for
z - 2, the validity of the old quantum-defect concept
suggests that A, vs z may pass through the origin
[as indicated by the dotted line in Fig. 4(b)].

(iv) The effective valence (z) of a. transition-
metal ion in the crystal [Fig. 5(b)] is given by the
rsominal value for elements with completely full or
less than half-full d shells; e. g. , z =4 for Ti
(group IVB); but is determined for all others,
e. g. , z= 3 for Fe (group VIII), mostly by the sta-
bility of the half-full d shell, as suggested by the
commonest chemical compounds of the transition
metal.

The essence of the above recipe lies in the suc-
cessful application of the TMMP method (in the
simplest possible way, preferably in local TMMP
approximation) to the calculation of solid-state
properties, e. g. , the phonon spectra of Paper II.
It applies in the same way to simple and transition
metals.

metal) is the same as the TMMP parameters for
Zn [considered as a group-B (tranSition) metal].
Accordingly, Zn, Cd, and Hg provide a basis for
relating TMMP and simple-metal model-potential
parameters [Fig. 5(a)] in the respective 3d, 4d,
and 5d series. On the other hand, a discontinuous
slope of A, vs z at z = 2 cap be expected, inasmuch
as the old quantum-defect concept works for group-
I and -II elements, i.e. , it is possible to find
quantum defects (5„',&0, &„',=0) such that E„, vs zz

passes through the origin [see dotted line in Fig.
4(a)], and similarly A, vs z passes through the
origin [see dotted line in Fig. 4(b)].

We now summarize these observations, as a
recipe for extrapolating the A, to neighboring en-
ergies in the spirit of the QDM, and generating
A, vs z in an isoelectronic sequence of transition
metals.

(i) The slope of A, vs z for an isoelectronic se-
quence is determined as for simple metals by
Abarenkov's tables [cf. Fig. 3(a)], but the energy
parameter to which TMMP parameters refer is
S=a -~.

(ii) The intercept of A, vs z on A, axis is de-
termined by treating Zn, Cd, and Hg as both simple

4

IX

I

O 3

A 1—
A2

10 20
Z2

40 50

FIG. 8. (a) E„& vs z for the group-A elements of the
fifth row. (b) A& vs z for the following values of R~:
4. 4 for Rb, 3.6 for Sr (Ref. 18 Table 1), 2. 4 for In, and
2. 0 for Sn, Sb, and Te, from Ref. 4 (Table 4).
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From these graphs we have interpolated the pa-
rameters of the TMMP at given values of the chem-
ical valence z for the pertinent model radii, R .
The results are tabulated in Table I, and apply to
a valence electron at the Fermi level in the solid.
Our expectation is that these parameters will
simply be plugged into the usual expression for the
simple-metal model-potential form factors V(q),
given by Animalu and Heine. However, because
of the strong energy dependence of A&, which, as
pointed out in Eq. (18) above, is related to s-d
hybridization in the transition metals, the pertinent
form of the TMMP I incorporating the usual ap-
proximation, A, =C(l~ 8)] is

V (r) = C (Ap C)Pp (Ag C)Pg (Ap C)P z

D

= — /r

for r «R

for r &R, (19)

10 20
22

50

where, specifically, C = z/R is quite a.dequate for
phonon-spectrum calculation (Paper II).

In view of Eq. (18), the potential

V„,(r) = —(A2 —C)P2 for r ~R

FIG. 9. (a) E„& vs z for the group-A. elements of the
sixth row. (b) A& vs z for the following values of R,
4. 8 for Cs, 3.6 for Ba {Ref. 18 Table 1), 2. 4 for Tl,
2. 1 for Pb, and 2. 0 for Bi, from Ref. 4 (Table 4).

=0 for r &R (20)

corresponds to Harrison's hybridization or reso-

IV, NUMERICAL RESULTS AND DISCUSSION

In this section we shall verify the generalized
quantum-defect law (6) as well as the associated
linearity of the model-potential parameters A, (as
function of z in an isoelectronic sequence) for the
remaining group A. and B elements of the Periodic
Table; the parameters of the TMMP appropriate
for a valence electron at the Fermi level in the
crystal will be tabulated; the calculation of the
TMMP form factors will be discussed in the sim-
plest (local) screening approximation; and the re-
sults will be discussed.

Figures 6(a) and 6(b)-9(a) and 9(b) cover the re-
maining group-A elements of the third, fourth,
fifth, and sixth row. These figures show that Eq.
(6) is quite well obeyed by all group-A positive
ions, and that A, vs z is linear (especially for
z~ 2) over a range of R 's in R,~R &R,

Figures 10(a) and 10(b) and Figs. 11(a) and 11(b)
apply to the remaining group-8 transition-metal
sequences Ag', Cd", Y', . . . ,

Pd'P' (fifth row), and
Au', Hg +, La", . .. , Pt' ' (sixth row). The spec-
troscopic data for these metals are scanty, but
except for the sixth row we always had enough term
values to determine the slope of E„, vs z and of
A, vs z with adequate accuracy, for l =0, 1, but
not for A2.

IL
3

I

A2

10 20
22

30 50

FIG. 10. (a) E„& vs z for the group-B elements of the
fifth row. (b) A& vs z, at the R 's of Table I. Both
spectroscopic data and phonon spectrum (Ref. 1) were
taken into account in the determination of the linear
trajectory. Note that the spectroscopic data are scanty,
especially for the d levels (see Ref. 5).
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nance term: it is a rapidly varying function of the
energy. Apart from this strong energy dependence,
V„ is of the same form as the Fong-Cohen empir-
ical (d-partial-wave) model potential. I

The full TMMP for a bare ion is V + V„+V = V'

say, where V„and V, are, respectively, the usual
orthogonalization and correlation corrections.
For definiteness, the analytical expression for the
screened-model-potential form factor, V(q) = V (q)/
&(q}, e(q) being the dielectric function of the elec-
tron gas, in local screening approximation, is dis-
played in Appendix A below. Numerical results for
Zn in the usual (simple-metal} approximation
(C—=A2) and in the TMMP approximation (C =z/R
WAN) are displayed in Fig. 12.

It should be observed in Fig. 12 that the reso-
nance term is more important in the region q ~ 2k~;
Harrison' found the resonance term more impor-
tant in the small q region, q& 2k~. The former is
easier to understand physically, for if the reso-
nance term is to transcend the tight-binding char-
acter of the d-shell electrons, then the Fourier
transform of the potential associated with it should

-0.1

K

Cy'

& -0.2

Zn

0.5 1.0
q/2k F

I

1.5
I

2.0 2.5

FIG. 12. V(q) in Heine-Abarenkov approximation
C =A2 in Eq. (19) is compared with the transition-metal
model potential (TMMP) (in the approximation C =z/R~
pd A2).

& —(a)

K
3

UJ
I

be appreciable at large q (corresponding in real
space to a potential that is strong at small dis-
tances from the center of the ion core). More
V(q)'s will be included in Paper II. The calculation
is straightforward, at least in the simple screen-
ing approximation presented in Appendix A.

Finally, in pursuit of the dependence of spectro-
scopic data on the chemical valence, we show in

Fig. 13 a suggestive correlation ' of the supercon-
ducting transition temperature T, and the square

Cy

14

12

~ 10
0

: Hg
I

10
I

20
22

I

30
I

40 50

FIG, 11. (a) EggJ vs z for the sixth row group-8 ele-
ments (excluding the rare-earths, for which the appro-
priate spectroscopic data are lacking). Only the spec-
troscopic data for Au, Hg, and La are available for the
ionized states of interest in this sequence, and these are
somewhat erratic (as the experimental points indicate).
(b) AJ vs z, at the R~'s of Table I, obtained from con-
sideration of the systematics of spectroscopic data along
rows and columns of the Periodic Table and from phonon
spectrum (Ref. 1).

10 20 30 50
Z2

FIG. 13. Empirical correlation between T~ (the super-
conducting transition temperature) and z . Experimental
data have been taken from Kittel (Ref. 12, p. 402) ex-
cept for technetium (taken from Matthias, Ref. 21).
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(z ) of the chemical valence, for pure crystalline
metals of the Periodic Table: one can attempt to
explain this systematics in terms of the scaling
property of the atomic pseudopotential determining
the strength of the electron-phonon interaction for
elements belonging to an isoelectronic sequence;
but we shall not pursue the analysis here.

V. CONCLUSIONS

We have shown in this paper, by unscrambling
the atomic-spectroscopic data in terms of the
empirical relation of Eq. (6), that the notion of
quantum defects applies to all elements of the first
six rows of the Periodic Table. For groups L4

and IB, and IL4 and IIB, ordinary and transition
metals, it appears that the old quantum-defect con-
cept of Eq. (4) applies quite well, but for elements
of groups IIL4 and IIIB, etc. , Eq. (6) including
the necv quantum defect n, „, (which we have inter-
preted as a "core shift") is clearly a better repre-
sentation of reality. The most important property
of the quantum defects for both simple and transi-
tion metals is the universality for elements of one

inert-gas configuration, i.e. , for an isoelectronic
sequence: This property provides a basis for a
universal model potential theory of positive ions of
all elements of the Periodic Table. The Fermi
energy E~ of an electron relative to a positive ion
(as formulated by Animalu and Heine ) also shares
this property and justifies the extension of the
quantum-defect concept to the solid.

The model-potential parameters given in Table I
for the transition metals will undoubtedly be as
useful as the parameters for the simple metals,
published earlier by Animalu and Heine. In de-
ciding the best way to generate these parameters,
extensive calculation of the various aspects of the
electronic structure of the transition metals, such
as phonon spectra, liquid metal resistivity, and

energy bands, have been performed in local pseudo-
potential approximation, using our old programs
for simple metals. Interesting systematics have
been observed and will be reported in subsequent
articles of this series. At each level, we find that
the model-potential approach leads to reasonable
agreement between theory and experiment.

TABLE I. Parameters of the transition-metal model potential. All quantities are in atomic
units except I E~ I, which is in rydberg; 0 and R~ have been taken from Kittel's book (Ref. 12,
p. 38) and the General Electric x-ray periodic chart, respectively; and the parameters A& ap-
ply to E=E& and have been interpolated from Figs. 4(b), 10(b), and 11(b).

CQ

Ag
Au
Zn
Cd

Hg
Sc
Y
La
Tl
Zr
Hf
V
Nb

Ta
Cr
Mo

Mn
Tc
Re
Fe
Ru
Os
Co
Rh
Ir
Ni
Pd
Pt

A()

0.25
0. 223
0.15
0. 99
0. 89
0. 97
1.60
0. 75
0. 90
2. 30
1.15
1.30
3.25
1.70
1.75
1.60
2. 30
2. 30
0. 89
3. 10
2. 95
1.60
1.15
1.30
0. 99
0. 75
1.30
0. 99
0. 89
0. 97

A(

0. 40
0. 40
0.50
1.14
0. 98
1.11
1.65
1.30
1.40
2 ~ 50
1.70
1.SQ

3.50
2. 30
2. 35
1.47
2. 93
2. 85
0. 98
3.20
3.55
1.65
1.70
1.80
1.05
1.30
1.80
1, 05
0. 75
1.11

A2

0.215
0.218
0.212
0. 98
0.87
0. 85
1.40
1.10
0. 85
2. 10
1.50
1.35
2. 90
2. 25
2. 25
1.40
2. 50
2. 50
0.87
3.30
3.30
1.40
1.50
1.35
0. 98
1.10
1.35
0. 98
0. 87
0.85

2. 2 79.4
2. 6 115.4
2. 6 114.6
2. 2 102. 0
2, 6 144. 8
2, 6 157.8
2. 0 168.7
2. 0 223. 1
2. 0 252. 2
2. 0 119.0
2. 0 157. 0
2, 0 15Q. 2
1, 6 93. 9
2. 0 121.3
2. 0 121.3
2. 5 80. 6
2. 0 105. 5
2. 0 106.5
2. 2 81.9
2. 0 96. 5
2. 0 99.3
2. 0 79. 8
2. 0 91.9
2. 0 94. 8
2. 2 74. 9
2. 0 92. 6
2. 0 95. 5
2. 2 73.6
2. 6 99.3
2. 6 101.6

1.0
1.0
1.0
l. 1
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.Q

1.0

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

R

1.814
2. 381
2. 589
l. 570
1.950
2. 120
1.531
1.739
2. 154
1.285
1.493
l. 474
1.115
1.304
1.2S5
1.191
1.323
1.172
1.512
1.058
1.058
1.400
1.266
l. 304
1.360
1.285
1.285
1.304
1.512
1.512

+et'

0. 157
0. 245
0. 317
0. 079
0. 1Q7

0. 126
0. 045
0. 049
Q. 083
0. 037
0. 044
0. 045
0. 031
0. 03S
0. 038
0. 044
0. 046
0. 032
0. QSS

0. 026
0. 025
0. 072
0. 046
0. 049
0. 070
0. 048
0. 047
0. 063
0. 073
0. 071

0. 086
0. 082
0. 082
0. 091
0. 087
0. 086
0. 090
0. 087
0. 086
0. 096
0. 095
0.095
0. 101
0. 100
0. 100
0. 102
0. 100
0.101
0. 095
0. 102
Q. 102
0. 090
0. 098
0. 098
0. 094
0. 096
0. 098
Q. 093
0. 091
0. 091
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APPENDIX A

In this Appendix, we wish to give an explicit ex-
pression for the screened-model-potential form
factor V(q}. In the local screening approximation

where

V'(q) = (kr + ql(V + V-+ V~)14& =-F(kr k.+ g) +B(q)
(A2)

say, V being the model potential defined by Eq.
(19) and V„,V„ the usual orthogonalization and
correlation corrections of Ref. 4.

In Eq. (A2),

B(q)= —
3 [sin(qR ) —qR cos(qR )]

SIC
Aqs

Swz 4w I E, I 24mzn,
2 cos(qR~) + II 3 II 2( R,)

x [sin(qR, ) qR,—cos(qR, )] . (A.3)

For Ik~+qI = k~,

F(kr, kr +q) = —4wO R (Ao —C) {[jo(x)] —x"' cos(x)j&(x)} —12w& 'R~(A~ —C)

&&{[j,(x)] —jo(x) jz(x))P, (cosH) —20wII 'R (Az —C)[[jz(x)] —j~(x) js(x)]Pa(cosH), (A4)

where x=krR, cosH=(1 —q /2k');

Pg(cosH) = cos8, Pz(cosH) = 2(3 cos 8 —1);

jp(x) = x sinx jg(x) = x sinx —x ' coax, j2(x) = (3x ' —x ') sinx —3x ' coax, j,(x) = 5x ' j2(x) —j&(x) ~

For Ik +ql4k

8wR~(AO —C). . . . 24wR (A, —C)F(k, k q)=- „+ '
} [ j ( ) jo(y) -yj (y) j ( )]-

x[xj2(x)j,( y) —yjz( y)j,(x)]P, (cop8') —
z [xjs(x)jz( y) —yj3( y)jz(x)]P2(cos8') (A5)

40wR (Az-C}
( -y)

where e*' = (1+a„,}e', (A 10}

x=k,R., y= lk. +qlR. ,

cosH'=[x +yz —(qR )z]/2xy.

The dielectric function c(q) is given by

e(q) = 1+[1—f (q)](4wze* /Qq )X(q/2k+), (A7)

f(q)=q /[2(q +kr+k, )]; k, =2k+/w (a. u. ).
(All)

In the TMMP of Fig. 12 for Zn, the approxima-
tion

where C=z (A 12)

y(X) = (3Er/2) —+ — ln
1 1 1-X~ 1+X '

Er = (k'k'r /2m*),

(A 8)

(A9)

was used, together with Table I, in evaluating
V(q). The final answer obtained by inserting the
numbers in Table I into V(q) is in Ry.
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