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A quantum-mechanical theory of second-harmonic generation in paramagnetic materials is developed when

the incoming radiation is in the microwave range, and it is shown to be in agreement with the experimental

results of other authors. The theory is also compared with a density-matrix approach based on

phenomenological relaxation times, previously developed by Boscaino et al. A qualitative model of the
phenomenon of second-harmonic generation is discussed, and as a by-product of this work, approximate
analytical solutions are obtained of the eigenvalue problem of a set of two-level systems coupled to a strong
monocromatic field.

I. INTRODUCTION

When a field of electromagnetic radiation is
present in a region of space occupied by a system
of few-level objects which can interact with the
radiation itself, absorption and emission processes
of quanta of the field by the objects can occur, if
suitable conservation rules which stem from the
invariance properties of the Hamiltonian of the sys-
tem happen to be satisfied. At the same time, the
internal state of each of the few-level objects may
be thought to change in connection with the changes
induced in the electromagnetic field. If the degrees
of freedom of the radiation field are not too highly
excited, the behavior of the system may be de-
scribed as approximately "linear, " in the sense
that frequency-mixing processes, with the appear-
ance of radiation of frequency different from that
initially present, should be negligible. On the con-
trary, when the occupation numbers of photons in-
teracting with the few-level objects become high
enough, one would expect "nonlinear" aspects of
the interaction between electromagnetic radiation
and matter to show up in the form, for example,
of the frequency-converting processes described
above.

A range of frequency particularly suitable for
experimental observations of phenomena of this
kind is the microwave region, because of the great
amount of experience which has been accumulated
in the last thirty years in the field of microwave
spectroscopy and of the sophisticated experimental
and theoretical techniques which have been devel-
oped in connection with ESR experiments. Along
these lines, the first experimental work was per-
formed by Boscaino et al. in 1968, by subjecting
a set of paramagnetic atoms, contained as impuri-
ties in a host crystal, to a strong electromagnetic
field of frequency + =2 GHz, and by observing the
output of the system at 2w =4 GHz. As a function
of an external static magnetic field, by which es-

sentially the distances (do between the various pos-
sible couples of levels could be varied, the power
generated at 2(d presented peaks of rather com-
plicated structure. In a subsequent paper com-
plete sets of measurements were presented (also
on noncrystalline paramagnetic samples) which
essentially confirmed the former results and made
it clear that peaks in the second-harmonic output
occur whenever either the incoming or the outgoing
2(d radiation fields are in resonance with any two
suitable levels of the magnetic atoms (coo v and
~0-2&v, respectively). Moreover the peak at &oo- + develops a dip at the center at high power levels
of the co radiation, acquiring the aspect of an anti-
resonance. Boscaino et al. were also able to
present a theory which was based on a density-
matrix approach to the probl. em with the use of
relaxation times. By solving approximately the
equations of motion for the density-matrix oper-
ators, they obtained components of the total mag-
netic moment of the system which varied at fre-
quency 2', thus providing a source for emission of
second harmonics. The theory proved to be ex-
tremely successful in relating all the experimental
data to each other in a coherent fashion and even
in predicting such unusual features as the dip at
the center of the coo-co peaks. The situation, how-
ever, remained rather obscure from the point of
view of the physical aspects of the phenomenon,
since the role played by the introduction of the phe-
nomenological relaxation times in determining the
features of the experimental results was not clear-
ly discernible from the role played by more in-
trinsic quantum-mechanical properties of the sys-
tem, and since a modelistic picture of the genera-
tion of second harmonics was lacking.

The fully quantum-mechanical treatment of sec-
ond-harmonic generation by an isolated spin S= ~

yielded results' which were in qualitative agree-
ment with the experimental data, but essentially
failed to explain important features of the 2' lines
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such as the dip at the center of the (dp- + lines. A

much more satisfactory agreement with experi-
ments was successively obtained by considering
the problem of N spins and by taking into account
the coherence properties of the spin system. Along
these lines most of the experimental features could
be explained. The aim of the present paper is to
present in a unified and self-consistent fashion the
results of the purely quantum-mechanical approach
to the problem of second-harmonic generation by
paramagnetic materials, to extend the calculations
previously published as preliminary results, ' to
compare their predictions with those of the den-
sity-matrix approach and with the experimental
results, and finally, to present a modelistic semi-
classical representation of frequency conversion
by a paramagnet. In this way it shall be possible
to obtain a clear picture of the fundamental aspects
of the phenomenon, among which the role played
by superradiance shall be particularly stressed.

In Sec. II the Hamiltonian of the system is found
and the coupling constants are calculated for the
paramagnetic materials on which systematic ex-
periments have been performed. Because of
mathematical difficulties these coupling constants
are calculated for a geometry of the cavity in which
the electromagnetic fields are established similar
to but different from that adopted in the actual ex-
perimental setup, in such a way that the calculated
constants should not differ essentially from the
actual ones. The results of this section shall be
found very useful to evaluate the order of magnitude
of effects connected with the structure of the opp

-(d lines. In Sec. III the technique whjch permits
the calculation of the transition amplitudes which
generate second harmonics is discussed from a
general point of view, and this technique is applied
in Sec. IV to the calculation of second-harmonic
generation by a single spin S = 2. In this section a
brief comparison with the experimental results
shows the inadequacy of the single-spin theozy in
predicting the structure of the experimental lines.
In Sec. V we treat the N-spins problem in the
neighborhood of vp- cu, obtaining transition ampli-
tudes which are in agreement with the experiments,
and we discuss a physical semiclassical model for
the generation of second harmonics by the N spins.
As a by-product of this section we also present ap-
proximate analytical solutions of the eigenvalue
problem of a set of two-level objects coupled by a
linear interaction to a monochromatic radiation
field, not necessarily in resonance with the objects
themselves. In Sec. VI the region around (dp 2(d

is investigated, and the physical model used in
Sec. V is shown to behave reasonably also for the
lines in this region. Finally, Sec. VII is devoted
to the comparison of the single-spin with the N-spin
results, to the comparison of our N-spin theory

with the density-matrix theories and to a discussion
about a possible experiment aimed towards clarify
the role of superradiance in the intermediate steps
of the process by which power is converted to sec-
ond harmonics.

II. SPIN-PHOTON HAMILTONIAN

A. Spins

Complete sets of measurements' have been per-
formed on Cr ' in Al&03 and on diphenylpicrylhy-
drazyl (DPPH}. As is well known, the spin-orbit
interaction and the octahedral field leave a quartet
as the ground state of the Cr ion, which can be
described by a spin S= 2 formalism. The trigonal
distortion of the octahedron of oxygen atoms sur-
rounding the ion causes further splitting of the
levels, and the Hamiltonian for this system in an
external magnetic field can be expressed in terms
of the tensors g and D as'

5e= ps(H ~ g ~ S)+S ~ D ~ S. (2. 1)

In order to have the possibility of varying the angle
between the static magnetic field and the micro-
wave fields without trouble from anisotropy, the
experiments have been performed with the static
field along the z axis, and with the c axis of the
crystal along the y axis of the reference system.
ln such a reference frame the Hamiltonian (2. 1)
can be written as

X gape HS, —gD[S, —3S(S+ 1)]—«D(S, +S.), (2. 2)

where'
D —5. 746 GHz, g —1.9867

The eigenstates of (2. 2) can be calculated as
3 2

n' = an', m m,
m=3(2

(2. 3)

(2. 4)

where the a's are numbers which have a compli-
cated dependence on H. In an ESR experiment with
a microwave field h of 2. 7 GHz in the x-z plane,
the only magnetically allowed transitions are I & ')-

I ~') ( 500 G) and I —~') —
I —~ ') ( 2500 G). The

matrix elements of S„and S, between these two
couples of states can be calculated as

{-,' 'is„i-,'g-l, {-,"is,i-,")=o (a-500 G),

(&-2500 G} .
(2. 5)

Each of the two couples of levels can thenbe treated
independently of the other, and it is seen from
(2. 5) that it can be assimilated to a spin S = r with
an appropriate effective magnetic moment. The
interaction Hamiltonian with h shall then be of the
form

y,«h(S„cos8+S, sin8),
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where 8 is the angle between the direction of h and
the x axis. The splitting within each of the two
pairs of levels due to the interplay of the trigonal
distorsion and the external magnetic field can be
formally represented in the Hamiltonian by a term
&uoS, (g= 1), so that the Hamiltonian for each pair
of levels interacting with a microwave field in the
x-z plane shall be written

K = &ooS, +y,«h(S, cos8+ S, sin8),

where we find approximately

6 MHz/G (I-"&-
I
z'&)

yeff
1.2 MHz/G (1 —&')

I

—z'&) . (2. 7)

We shall adopt the values (2. 7) in our calculations
on Cr ' ions, neglecting the slight variation of y,«
in the range of values of cop we shall be interested
1Q.

DPPH, on the other hand, is a free radical with
an unpaired electron. In a concentrated crystal a
single ESR line is observed with a g = 2. 0036, the
line being slightly anisotropic. This anisotropy is
difficult to observe at 2. 7 GHz and we shall neglect
it. The line is strongly exchange narrowed, and
in a dilute liquid solution the line broadens into
five peaks which can be described by a S = & Hamil-
tonian

3C=gpsS ~ H+A(i i S+Iz S),
~e'

where I, and I2 are the nuclear spins of the two N
atoms where the unpaired electron spends most of
his time. ' The simple form of (2. 8) is due to the
fact that terms depending on the relative orientation
of the molecule and of the external field H are av-
eraged out by the rapid motion of the molecule it-
self in the liquid. If the solution is not liquid (as
in the case of the experiments to which we refer in
this paper}, the five resonances merge into a sin-
gle isotropic line about 40 G broad. As in the case
of Cr ' discussed, we shall disregard the broaden-
ing and we shall describe DPPH by the Hamiltonian
(2. 6) with the same value of y,«as for free elec-
trons.

B. Photons

the system. The Hamiltonian of the cavity then
takes the form

=~ +aapa .
In the experiments under consideration, bimodal
cavities have been used, that is, cavities where
only two modes can be appreciably populated and
the others are strongly damped or need in order to
be excited frequencies that are too high. We shall
call o. and P the operators pertaining to the two
modes, and we shall assume that the cavity is
tuned so that ~~=2~ —= 2+. Therefore the effective
Hamiltonian of the cavity is

X= &e~e+2~P~P,

and the fields are

(2 8)

E(r) = i(&o/2)'~ [ad~(r) + o~p~(r) + P W2+z(r)

+ P'V 2m,'(r)],
H(r}=(c'/4&@)' [a v 2»«p (r)+a~ a 2&x''(r)

+ P» V,(~)+P'» ~;(r)]. (2. 10)

In actual experiments the 2&v mode (5.4 GHz) is the
TEgpg of a rectangular cavity. This is the lowest-
frequency mode of the cavity, and the (d mode is
created by introducing a thin metallic slab of vary-
ing length which makes the cavity a partly reentrant
one. The ur field is therefore of irregular form
and difficult to calculate. We have therefore in
our calculations changed to a coaxial cylindrical
cavity, so adjusted that the frequencies of its TE»,
and TEp„modes are 2. 7 and 5. 4 GHz, respective-
ly. If the length of the cavity is 9 cm and the outer
and inner radii 3 cm and 4. 5 mm, respectively,
then the normalized eigenfunctions for the two
modes in cylindrical coordinate are approximately'

f y" - (1/2. 4r)[Z, (0 58r) —0..007N, (0. 58r)]

xsin8 sin(0. 35z),

(2. lla)

TE»,. y', - (1/4. 1)[J",(0. 58r) —0. 07N,'(0 58r)].
! x cos8 sin(0. 35z),

!

!

We shall describe the electric and magnetic fields
in the cavity as usual in terms of the normal modes
y,'(r) of the cavity itself:

E(r) = i Z'(z ~,)'"[a,q,-(r) + a,'q,'(r)],

H(r) =Z (c /2u&~)'~ [a~& x p~(r) + aJV x rp~(r)),

TE011

!

' pg=0,

yz = (1/4. 7)[Z,(I.38r) + 0. 26N, (1.38r)]
x sin(0. 35z),

(2. lib)

where p~(r) = [p~(r)]* is the eigenfunction of the
operator V' with the appropriate boundary condi-
tions, corresponding to the eigenvalue &u„'/c', and
the a~ are the Bose operators for the kth mode of

where ~, and N, are the Bessel and Neumann func-
tions of order one. In the experiment we wish to
study, the sample is placed at the bottom of the
rectangular cavity (z = 0 plane) in a region between
the slab and the walls where the o and P magnetic
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+ [E(Q + 0 ) + X( P+ P )]Z(Sg cose + Sg sine),

(2. 12)
where the index n runs over the paramagnetic cen-
ters, co-2. 7 6Hz, and where for each of the para-
magnetic centers considered in Sec. GA

q = 4. 8 x 10 ' Hz,

E —9.5x10 Hz,

X —V. 1x10 Hz

(I-."&- I-."& m c.")
x=1.4x10 ' Hz

g —2. 5x1Q 3 Hz, X —3.7x10 Hz

( I

- z '&-
I

z '& in DPPH) .
We wish to stress that these values for the coupling
parameters are only indicative of the order of
magnitude, but they should be rather accurate in

fields are parallel and the electric field is null.
Moreover, the sample is small enough so that the
r dependence of the fields within the sample itself
can be disregarded. We obtain a similar configura-
tion in the coaxial cylindrical cavity along the line
z = 0, 8 = 0 at the bottom of the cavity, as can be
seen from (2. 11) upon application of the curl oper-
ator. Along this line the only component of the
magnetic field is radial, and we find

(& x q&„)"= 0 09[JI(0. 58~) —0. 07N', (0 58~.)],
(& xpz)" = 0.08[4~(l. 38r)+ 0, 26N~(1. 38r)] .

When these expressions are used to plot the ratio

R(r)= (ex'~)"/(ex', )"

as a function of r, it is easy to see that it does not
differ much from the free-space value of 2, except
in a small tract near the inner conductor, where it
may become very smaQ.

C. Interaction

We now turn to the approximate determination of
the constants in the interaction Hamiltonian. Plac-
ing the sample at r-1. 5 cm along the line z = 0,
~ = 0, and a.ssuming that the fields are homogeneous
over the volume occupied by the spins, we find
from the final expressions in Sec. II8

0. 02 cm ~,
I
V x yz I

- 0. 04 cm ~~;

substituting in (2. 10), we have for the magnetic
fields

8. 2x10 ' (a+a ) 6,

Ihsl 1.2x10-9(p+ pi) G.

From (2. 6) and (2. 9) we have finally the total
Hamiltonian of the system

X= ~a'a + 2~P'P+ ~,Z S",

their relative magnitudes.
The S", (i = x, z) in (2. 12) are the spin operators

S"=~ pertaining to the nth spin in the sample. We
may now introduce the total spin operators

S, =Z S", (i=x, y, z) (2. 13)

x(S,cos8+S, sinp) . (2. 14)

In the rest of this paper we shall use Hamiltonian
(2. 14) as the starting point of our calculations both
in the case of an isolated spin S=~ and in the case
of many spine [in which case the S operators are
those defined by (2. 13)].

We wish to emphasize that we are neglecting in
this simple model all sources of homogeneous and
inhomogeneous broadening of the spin levels, ex-
cept of course that due to the interaction with the
electromagnetic field. Therefore each spin feels
the presence of the others onlythrough the radiation
in the cavity. Furthermore, we have neglected
also any broadening of the cavity modes which
comes from loss at the walls, that is to say from
a finite Q value. These assumptions, of course,
can be justifyed only a posteriori, when it is shown
that this model gives a fair picture of the main fea-
tures of the generation of second harmonics.

III. GENERAL THEORY

Hamiltonian (2. 14) describes the coupling of the
spin system to the u and 2& modes of the cavity,
and should contain all the information needed to
calculate the generation of second harmonics. We
first split off (2. 14) the "free" Hamiltonian

+p = (dQ 0 + 2(dp p+(dpSg, (3. 1)

and we label its eigenstates by the symbol ln, m,
x, I'

&, where n and m are the numbers of photons
in the v and 2' modes, respectively, and x is the
value of the z component of the magnetic moment
such that

S, In, m, x, 1'& =xIn, m, x, 1'& .

F, on the other hand, represents any set of quan-
tum numbers necessary to specify uniquely the
state of the system. We shall be interested in
transitions induced by the rest of K between these
states, such that in the final state the number n is
decreased and m is increased. These transitions
are obviously responsible for the generation of
second harmonics. Since the eigenvalues of (3. 1)
corresponding to the eigenstates In, m, x, I'& are

which have angular momentum commutation rules.
In terms of these operators, whose introduction is
useful in our case of magnetic fields homogeneous
over the sample, the Hamiltonian (2. 12) takes the
form

X= (ant n + 2u) pi p+ &uoS, + [e(a + a ) + X( p + p )]
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E„=n~ + 2m' + x+0, (3.2) &J 6 cos~ E 6 sin~ XJ X cosg A. A, sing

it is obvious that the simplest among the transitions
which conserve energy and generate second har-
monics are

In m, x, r& In —1, m+1, x-l, r&,

In, m, x, I')-In —3, m+1, x+1, I')

in the region (do-+, and

In, m, x F& In —2, m+2, x —I, r&

in the region +0-2+. In addition to these, we have
also

In m, x, r& In —2 m+I, x, r&,

which would appear to be independent of ~0. This,
however, is not so, as we shall see later, due to
the resonant character of the part of the interaction
responsible for this transition, which causes it to
be important only in the regions coo (0 and (do 240.
We are thus led naturally to consider these two
regions of +0, the static magnetic field H being
swept from 0 upward, as those in which conversion
of electromagnetic power to double frequency is
permitted at the lowest possible order in E and X.
In all the other regions, energy-conserving transi-
tions which generate second harmonics are of high-
er order and we shall disregard them. We also
wish to point out that when 8 = 0, that is, at right
angle between the static and microwave magnetic
fields, the part of X which induces the mentioned
transitions reduces to

X„,=[&(a+a )+X(P+Pt)]S, ,

where

Xf t X XQ

In this case the parity of n+m+x must be con-
served and only transitions of higher order than
those hitherto considered are possible. These
transitions have been studied in some detail by one
of the authors. ' On the other hand, when 8= ~m

(microwave field parallel to static field), X„,be-
comes

X„,= [e(a + a~) + X( P + Pt)]S„
and x being a good quantum number, X obviously
splits into two commuting parts for o. and P oper-
ators, which can be diagonalized simultaneously,
leading to no power conversion.

We are now ready to examine in more detail
X„„which we write in the form

X„,=&e,(S,a+S at+S,at+S a)+e„(S,a+S,a~)

+z X~(S+P+S P +S+P +S P}+X„(SP+S~P ),
(3.3)

where

X=XO+V+X'. (3.4)

we may now introduce the resolvent operator

G(z) = I/(z -X}
and calculate the transition amplitudes as

(3. 5)

n, m, x, I' Gz n', m', x', I' e"'dz, 3. 6

where the contour of integration encircles in a
counterclockwise sense all- the poles of the inte-
grand on the real axis of the complex z plane. The
problem is, of course, to calculate the matrix ele-
ment in (3.6), and for this we introduce the com-
plete set of eigenstate of X0+ V which we shall label
id, ) or le„). In fact, we obviously have

(n, m, x, F IG(z) In', m', x', F&

= 2 &n, m, x, r Id. &&d. IG(z) le

and because of (3. 7) the problem is reduced to
evaluating the matrix elements of the resolvent
between eigenstates of X0+ V:

&d. IG(z)Ie. &=-«. I, &,V, I.„.&. (3.8}

The problem of evaluating (3. 8) can be simplified
if (3.8) itself is cast in a more convenient form
due to Cohen-Tannoudji. ' A particular subspace
which Id„) and le„.& belong to is chosen, and the
projection operators P and Q are introduced, which
project, respectively, into and out of this sub-
space. The general criterion according to which
this subspace is chosen is that it should be as few-
dimensional as possible; but in many instances, as

and where we have introduced the raising and low-
ering spin operators

S, =S„+gS .
From the form (3. 3) of X„, it is transparent that
we cannot use straightforward perturbation theory
in order to calculate the transition amplitudes we
are interested in, since the operator

2 e,(S,a+ S at)

might give rise to dangerous energy denominators
in the region +0-&d, and the same is true for

g X~(S,p+S P~)

in the region &0-2'. Either of these terms, de-
pending on the region of +0 we are studying, calls
for a nonperturbative treatment. We shall there-
fore call it V, and consider it together with Xo with
the aim of diagonalizing exactly Xo+ V. We also
call X' the remaining part of K„„and we have
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we shall see below, it is not convenient to reduce
it to Id„) and I e, .) only. For any operator 0, the
symbol Op=-I'OP is defined. It can then be shown
that in terms of I' and Q

G(z)r = 1
z —(Kp+V)r -R(z)r '

where

l I Q IR(z)=K +K
( ), 3C

(3.9)

(s. 10)

Operator equation (3. 9} is exact, and its improve-
ment on (3.5) lies in the fact that inverting the
matrix of P[z —(Xp+V)+R]P is, in general, easier
than inverting the infinite matrix of z —(Xp+ V) -3C'.
A price is paid of course in increased complexity
of the structure of R(z)r in comparison with that of
X', but this is a price worth being paid since it is
generally possible to find approximations for the
matrix elements of R(z}r which very much simplify
the computation.

The choice of the dimensionality of the subspace
into which I' projects any state is, in principle,
entirely free, since (3.9) is an exact result, as we
have already pointed out. We are going to approxi-
mate expression (3. 10) however, and therefore the
choice of I' and Q depends on this approximation in
order to have reliable results. Let us assume for
example that we wish to calculate a diagonal matrix
element (al G(z)pl a), where I a) is an eigenstate of
Xp+ V corresponding to the eigenvalue E„and that
it is reasonable to expect that the shifts of the ei-
genvalues of Xo+ V due to X' are small with respect
to the distance between any two unperturbed eigen-
values of Xo+ V itself. We may therefore expect
that whatever subspace we choose, the operator
R(z) can be formally expanded in powers of X' as

R(z) =3C '+X ' X ' .
z -Xo —V

Therefore from (3. 10) and (3. 12)

& lG() l
&=.-E.-&.lx'l. &

(3. 12}

—(alK"
V

X la). (3. 13)

Introducing the unit operators g I b)(b I in (3.13),

R(z) =K'+3C' K'
z -Xo —V

Q ~r Q
z -Xo —V z -${'.0 —V

(3. 11)
and the expansion truncated to some appropriate
term. We then choose the simplest possible sub-
space consisting of the single vector la) (and P
and Q accordingly} and to fix the ideas decide to
truncate expression (3. 11) as

where I b) is an eigenstate of 3Cp+ V, the last term
of this expression becomes

&a lx' @ x'la&

(alK'l b) (blX'la) (3. 14)

where the prime over the gp is a reminder that the
effect of the Q operator is such that I b) 0 la) in
(3. 14). Introducing (3. 14) in (3. 13) and inverting,
we find

1
-E -A g'Ia I'y( E)a

where we have put

&a lX la& =A, &a lK'lb& =R, .

Equation (3. 15) has a queer aspect, because one
would expect (a I G(z)~ la) to have poles at all the
eigenvalues of X, while (3. 15) can only have poles
near the eigenvalues Ep of states I b) of Xp+ V which
are connected to la) by 3C' at first order. More-
over an ever increasing number of the missing
poles near {E,), {E~},... keep appearing in
(a I G(z)r la), brought in by terms like

„.(z-E )(z-E.)' ... (z-E )(z-E.)(z-E.)'
(3.16)

in the denominator of (3. 15) if, instead of truncating
R(z) as in (3. 12), one keeps terms like

x Q x Q x
z -3Cp —V z -Xp —VQ, Q, Q
z -3Cp —V z -Xp —V z -Xp —V

in which the chains of K' operators connect the
state I a) with itself through the eigenstates {Ic)J,
{ld&), ... of 3Cp+ V at second, third, .. . order.

In fact Eq. (3. 15) is wrong as it stands, but for
small A and 8's the residues of (a IG(z) la) at the
poles of X near {E,), {E,), ... are smaller, the
higher the order is at which the states {Ib &), {Ic&},
.. . are connected to la) by 3C', so that the contri-
butions coming from these poles to the integral (3.6)
can be neglected and the series for R(z) convenient-
ly truncated. This can be easily seen by first add-
ing the terms (3.16) to the denominator of (3.15),
which can then be written as

(al G(z)r la)

II,......(z -E,)(z -E,) ~ ~ ~

(z-E.-C.)II, .....(z-E, -&,)(z-E. -&.)" '

(s. 17)
where f&, the shift of the energy E, caused by X',
is a small quantity which depends on A and 8, and
then calculating the residues of (3. 17) at E,+ l'„
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IV. ISOLATED SPIN S

In this section we investigate the generation of
the second harmonic by an isolated spin S= &. We
follow the program outlined in Sec. III, and con-
sider separately the two regions ~0-co and ~0-2'.

A. Region wo-w

Since the state of the single spin is uniquely de-
termined by the value of S„we do not need I' to
label our states, and the transitions of interest
with initial states on the same energy shell are of
the sort

~n, m, --.'&-~n-2, m+1, —,'&,

~s-l, m, 2&-~s-2, m+1,

~In, m, —z&-~n —3, m+1, —.'),
~s-l, m, z&-~n —2, m+1, z)

(4 1)

(E, +f~}, (E,+t;,}, ... under the assumption that

E&-E,&E -E &E&-E,& ~ ~ ~ .

It is vital to this way of proceeding, however, that
none of the energies E, (i &a) be as near to E, as
O(f) W. hat we have said can easily be generalized
to a matrix element (aIG(z}~15), and it can be con-
cluded that if one wants to develop R(z) as in (3. 11)
and truncate the development, then the subspace
into which P projects should contain all the eigen-
states of LCD+ V whose energies are in the neighbor-
hood of E, and E~, and through which lo) and I'5)

are connected by X ' at any order.
On the other hand, the shift of the eigenvalues of

++ V due to $C
'

may not be small. In this situation
we cannot expect that the truncation of the series
(3. 11) for R(z) is legitimate, and we are compelled
to find other approximations. It is then desirable
to find a criterion to select some partial summa-
tions of that series whose contribution to a given
matrix element is dominant. If this is possible,
then the dimensionality of the P subspace can be
reduced without danger of losing important contri-
butions from the residues of the, neglected poles.

We may therefore summarize our techniques as
follows. We first select the appropriate 7 out of
X„„depending on the range of ~0 we pre interested
in, and diagonalize Xo+ V. We make gppropriate
approximations in R(z), and accordingly choose the
P and Q operators. We then calculate the matrix
elements of (3.9) between the eigenstates of jC0+ V
in terms of which we have expresseg the initial and
final states of our transition. Introducing expres-
sion (3. V) in (3.6} and performing the contour inte-
gration finally yields the sought-fop complex ampli-
tude.

The part of X„,which contains dangerous terms
is obviously

V= zz, (S.n+S a~). (4. 2)

~d, ) =(Az+1} ' (A~n, m, —~)+ ~n —1, m, ~&),

(4. 3}
~d )=(A +1) '~(~n, m, —z&-A~In —1, m, z)},

corresponding to the eigenvalues

E,= (n + 2m)(o —z((o + y),

where

(4. 4)

We note that eigenstates of Xo+ V coming from
In —2, m+i, -z) and In —2i -1, m+i, z) with
l i I «n are of approximately the same energy as
Id+).

As shown in a previous paper, ' in order to have
the amplitudes of transitions (4. 1}we need the
matrix elements

1

(X,+V}, R( ), ~"&

(4. 5}
since the initial and final states in (4. 1) can be
developed in terms of Id, ) and le, ), where I e, )
are the eigenstates of Xo+ ~ formed by the states
In —2, m+1, —z) and ln —3, m+1, z&. Since we

expect shifts from X' smaller than those caused
by V to the eigenstates of $CO, we develop R(z) as
in (3.11) and truncate the series to the lowest non-
zero term; for each of the four possible matrix
elements (4. 6), we have to choose the projection
operators P and Q coherently with the theory out-
lined in Sec. III. We consider first the matrix ele-
ment (d, l G(z)~le, ). All the other states I f, ),
Ig, ), ... coming from In —2i, m+i, —~) and
In —2i —1, m+i, 2) (i«n) have almost the same
energy as Id, ) and le, ), and shall connect these
two states in some term of the series (3.11). We
have therefore to define P as the projector on a R-
dimensional subspace made up of all the states
Id, ), I e, ), I f,).. . in an energy shell centered at
E, and of width comparable to the magnitude of the
shifts induced by X'. In view of this approxima-
tion, it is not possible to define X exactly, and we
shall keep it as a parameter in our future calcula-
tions. The matrix of G(z}~ in this subspace is of
the form

Since n and m are very large in all the realistic
models, from now on we shall approximate (n+ 1)'~'
- v n, (m+1)'~-Wm unless explicitly stated other-
wise. We then easily find the eigenvectors of
3C0+ V as
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z -E«'- &d. lR(z). ld. &

&e.l«z). ld, & z -E!"-&e. lR(z). le. &

&f. IR(z)„&d. & &e. IR(z)~ If, & z -E!"—&f.lR(z). l f.&

(4. 7)

~ ~ ~ cm

This matrix is too complicated to invert exactly, but it can be simplified since the matrix elements of R(z)~
between "noncontiguous" states like Id, ) and I f, ) are orders of magnitude smaller than those between
"contiguous" ones like Id, ) and I e, ), so that they can be discarded. Furthermore, it is easy to convince
oneself that matrix elements like (d, IR(z)~ I e, ) and (f, IR(z)j, I g, & have the same value in the approximation
(nxi}'+-Wn. We shall call this value K„(z}. The same is true for the diagonal matrix elements like
(d, lR(z)~ Id, ), which we shall label R„(z). Matrix (4. 7) then assumes the form

z —E, -R„(z)
K„(z)

K„(z)
z -E, -R„(z)

K„(z)

K (z)

z E, -R„(-z)

K (z)

K„(z)
z E, -R (z}-

(4. 8}

~ ~ ~ Cg

which can be easily inverted. In fact the determinant of (4. 8} is a persymmetric continuant and can be ex-
pressed as

det[G(z) ']=g [z -E, -R.,(z) —2K..(z) cos(zw/(St +1))] (4. 9)

while the off-diagonal minors between contiguous states are approximately given by the expression

K,.(z)[z —E, —R (z)] (4. 10)

neglecting terms of higher order in K„(z}. Moreover since we expect small shifts of the poles from E„we
can substitute for R„(z}and K (z) in (4. 9) and (4. 10) the values R and K„that these functions assume at
z=E=(E,+E.)/2. With these approximations, we find, using (4. 9) and (4. 10),

g+, [z —E, -R„—2K cos(xv/(St + 1))]
(4. 11)

Proceeding exactly in the same way we find also

(z E-R .} K-
d-IG "I'- =g~ [.-E -R —2K cos(z /(&+1))]' (4. 12)

where R and K. are the values of R (z) and K (z} at z=E On the other. hand, the matrix elements
(d, I G(z)p I e ) and (d I G(z}~Ie, ) have to be found by inverting the 2stx2% matrix
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z -E, -R„

K

K,

z-E -R
K,
K

K,
K

K

z —E -R

(4. 13)

built on all the I+) and I —) states of suitable energy, where K,z (i, j=+, —) has been calculated at z =E.
The determinant of (4. 13) can be approximately calculated by observing that the dominant feature of this
determinant is that its zeros tend to cluster around the points z=E, and z=E, which differ by y. Since y
is large with respect to K, or K „we may use perturbation theory to calculate the shifts of the zeros of
the unperturbed determinant obtained from (4. 13) by deleting K, and K,. The unperturbed determinant as-
sumes the form of the product of iwo continuants and can then be written as in (4. 9)

detf G(z) '] = Pf [z —E, R —2-K cos(xw/(st+ 1})]g [z E —R——2K cos(yw/('JL+ 1)}] (4. 14)
x=1 y=l

and the shifts of its zeros are readily calculated to be of O(K /y). These are very small quantities, and we
shall neglect them, assuming the form (4. 14) for our determinant (4. 13). With the same approximations as
in (4. 10), we calculate that the expressions for the relevant minors are

and consequently that

(z E, -R ) -(z -E -R ) K,~ (4. 15)

( iG( ) i )
(z -,— „) '(z —E. RP'K~— '

II".= [ -E.-R..-2K o ( /(&+1)}]II,= [ -E -R —2K o (y /(&+1))] '

(4. 16}
Functions (4. 11), (4. 12), and (4. 16) have only simple poles along the real axis, and we now turn to the
evaluation of their residues. The residue of (4. 11) at pole z=E, +R„+2K„cos(xw/(%+ 1)) is obviously given

by

1
I

xw [cos(xw/(st + 1))]
, „",(~„) 2 L' ' ' ' St+1 +~a, [cos8-cos(x'w/(st+1))]

Using the formula
n-1

sinn8 = 2 ' sin8 Q (cos8 —coskw/n)

and L'Hospital's rule, we find

Res(x) = (- 1)*'~ cos sin

(4. 17)
The residues of (4. 12) are obviously given by the
same formula, while from (4. 16) we easily find,
neglecting terms of higher order in K/ye

Ree(*)= "
( —1)"' o ( )

' '( ) .

(4. 18)
with the same formula for Res(y) substituting y to
x in (4. 18) and changing the sign.

As discussed in Sec. III, we actually need to cal-
culate the integrals

e'"d, Gz~e, dz

whose linear combinations give the amplitudes for
transitions (4. 1). Using (4. 17) we get

e'"d, Gz&e+ dz

cos sin

&& exp { i[E,+R„-+2K„cos(xw/(St+ 1))]f]
(4. 19)

To perform the summation in (4. 19) we observe
that if we associate adjacent terms and approximate

F(ax) -F[a(x+1)]= -aF '(ax),
then

Z (-1)*"F(ax)=Z aF'(ax)
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E '(at(}d(ax) = 2 [E(o() -E(O)1 .
2 0

(4. 20) / e t(E++R+++K++)t t-(EssRss Kss)t )
3,~4

%+1

Formula (4. 20) is valid for reasonably well-behaved
E(y) in [0, (2]. Furthermore in (4. 19) for large st
we can discard terms such that

7r xr 27r

3 X + 1 3

3i/2 e-fag -~&r/2+R++jt sinK%+1

In the same way we find

(4. 21)

since they should give a negligible contribution to
the summation. With these approximations we can
split the sum in (4. 19) into two parts, and using
(4. 20) we get

. () e ' (d, i
G(z) ie, ) dz

and

e "d Gz&e dz

2/ (Et -((s/2-R ) t s~ t (4 22)++1

e"'d, Gz~ e, dz

Z (-1)*' cos sin exp{-i[E,+R„+2K„cos(ttx/(st+1))] t)

—Z (-1)"' cos sin exp(-t[E +R +2K cos(ytt/(st+1))] tym ym

%+1 %+1

SS& t(EssRsssz~s) t -t(Es+Rss Kss) t t(E +R +K ) t t(E +R -K ) t)K 3~~8

y +1
K 3/4

e ' '(e "" t -sR)tCOKSt —e"")' -"COSK t).
y Oh+1

(4. 23)

We have now to evaluate the various R's and K's w))ich appear in our calculations. As we have anticipated,
these come from the diagonal and off-diagonal matrix elements of expansion (3. 11) for R(z). For large n
and to the lowest possible order in E and X, we find

R (z)=«. l&',
2 z2 4 2 2

Z Q
z ~ 0 Z ~

Q z Q (4. 24)
The last two terms in (4. 24) give a contribution of higher order in z Wn/&d than the first two, and we neglect
them. The value of R„(z) at z =Z can thus be calculated as

R &~n 1-A
Su 1+A (4. aS}

When the same procedure is applied to R, we find

A —1
8(d + 1

(4. 28)

Within the same approximations we get

K..(z) = &d. ~X' X'~ e.}

(i( ,.s»st=, ss, s.s» ~, s..i,ss ~ » „s.s"ssi » „s,s)~..&.
Z —

0
— Z 0 Z 0— Z Q

When this expression is evaluated at Z=E, the re-
sult is

I

and the other K's can be expressed in terms of this
as

(2zs)(s Es)(»)(mn)'~ A
4u) A+1' (4. 27) K = -K„, K, =K /A, K, = -AK„. (4. 28)
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Inserting relationships (4. 26) and (4. 28) into (4. 21),
(4. 22), and (4. 23) and neglecting R„«g y, we ob-
tain

gerous terms is

I/= 2 X~(S,P+S Pt). (4. 32)

1
e "'(d IG(z) Ie ) =Me " '"+"sinKt,

27rz

1
e '"&d IG(z)~ I

e &
= Me '(z r/ )' sinKt,2' (4. 28}

e "'(d, IG(z)p Ie )=
A
—Me ' 'sin~gtcosKt,

27rz
~

~

~

e '"(d
I
G(z)t. Ie, ) = — Me ' 'sin~gtcosKt,

where K=tg and M=3i/2(%+I). If the appropriate
linear combinations of (4. 29) are taken in order to
give the desired initial and final states, the follow-
ing expressions are obtained for the amplitudes of
transition (4. 1}:

ttn, m, 1/2 e Irt/2 A2e i rt/2} S'inK
M

n 2, )n+1)-1/2 A2+ y

+(1 -A )(K/y) sing yt cosKt],

The eigenstates of Xo+ V are of the form

Id, ) =(A +1) (AIn, m, —2&+ In, m —1, 2)),
(4. 33)

Id )=(A +1) /(In, m, —g&-AIn, m —1, 2&),

corresponding to the eigenvalues

E,=(n+2m) (o —(idly),

where

(4. 34)

A=X, )/m/(y —5), 5=2td —tdg, y=(5 +X,m)'/2 .
(4. 35)

All doublets of form (4. 33) coming from the states
In —2i, m+i, —2) and In —2i, m+i —1, 2 & (lil«m)
have approximately the energy (4. 34), and conse-
quently must be included in the subspace relative
to P and Q. The problem from now on is exactly
analogous to the one we have solved in Sec. IVA,
and we get the following formal equalities between
the amplitudes ta for transitions (4. 31) and those
given by (4. 30) at vg

- td:

ttn l, m, 1/2 [ e irt/2 A-2 irt/2) S~-M
n-3, )n+1) 1/2 A2+ y

gn) nt) 1/2 g n, m) 1/2
n-2) nt+1) 1/2 n 2, )n+1) 1/2 )

~n) m-1) 1/2 gn) )n, 1/2
n 2, )n+1) -1/2 n 3, m+ 1, 1/2 '

~n, )n 1, 1/2 g n 1, )n) 1/2
n-2) )n) 1/2 n 3) nt+1) 1/2 )

(4. 36}

+(1-A')(K/y) sing ytcosKt]

ttnem, -l/2 [(eirt/2+e-irt/2) sinKt
-MA

n-3, In+1) 1/2 A2+ ]

+ 2(K/y) sing yt cosKt ],
ttn-l, m, 1/2 eirt /2 irt /2} a~-

-MA
n 2, )n+1) 1/2 A2 ~+ J.

A+]. K—sin& yt cosIA,

(4. 30)
When using (4. 36) however, one should remember
that A and y are now given by (4. 35), that St is the
number of states of the form (4. 33) which can be
considered of the same energy, and that K must be
calculated again from

K..(z)=-&d. IX' @ X'Ie, &

In, m, -2&- In-2, m+1, -2&,

In, m -I, —.'&- In —2, m, —.'&,

In, m —1, 2)-In —2, m+1, 2&.

(4. 31)

Consequently the part of X„,which contains dan-

The transition probabilities for generation of sec-
ond harmonics can be calculated from (4. 30) and
the results are substantially the same as those
given in a previous paper, apart from the factor
involving X which was absent in that paper, where
a 4x4 subspace for I' and Q was chosen. There-
fore the conclusions of that paper are valid; the
power generated is peaked at (do-(d as a function of
~0, but the sum of the transition probabilities
(4. 30) does not seem to show any structure a.s that
found experimentally.

B. Region uo-2u

The transition of interest with initial states on
the same energy shell are of the form

~ n e' " '
r s.e'}~e.). (4. 3'I)

Putting z = (E,+E )/2 in (4. 37) with E, and E now

given by (4. 34), we finally get

„&,n A

2v A +1

with A given by (4. 35). Again we find that the
power generated at double frequency is peaked at
coo-2~, this time in agreement with the experimen-
tal results which show no structure of this peak.

We may summarize the results of this section
as follows. The theory predicts two peaks at
+0-v and &d0-2~, and this is observed experimen-
tally. Moreover for reasonably short times, the
transition amplitudes depend linearly on K as given
by expressions (4. 27) and (4. 38), and consequently
the transition probabilities depend on K . In par-
ticular, the transition probabilities at +0-co depend
on the occupation numbers like nm and those at (do
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- 2(d like n . We do not wish here to undertake a
self-consistent calculation of m as a function of n

at (do-a, since this would necessarily involve con-
sideration of the technical aspects of the experi-
ment, and this would fall out of the scope of this
paper. Experimentally, the power dependence of
the peak at &0-2(d is like n, which agrees with

our theory, while that of the peak at ~0-(d is like
n" which is in disagreement with our results even
under the plausible assumption that the average
value of m is essentially independent of n. Final-
ly, since K depends quadratically on the coupling
constants a and X, the intensity of the second-har-
monic generation in DPPH should be intermediate
between those of the two transitions of ruby for
which we have calculated the coupling constants in
Sec. II. This actually is only a qualitative predic-
tion because of the 9t factors appearing in the de-
nominators of the transition amplitudes, but as
such it is in agreement with the experiments when

the absolute intensities of the peaks are measured
in decibels above apoise, at least if the number of
paramagnetic centers can be assumed about the
same in different samples. The disagreement be-
tween theory and experiment, however, is evident
in that the theory does not predict any structure of
the peak at coo- &, while experimentally at high in-
put power (large n), a hole develops at the center
of that peak. Arguments can be brought to justify
the presence of this dip, ' but in the present frame-
work they are of a rather artificial nature. We
shall see that this peculiar feature of the second
harmonic generation finds a natural explanation
when the theory outlined here is extended to cover
the mutual interaction of the paramagnetic spins
induced by the electromagnetic fiel.d. We shall
develop this theory in Secs. V and VI.

V. 1V SPINS: REGION (do ca)

In this section we shall apply the general theory
of Sec. III to the case of N equal spins S'=& placed
in a uniform static magnetic field such that roo- v.
The starting point for this case is again Hamiltonian
(2. 14) where the various spin operators are defined

as in (2. 13). We observe first that the total spin
operator

is a constant of motion since it commutes with the
Hamiltonian; hence the total Hilbert space of the
system can be divided into subsyaces each chara, c-
terized by an eigenvalue of S. We shall develop
our calculations in the subspace with the highest
possible eigenvalue S=N/2, and for simplicity
shall assume that N is even. This will simplify the
notation, since we are now entitled to drop I', and
it should not pose any serious limitation on the
validity of final results. We shall also find it con-
venient to relabel the eigenstates of 3Co in this sub-
space as In+ x, m, —x), where x is now the number
of spin deexcitations counted from the state with
S,= 0. The range of x is therefore between —S and
S, while n is the number of (d photons present in
the cavity when S,= 0. The eigenvalue correspond-
ing to this eigenstate of 3CO is (n+ 2m —S)&u+ xn. ,
where n = ~ —(do. Another assumption that we
make is that the number of spina N is much smaller
than n. This is indeed the case in the usual experi-
mental setup where most of the work is performed
under saturation conditions, and this fact wi11 per-
mit us to make some very useful approximations
in the course of this paper.

A. Eigenstates of ~+V
Like in Sec. IVA, the part of %fag which contains

dangerous terms is obviously

V=& c,(S,a+S at),

where

(5.2)

V connects the state In+x, m, —x) to In+x+1, m,
—x+ 1), and in order to diagonalize Xo+ V within
this 2$+1 manifold we have to solve the follow-
ing system of equations for each p (p =0, 1, . . . ,
2S):

(n+2m -S)&u+(x-1)a -E„~ eWn[(S +)x( S—x+1)] '~ 0

~&~en[(S+x)(S-x+1)]' (n+2m —S)&a+xa -E„aa~v n[(S-x)(S+x+1)]

0 le, v n[(S —x)(S+x+1)]'~~ (n+2m -S)(g+(x+ l)n -Z„

4 ~ ~
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B] ——0, 2$& i& 0. (5. 5)

We now transform the system (5. 4) by putting

( )s.„(s—x)!(2S) I

(S+x)! (5.6)

and (5. 4) becomes

2 z, Wne z „,—[(n+ 2m —S) (2) + xa —E ] ez „

+ —, zWsz(zS+)x(S - x+I) ez" „„=0 (5. 7)

with the conditions

e~ finite for i ~ 0, e~= 0 for i & 0. (5. 8)

%'e shall use a technique similar to that previously
used by Scharf, ' ' and introduce the set of charac-
teristic functions

a lzc)

f "(z) = Z e~z.„zz ',
x=8

(5. 9)

which can readily be seen to satisfy the differential
equations

d'f" 2S 2n df"
dz' z a, Wn dz

"=o, 5. &o
2 E —E„'

n z

where E = (zz+ 2m)&u —S~o. Equations (5. 10) must
be solved together with the boundary condition
which can be derived from (5. 8)

where we have approximated (zz+ «)'/'-~n and Bz „
is the projection of the p.th eigenvector of X0+ V

(which we shall indicate by Id~)) on the state In+ x,
zzz, —x}. From (5. 3) we find immediately the sys-
tem of difference equations for the 8's:

sz, v zz[(s —x)(s+x+1)] '/zB"z„,
+[(n+2m —S)&o+xa E„-]Bz„

+ sziv z[z(S +x)(s —x+ 1)] '/'B~z „„=0, (5. 4)

which can be regarded as an infinite system if we
add the condition

f '(z) = Z c,Z",
n=0

(5. 18)

where

(- I/)
z, Wn, ml( -zzz)z!z(-2S) a -Y

In the last expression (a) is the Pochammer's
symbol

(a) = a(a+ 1) ~ ~ ~ (a+ m —1)

and g"'
0 indicates summation over m from 0 to

the smallest of n and p, . Equating the coefficients
of equal powers of z in (5. 9}and (5. 18) and sub-
stituting in (5. 6), we finally find

S,"(2) S=(—S — ",—2S; — 2) .
E~ n

(5.14)
Since 2S is a positive integer, solutions (5. 14)
would diverge unless

E„=E-So(+(S—p, )y (Iz=0, 1. ..~, 2S), (5. 15)

and this set of solutions can be written

F;(z) =F(p, —2S, —2S; —(2y/z, Wn) z)

=e '"' " "F( p, , —-2S; (2y/z, v n)z).
(5.16)

Another set of solutions of (5. 13) linearly indepen-
dent of (5. 16) is of the logarithmic kind, since —2S
is an integer. This set is of the form

Fz (z) = F,"(z)ln(2yz/z, v n)+ z"G(z),

where G(z) is analytic at the origin and z' is the
second root of the indicial equation relative to the
z = 0 singularity. This second set of solutions how-
ever diverges for z-0 and is therefore to be ex-
cluded because of condition (5. 11). From (5. 16)
and (5. 12) we get

f'(z) =e' "' ""F( p, , —2S-; (2y/z, Wn)z) .
(5. 17)

Solutions (5. 17) can be developed in a power series
@t z=0 as

lim f "(z}=eo =finite number .
g 0

Putting

f Il(z) es((stt) /ss~l)FI)(z)

Eqs. (5. 10) become

(5. 11)

(5. 12)

,
„„(S-x)!(2S)!V' a-y '-.

(S+«)! z, Ws

(- 1)
m! (S —x —m)! (Iz —m)!

2$2y
dz z &&v n dz

222 SSs 2{S„—S))
~ ~

&, vnZ

A particular solution of Eq. (5. 13}is given in

terms of the confluent hypergeometric function"

Expressions (5. 15) and (5. 19) are the exact solu-
tions of Eqs. (5.3). Expression (5. 19), however,
is rather complicated, and we shall devote the rest
of this subsection to find approximations to B8 „of
a manageable form. Rather tha:-; proceeding from
(5. 19) towards these approximations we shall find
it more convenient to use our knowledge of the
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or

~ B xn+(i1 -S)yB' ~ 2B ( ~ ~(B, g, q, }B'=0. (5. 22)

We now approximate for small n and x not too
large:

y = (.', v n(1+a'/ae, 'n), (S' —x'+S)'/' =S+ 2 —x /28,
pr

S, Wn(8 -x +8)'/2 8 '

xa -Sy 1 ' X 1/2 0
+

S ~21 (82 X + 8)1/2 28 81/ y

and Eq. (5. 22) becomes

~ B

+ 2p+ (5.as}

which is a Weber-Hermite equation whose solutions
are

-( S +/Wx/S & /2p S1/2
1/2 1/2 2

e S1/2y

Here H„ is the p, th Hermite polynomial, and A is
the normalization constant such that

x=- S

Since

EB" B =BI J etg2 S-x S-x

S1/2 & X 1/2Q X dX

we find

—2((~ ( (Ss)1/25

v 1 2 e-(S / 0f/r-x/S y /2
2-&/2 1 2 1/2 2

S B
( 8)1/4 (~ ( )1/2

X&& S — 1/2, 5, 24

We observe that (5. 24) are good approximations to

exact eigenvalues (5. 15) and convert approximately
the difference equations (5.4) to a differential equa-
tion. We introduce the variable

&/8 1/2 81/2(2/y

and approximate

da
BS „1—BS „+BS, +—BS „S, 8"

(5. 20)
Substituting (5. 20} in (5.4}we get approximately

2 Sion(8 -S +S)' (B"+B"/8 +B"/28)

+[X(2+(i1 -8)y]B"+2'e, Wn(82-X'+8)'/2

x(B" B'/S'/'+B'/2S) = 0 (5. 21)

the real solutions for small i1 (high energies},
since then approximation (5. 20) is a good one. As
i1 increases solutions (5. 24) oscillate more and
more rapidly as functions of x, and this eventually
becomes inconsistent with (5.20). On the other
hand, we may obtain the solutions for very high p,

(low energy) if in (5. 4) we change i1 to 28 —v a.nd

Bs, to (- 1)'B"s „In.this case, in fact, we obtain
an equation similar to (5.21), but with —x(2 in
place of xe. It is then easy to see that the solu-
tions for low energy (small v} are

1/2 1/2 2BB / 1)B -(S a/BBB/S 1 /2
S-B (Ss)1/4 (P))1/2 (

xH„S' —+ 1/2 . 5. 25

Approximate solutions (5. 24) and (5. 25) can also
be obtained starting from (5. 19), but this direct
approach is more lengthy and boring than the one
we have used here. These solutions reduce for
0. = 0 to the approximate results by Tavis and Cum-
mings, ' and as we have seen are valid for low and
high p, , for quite a large range of x and for a small
region of I n l~ e, v n. We may ask ourselves if
their particularly simple form is susceptible to a
physical interpretation. It is easy to convince one-
self that this is so, since in the limit of large n
the electromagnetic field tends to behave classical-
ly, and the problem of diagonalizing Xo+ V' tends to
become that of finding the motion of the spins in a
frame of reference which rotates with frequency v
in a counterclockwise sense around its z axis par-
allel to the static magnetic field. As is well
known, in this case the static field in the rotating
frame reduces to o. =(d —(do, and this is to be added
to the amplitude a,V n of the rotating field. The
resulting field in the rotating frame is

y = ((2'+ e', n)'/

and the levels of the spin system shall be quantized
in this field giving rise to the eigenvalues (5. 15).
Furthermore if S is large enough, the total mag-
netic moment S may be thought to precess with
frequency y around the resulting field in the rotat-
ing frame, and for small p, and n =0 the tip of the
magnetization will describe a small circle with the
same frequency. The projection of this motion on
the z axis describes the time evolution of S and
it is obviously of the harmonic-oscillator kind with
S,=O as the center of oscillation. If the quantiza-
tion of the system is taken into account, it is there-
fore to be expected that B (x) is a parabolic cylin-
der function, since x= -S,. When a &O, . the mag-
netization shall precess around a direction slightly
inclined on the x-y plane, and its projection on the
z axis will again approximately behave like a har-
monic oscillator if a is small; now however we
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expect the center of oscillation to be displaced by
a quantity which depends on e, and this again
agrees with formulas (5. 24) and (5.25}.

We may conclude that we have found reasonable
approximations for the eigenvalues and the eigen-
functions of Xp+ V in the region &p- e, belonging to
the low- and high-energy ranges. The intermediate
eigenfunctions however are not easily reducible to
a simple and manageable form, and before proceed-
ing to the calculation of the generation of second
harmonic we shall show in Sec. V B that we really
do not need them in order to explain the experi-
mental results.

B. Initial States

S —4)OS +S /v2= —ihS,e '"',
S, +S,/&, = —ih(S,e""'—S e '"')+ ISI/r„

(5. 27)

where S,=S„+iS,and ~, and ~2 are the longitudinal

As we have discussed, in the general theory, the
transitions of interest in the new notation intro-
duced at the beginning of this section, and in the
present range of magnetic fields these are

I
n+x, m, —x&- In+x —2, m+1, —x&,

In+x, m, —x)-In+x+1, m+1, —x+1), (5. 26)

I
n+x, m, —x)- In+x —3, m+1, —x —1) .

Since we have calculated the eigenfunctions Id„)
and I e„) of Xo+ V in (5. la), we might at this point
proceed as before and develop the calculations for
any x through steps (3. 7) and (3.6) according to
our general plan. A great simplification is possi-
ble however if we are able to select some value of
x for which transitions (5. 26) are more important,
since the initial and final states relative to these
transitions will turn out to have large components
on the states of Xp+ V for which we have found com-
pact approximate expressions. This will permit a
very effective simplification in the calculation of
the double sum in (3. 7), and in addition will ulti-
mately allow us to give a simple physical picture
of the generation of the second harmonic. In order
to show this, we shall now make recourse to the
theory of phenomenological Bloch's equations. We
wish to emphasize that the use we make of Bloch's
equations is limited to the selection of the initial
and final states for our transition amplit@des, and
that once this choice is made, the calculation is
fully quantum mechanical and does not rely on re-
laxation times of any sort.

As is well known, the Bloch's equations for a
magnetic moment 5 in a static external magnetic
field (dp along the z axis and in a counter-rotating
magnetic field h in the x-y plane with frequency ~
can be written as

S, +ildoS, + S, /r2 = ihS,e'"',

and transverse relaxation times. A particular
solution of (5. 27) can be found for the case of slow

passage, when the magnetic field zp is swept very
slowly through resonance, and consequently one can
assume 4, =0. It can be shown' that in this solu-
tion the magnetic moment S precesses around the
static field cop at an angle yp given by

k&2
0 0 I'I+ ( )2&2]l/2 . (5. 26)

In our formalism h- E~~n. Assuming n 10, which
gives a real magnetic field at the sample of -25 G,
and using for E, the maximum value of 2. 5&&10 Hz
that we have calculated in Sec. II for DPPH, we get
h-8X10' Hz. For 72 we assume the value from
phase measurements of -9&&10 sec, and we find
at resonance tanpp" 7. 2 or pp

- 82'. This shows
that in the neighborhood of resonance the magne-
tization is tilted to rotate practically in the x-y
plane. Consequently, if we might neglect 1 in the
denominator of (5. 26), we would have

Expression (5. 29) is obviously equal to So./y, since
it is equivalent to the average value of the displace-
ment of an eigenstate of a harmonic oscillator
whose center of oscillation has been displaced by
the amount S' 'n/y, multiplied by the factor S'/' in
front of the integral. By the same technique we
find that the value of (d, IS', id, & is approximately
equal to S n /y . Therefore we see that any eigen-
state of Xo+ V of the form (5. 24} can adequately
describe the physical situation for n & 0, and in
this range of magnetic fields it can be used as an
adequate initial and final state. Following the same
criterion, for e & 0 we may choose as initial state
any eigenstate of ~+ V of low energy that is of the
form (5.25). This is approximately equivalent to
using initial and final states of the form (5. 26) in
which x-0, since these are the eigenstates of Xp
with the largest components on the low- and high-
energy states of 3Cp+ V.

C. Generation of Second Harmonic

We have seen in Sec. V B that the calculation of
transition amplitudes can be reduced to the evalua-

and it should be very convenient in the calculations
for the transition amplitudes to use initial and final
states that behave in the way described above.

Let us now consider the average value of S, on a
state of high energy of the form (5. 24). This is
given by

1/2 2-~ f 1/2 1/2 2
s I")=-

p f

Sl/2 Sl/2 d l/2 ' ( '2 )
2 1/2Q X X X

s s s
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tion of matrix elements of the resolvent operator
such as

(d IG(z}r Ie„.) (n 0), (d„lG(z)r Ie„.) (a &0) .
We shall consider first the case n & 0, where

S

(5. 30)
S

Ie, ,) = Z B~ „ In+x —2, m+1, —x) (p, p, '«S},
x=- S

and the B's are approximately given by expression
(5. 24). We are now faced with the problem of the
choice of the P and Q operators. In the case of the
isolated spin this was solved by including in the P
subspace all the eigenstates Id, ), le, ), I f, ), . .. of
the same energy, and this entitled us to convenient-
ly truncate the series expansion for R(z). Now we
cannot proceed in the same way for two reasons.
First, as shown by formula (5. 15) the splittings
of the eigenvalues of 30Q due to V are proportional
to 8, which is usually a very large number; conse-
quently the energy region for the eigenstates of
XQ+ V coming from states ln+x, m, —x) largely
overlaps with the energy regions of other eigen-
states of &0+V coming from states ln+x+i, I+j,
—x), thus creating difficulties in identifying and
enumerating the states to be included in the P sub-
space. Furthermore as we shall see later on,
there is no guarantee that the shifts and the split-
tings of the eigenvalues of Xo+ V due to X ' are
small; hence the truncation of series (3. 11) for
R(z) presents problems. From what we have said
above, it follows that we have to resort to other
approximations than those used in the case of the
isolated spin. In order to find the most convenient
approximations, we have to examine first the ma-
trix elements of K' between eigenstates of Ko+ V.
As an example which shall be useful in the follow-
ing we shall consider the matrix elements (d„ ls,atl

f,") and &f„"IS,Ple, .&, with Id„) and le„.) defined
as in (5.30) and

If„„)=Z B",'„'In+x-l, m, -x).
x=S

We immediately find, assuming n, m»1,

(d~ls, n
I
f~„)=))n Z (-x}Bq.„Be„,

(f "IS+Pie & = ) Z)m[(S —x+ l}(s+x}]'~

Furthermore,

(d. Is,o'If„„)=ww(1 —a'/y'}'~5„„,

(f„„I S,P Ie„.) = —)tms(o)/y)5„, ... ,

where

(5. 32c)

and finally

«. IS.Plf."&= mms(g/y)5, „,,

& f" IS.~'
I e,.&

= ~~(1 —~'/y')'~'5„, „„,
where

If.„&=K ,"B'„'I +nxm+1, -x&.

(5. 32d)

We now turn to the evaluation of

&d„lG(z) Ie„,)=(d I[ —(x +V) -R( ) ] Ie, )

where we choose the P operator to project on the
2X2 subspace spanned by Id, ) and I e,.) defined in
(5. 30). We have

xBf"
S-~+~ S-x ~

The two g„ in (5.31) can be approximately evaluated
by converting them to integrals as we did in (5. 29).
From (5.24} we see that B~z „as a function of x be-
haves like the pth eigenfunction of a harmonic os-
cillator whose center of oscillation is at x=sn/y.
Therefore up to terms of O(S) we have

«„Is.o If„„&= —r.-S(~/y} 5„„„,
(5. 32a.)

(f,.
I
S,P I

e„.) = Wms(1 —a /y )' 5„.
where we have approximated

[(S—x+ 1)(S+x)j )P = S(1 —xz/Sz}~/2

and where terms O(s'~') have been discarded.
With the same approximations we find

(d, I
S.p If„„)= vms(1 —o'/y'}'&5, .„,

(5. 32b}
(f "

I S,o
I
e„.) = —Wns(n/y) 5 .„„,

where

I f~"&=2 Be „In+x —1, m+1, —x) .

yQ)e Q y QQ Q y ')QÃ le, ,). (5. 83)

As we have said before, we cannot truncate the series in (5. 33), because in view of (5.32) we have no guar-
antee that the neglected terms give small contributions, and also because in so doing we neglect poles whose
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residues may be large. We may use results (5.32) however in order to select a partial summation from
(5. 33). We observe that the first term is

—(d. ]~ze' E S ZZ ']~ e„.) = --'z,„Z,(d„]~ (Sdz' » E S.S ~ S,S S Sz')
]~
e„.)

(5. 34)

We are thus led to consider the matrix elements of the four operators

S,n 8(z)S,P, S,Pg(z)S,n, S,n g(z)S,P, S, Pg(z) S, n

between Id„) and le», ), where

1 1, 1 1 1, 1&"=, x, v', x, v~'~. x, v'. x, v~'~, x, v~'~ x, v'"
(5.35)

and in view of (5.32) the problem is reduced to the evaluation of (f„I g(z) I f„.) for each of the four. The fol-
lowing propositions are now based on relationships (5.32) and make possible an approximate evaluation of
(f„l g(z) I f„.). (i) Among all the possible terms of (f„lg(z) I f„.), the largest are those with p = g', the rest
of them being smaller by a factor S '/' at least. (ii) ln each term in the series for (f, lg(z) I f,) which is
obtained from (5.35), the most important contribution comes from terms in which X' is represented by
(S,n +S n), and in these terms one must have an equal number of S,na and S n. (iii) Once the terms dis-
cussed in (ii) are selected, we observe that the most important are those in which the S,n operators alter-
nate with the S e ones. It is easy to convince oneself however, that all the other terms obtained by permu-
tating the S,n and S n operators are of the same order of magnitude in S and n, and give rise to a set of
new poles in (f» lg(z) I f„&. We shall try to take them approximately into account by introducing a param-
eter C as a factor in this matrix element, and by reducing all the energy denominators to z -Ez, where

Ez„ is the energy of I f„&.
Coherently with what we have said above we shall approximate

(/. ]S( )I/„.)=e(/„] ~,S zsz", (S ESSED', )]/)Z. „.

C 1 ,zaaS(1 —n /y ) 1 z nS(1 —n /ya)a

z-E, ( ——,'Iz', zs'(( —z*/z')/(z-Ez )'])
From (5. 36) and (5. 32) we get

(, l ~ S( ) .Si .) —
E ( ~ [z zS (( ./ )/( E ).])o„

(5. 35)

'(z -Z»+&a)' —s z', nS'(1 —n'/y')

«»IS,@(z)S.n'Ie;&= -&(n)( ~ „)a:a~a(1 a/ a)
5 (5. 37)

where

z E~+ 260
(d»IS+n g(z)S P le»'& @n) g 2 'a —' a~a 1» a)

5(z-E„+2(o) -& &,nS (1-n y'r

Z —E~ —2(d
(d I,S,Pg(z)S,n ~c. &= -&(n)( @ 2 )a" ~ a~a(1 a/ a)5».

B(n)=C(nm) S (n/y)(1 —n /y ) /

is a function of (d() which is zero at resonance. We wish to emphasize that other contributions to K»»e exist,
which originate from chains of operators S n and S,Q.~ containing the terms S,n~ and S,P or S,alt and S,P
somewhere in the middle of the chain rather than at the extremes. These contributions, however, should
be of the same form as (5. 37), and we may tacitly renormalize parameter C in order to take them into ac-



THEORY OF SECOND-HARMONIC GENERATION AT. . . 3529

count. Using (5. 3V) in (5. 35), we find

z -E~+Q) z

~
" ' (*—E„a)' ——,c', ws'(1 —a'/y') (z —E„—v( ——,r,ns(1 —n'/y'()

z -g„+2~ ——'g, ~$ l —(y y z -g„—2~ ' —~ g ~ l —~ y

With the same approximations as above, one can use result (5.36) to calculate R», the contribution of

R(z)~ to the diagonal matrix element (d, 1G(z)~' I d„), obtaining

2

y
' (z-E, +2&v)' —-z, nS (1 —o.'/y') (z E„--2&@)'- 4e', nS'(I —c('/y')

Neglecting a /y' with respect to 1 and the various co shifts as small quantities as compared to z,v nS, we

can further simplify expressions (5. 38) and (5.39) and obtain

(d„~G(zg' ~e„&= C(e„k,+z,X„)(nm)' S —
(

(d ~G(z)~ ~d„) =(e„~G(z)j,'~e, &=z -Z„-—'Ce, nS'

(5.40)

The 2X2 matrix whose elements are given by (5.40) can easily be inverted. The off-diagonal matrix ele-
ment that is relevant to the generation of the second harmonic is of the form

( iG( i )
F(z-E)/[(z-E) -A]

{z E B(z---E)/[(z E) -A-]) —{F(z E)/[(z -E) -A]-)z ' (5. 41)

where we have put

F=C(e„X,+e,X„)(nm)' '/Sa/ ,yA=z', nS'/4, B=Cz', nS'/2, E=E„. (5.42)

Matrix element (5.41) can be put into the form B
sin[(A+B)~f]sin[(F/2(A+8) z)t],

(d. ~G(z),
~
e,& =F

1 (z —E) -A
(z -Z)i -A 8+F —z E- (5.44)

where we have neglected terms of O(F ). In the
neighborhood of wo-~, and for sufficiently short
times, transitions amplitude (5.44) can be approxi-
mated to

which is a convenient one to show that it has five
simple poles along the real axis. One of them is
at z = E, two are at z = E s (A +8+F)'+, and the
other two are at z=E+(A+8 F)' . A straigh-t-
forward calculation yields the five residues

Res�(z

= E}= FA/[(A +8)' —F'], —

Res(z=E+(A+8+F)' )=(F+8)/4(A+8+F), (5.43}

Res�(z

= E + (A +8 —F ) '/ ) = (F —8)/4(A +8 —F ) .

We can now calculate the transition amplitude as

a'„6 z ~ e„e"'dz

2 {cos[(A+8)' 't]cos[(F/2(A + 8)'~)f] —I]JA
(A +8)'

8,('= zC(e„X +e X„)(nm)' S (o( /y )t . (5. 45)

We see that this transition amplitude vanishes as
we approach the resonance from the above. A
symmetrical result would be obtained when the
resonance is approached from below, if we would
use states 1d„& and 1e„& in (5.25}, as discussed in
Sec. V B. The vanishing of the transition amplitude
at + = +0 could have been predicted directly by the
vanishing of the off-diagonal matrix elements in
(5. 40) at a = 0. This can be easily seen from the
obvious relationship

(d

1G(z)joule

)«. l1«z). l e.&
= («1G(,).i1 d-))~

The appearance of this peculiar feature of the sec-
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ond-harmonic generation in our calculations is one
of the successes of the present theory; it should
be considered an effect of the interactions of the
various spins among themselves via the electro-
magnetic field, since no trace of this feature can
be found in the results that we have obtained for
the isolated spin; in this sense it may be thought
of as a many-body effect. In Sec. V D we shall see
that our theory enables us to give a modellistic ex-
planation of this effect.

D. A Physical Model

From a mathematical point of view the vanishing
of the off-diagonal matrix elements of G(z)1,, and
hence the appearance of the dip in the middle of the
~p-co resonance is related to the presence in every
term of the development for R(z)1, of the terms
S,a.~ or S,P. This fact is most evident in Eqs,
(5.32}, and it is related to the choice that we have
made for our initial and final states. As we have
already pointed out Id„) and le„) describe states in
which at resonance the total magnetic moment is
tilted to rotate in the x-y plane, and its component
along the z axis vanishes. We therefore expect that
the angle at which the magnetic moment precesses
about the z axis is going to be an important param-
eter in our physical model. Moreover, it is possi-
ble to see that contributions (5.37) to (d„ I G(z)1, I e„)
fall into two classes. The first class of matrix
elements which contain the operators S,o,t and S,P
should describe processes in which the & field
dresses the z component of the spin system which
then emits a 2' photon by a process in which the
transverse component of the magnetization is in-
volved. We may picture this situation as follows.
In the rotating system the magnetic moment pre-
cesses about the resultant field y with a small
amplitude and frequency y. Therefore the phase of
the transverse component of the magnetization
varies like 1) sinyt, where 'g is the (small) ampli-
tude. Therefore in the laboratory system the phase
P of the transverse magnetization varies like

P(t) = et+ 1i siny t

On the other hand, defining yp as the time-averaged
angle between the magnetization and the z axis, the
intensity of the field y is modulated by the z compo-
nent of the microwave field h, as

y = yp+ h, cosyp sin+t .
Therefore

+J,(1}h,& cosyo) cos2+t+ ~ ~ ~ ], (5.47)

where we have expanded in the usual series of
Bessel functions and we have neglected tl.e phase

From (5. 47) we see that the magnetization
along the x axis has components which vary at 2(d

frequency with an amplitude Ssinyo J,(1}k,7'cosyo).
This amplitude vanishes when pp= ~m and the mag-
netization rotates in the x-y plane. As we have
seen, in our model this happens when (dp- w, and
this accounts for the vanishing of the generation of
the second harmonic at resonance. Another source
for 2u components of M„ is the modulation of q it-
self by the z component of the microwave field.
We shall not consider it here in detail since it
would also give a vanishing effect at cdp Gt).

Let us now consider the second class of matrix
elements containing S,n and S,P. They should de-
scribe processes in which the transverse compo-
nent of the magnetization is dressed by the (d field,
and then a 2(d photon is emitted via a variation in
the z component of the magnetization. Let us go
back to our rotating frame of reference in which
the magnetization precesses around y with a small
amplitude and frequency y. In this system the
magnetization is acted upon also by the counter-
rotating field at frequency 2'. The component of
this field perpendicular to y causes the magnetiza-
tion to vary the angle p at frequency 2(d according
to

p = pp+ p cospp sin2&t, (5. 48)

where the amplitude p is small, since the counter-
rotating field is out of resonance with the spin sys-
tem, and where cospp takes into account the fact
that this high-frequency tilting of the magnetization
cannot take place when the magnetization rotates
in the x-y plane. Using (5. 4&) we now calculate
the time variation of the z component I, of the
magnetization as

a very small quantity with respect to + at cop" u.
Consequently 7 plays the role of a characteristic
time which ultimately depends on the relaxation
times. Expression (5.46} can now be used to eval-
uate the x component of the magnetization M, in the
laboratory frame. One has

M„=S sinyo cosg = S sinyo cos[~t+ qyor

+ qh, & cosyo

sin&et�]

S sinyo [eTO('g Jl & cosyp) cos(df

p(t) = &of+ 1}s in[yo+ h, cosyo sin&of] f

(df +'0&(Yp + l1, cosyo sin&of), (5. 48)

M, = S cosy = S cos(yo+ p cosyo sin2&ut}

= S[cosyp cos(p cosyp sln24) f)

where we have taken into account the fact that y is —sinyo sin(p cosyo sin2&ut) ]
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= S cosffc( p (Jp P cos+p

2 E J (p cosy ) cos(4S C))
k=1

I

~ ~ ~

—2 sin((((0 Z Ja(,„(p cos(I((o) sin[(4k+2)(df] .
k=p

(5.49)
Since costa= Ic( I/y from (5. 47) and (5. 49), it is
possible to see that the amplitudes of the 2& Fou-
rier components of M, and M„vanish when up= +.
We therefore conclude that the model we have
studied may be considered as the classical
counterpart of the processes that we have
studied quantum mechanically in Secs. VA-C,
since the above-mentioned components are re-
sponsible for the emission of radiation at fre-
quency 2(d.

VI. N SPINS: REGION mo-2w

It is convenient also in this region of magnetic
fields to divide the total Hilbert space of the system
into many subspaces each characterized by an ei-
genvalue of S. As we have done before, we shall
develop our calculations in the subspace with the
highest possible eigenvalue S; moreover, we shall
relabel the eigenstates of + in (S. 1) as In, m+ x,
—S+m —x), where —S+ m —x is the value of the z
component of the total spin S. The eigenvalue cor-
responding to this eigenstate of Xp is obviously
given by (n+2m)&u —(S —m)(do+x5, where 5=2~

It should be stressed that the average num-
ber m of photons at frequency 2(d is always much
smaller than S, so that the limits of x are given by
—m and m. With this notation we are picking up
only the eigenstates of + in which the sum
of the spin excitations plus the number of 2(d

photons is even. The other set of eigenstates
is of the form In, m+1+x, —S+m-x), and
since m»1 we shall treat it analogously to
the first set, neglecting the small differences
in their properties.

A. Eigenstates of~+ V

When ~p-2', the part of X„,which contains
dangerous terms is

V = z ) i(S,P + S Pt),

which connects the state In, m+x, —S+m-x) to
I n, m + x + 1, —S+m —x v 1). The secular equation

within our 2m+ 1 manifold associated with Xp+ V
for each p, =0, 1, ~. .. 2m is
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where

E, = (n + 2m)(u —(S —m)(co

and B"„ is the projection of the pth eigenvector of
3'+ i (which we shall indicate by Id,)) on the state
In, m+x, —8+m —x). We shall now simplify Eq.
(6. 2) by approximating 2$ —m+ x-2S. This is
justified by m being much smaller than S. ' When
this is done, we obtain from (6.2) the following
system of coupled difference equations:

—,'X,(2S)'/'[(m —x)(m+ x+ 1)] ' B" ~1

+ [(n+ 2m)1e —(S —m)(00+ x5 —E„]B".„
+2&,(2S)' [(m+x)(m -x+1)] '+B"„„=0 (6.3)

with the boundary conditions

not be paid for by the 2~ photons. The total spin
in states Id, ) can rather be described as precess-
ing about a direction which makes an angle pp given
by

cos+p 1—

with the negative z axis. We see that as we ap-
proach the resonance from below (5 &0) the angle
increases until cospp reaches the minimum value
of 1 —m/S. In states Id„) on the other hand, the
angle is given by

m(1+ 5/y)
cospp 1—

S

and when we proceed from resonance toward higher
magnetic fields pp decreases again towards zero.

B& =0, 2m&i&0. (6.4) B. Initial States

X,(2S)'/'- s,Wn, m-S,
[(n+2m)1d —(S —m)&do] - [(n+ 2m —S)1e] .

(6. 5)

Taking this analogy into account, one immediately
finds the high eigenvalues of 30o+ V (small l1) as

E, =E —m5+(m —l1)y,

where

E = (n+4m)u) —S&do, y = (52+ 2K,S)'/

and the expansion coefficients for Id„) are

2 ~/2
&

(&m6+ x/&e) /2
2

m-x (xm)1/4 (~ I )1/2 e

(6. 6)

xH„m ——~ 6. 7

On the other hand, the low eigenvalues (small v)
are given by

E„=E —m5 + (v —m) y (6. 8)

System (6.3) and (6. 4) becomes identical to system
(5. 4) and (5. 5) when the following substitutions are
done:

Formula (5. 28) shows that if the field /1 is small,
the effect of the relaxation times is such that the
total spin shall precess about a direction whose
angle with the static external field is quite small.
When the resonance is approached this angle will
increase slightly, always remaining small, and it
will successively decrease as we get out of reso-
nance. In the present situation we may assume
h-X~vm. Assuming m-10', we have a real mag-
netic field at the sample of -1.2x10 G, and an
equivalent magnetic field h-3. 7x10 Hz, where we
have used the maximum value calculated in Sec.
II for DPPH. For w2 we take the value 5. 5x10
sec measured on DPPH at ~p-2(d, and we get the
very small value tang -2x10 at resonance. Simi-
larly, small values are obtained for the corre-
sponding transitions in ruby. This fact permits us
to use the states Id/ of Sec. VIA as initial and
final states for 5 &0, and the states Id„) for 5& 0.

C. Generation of Second Harmonic

On the basis of what we have said above, we have
to calculate the matrix elements

and the corresponding expansion coefficients by

2 v/2
BP 1

/ lyg (vm6/1'+x/its) /2
(vm)' ' (vI)' ' '

xH„v% —+~ . 6. 9
x

y m

(d~ IG(e)vie~ ) (5& 0), (d IG(e). le. ) (5 '0)

Let us consider the case 6 &0. Then

ld„) = 8 B",ln, m+x, —S+m —x),

(6. 10)

(6. 11)
lt can be seen from (6. 7) and (6. 9) that even at
resonance in the rotating frame of reference the
spine are not precessing around the field X,Wm,

since the value of (d„ IS, Id„) is approximately
-S+m(1 —5/y) and that of (d„lS, Id„) approximately
-S+m(1+5/y). The reason for this is, of course,
that m «S, and in these conditions the quasiclassi-
cal approximation breaks down, since a reversal
of the total spin up to positive values of S, could

le„.)= ~ B~'„In —2, m+x+1, —S+m-x),

where p. , p,
' «m and the B's are given by formula

(8. 7). Naturally we shall meet here the same dif-
ficulties as in the case (dp-co, and we shall have
to take P a" projecting on the 2x 2 subspace
spanned by Id„) and le„.), and to resort to partial
summations. We now follow the development of
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Sec. V, and we obtain, to the highest possible order
in S and neglecting terms in 5/y for simplicity,

(d„ is a
i f„.,) =Wn 2 [(m+x)(2S —m+x)]

~B„"„B."'„'=(2Snm)'1'5„„...
(6. 12a)

(f„,. isa i e„.) =v n Z (-S+m —x)B",B"„

where

if„„&= Z B"",in —1, m+x+1, -S+m -x)

(d is,at
i f„„)=HZ (-S+m —x)B~,B"

t
z-(x, +v)-qx'q ~

"* . (x,.v) qx q'-
(6. 13)

and on the basis of arguments similar to those
used in Sec. V we select chains containing alter-
natively the terms S,o. and S,e in the development
(5.33) for (z -X() —V —qX'q), and perform a
partial summation. With the same approximations
as in (5.36) and using (6. 12) we find

(d„isat, S,a ie„.&

=-C(2S m} n z z z 5gp,2 Z —Eg —(d

Z —E —40 —6 SS
II

WnS5, „„, (6. 12b)

(f„„iSa'ie„.&=HZ[(m-x)(2S-m+x+1)]'1'

where

xB' ,B" „=. (2snm)'i 5„.„",

i f„")=K B"„in —1, mix, —S+m —x).

For K„„.we shall consider the expression

where E„ is the unperturbed energy of Id„) and
I e,), while C is a parameter analogous to that of
(5. 36), by which we try to take into account the
contributions of all the neglected chains of oper-
ators which are obtainable from those considered
by means of permutations. We then find

3 1/2 Z-Eu —
2 (s —E„—w)' —c'ns (z —z + )' —~ 'ms')

Within the same approximations as above, we also find for the diagonal matrix elements of G(z)~

(6. 15)

$+~ d +d

(6. 16}

We shall now simplify expressions (6. 15) and (6. 16)
as we did for the corresponding ones of Sec. V.
We then obtain

(d„ i G(z)i.'i e,) —Cz„s,(2S m)'i
n( E,z" z~z,

(d„iG(z)j'id„) =(e„iG(z)|'ie„&

2 2 z —E„=z-E„—C2sz„( E }z" z Sz.
II

(6. 17)
Since (6. 17) are formally equal to (5. 40), inversion
of the matrix of G(z)z' leads to the same formula
(5.41), where

E Cz
) ( z)m2s) n ~

A e)) ns B C29z)) n.
(6. 18)

The residues of (d, IG(z)J I e„) are given by expres-
sions (5.43}, and the approximate transition ampli-
tudes for the generation of the second harmonic by
expression (5.44). This time F does not vanish at
resonance as it can be seen from (6. 18). On the
contrary, if we had not neglected the terms in 5/y
in (6. 12) in order to simplify the notation, the fac-
tor (2S'm)'n in E would have been replaced by
~ sin&0, so that we would have found a maximum
for 6 =0 as it is observed experimentally.

D. A Physical Model

A plausible physical interpretation of the for-
mulas we have found for the transition amplitudes
in this region of magnetic fields can be obtained
along the same lines as in Sec. VD. Consider in
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and

y =y, +h cosqp sin(dt

P(t) = 2~t+g sin(yp+ h, cosyp sin&at)t

—2~t+ riv(yp + h, cosyp sinppt},

with the same approximations as in Sec. VD.
Passing now to the x component of the magnetiza-
tion, one has

M„=S sinyp cos g = S siny p cos[2+t+ ~p&

+ ('gk & cosyp) sln&df]

sinyaf p('qhg7' cosyp}

—J,(7ih, r cosy, ) cosp&t+ ~ ~ ~ ], (6. 19)

where the J's are Bessel functions and where we
have neglected the phase qypT Express. ion (6. 19}
shows that M, (&up) has a maximum at &op-2&v, since
pp as a function of & = 2~ —cop behaves as described
in Sec. VIA, and consequently that the interaction
between the (d and 2~ fields has a maximum there.

VII. DISCUSSION AND CONCLUSIONS

The first part of this section shall be devoted to
compare the results of the theory for the isolated
spin with those for the N-spin system. %e shall
begin as usual from the lines at cop-(d. In this re-
gion the isolated-spin transition amplitudes for
sufficiently short times are proportional to K given
by (4. 38), and since this quantity does not vanish
at resonance, rather artificial assumption have to
be done in order to get a minimum at resonance
rather than a maximum. For the N-spin system,
on the other hand, the corresponding expression
varies like (&u —&up)/y as is apparent from (5. 38),
and it may be instructive to investigate what the

fact, a reference frame rotating at frequency 2&
around its z axis parallel to the external static
magnetic field. From what we have seen in Secs.
VIA and VI B, it is evident that the x component of
the total magnetization will have components vary-
ing at 2' frequency. The goal is now to show that
M„develops also components at ~ in the laboratory
reference frame, so that an interaction can take
place between the co and 2+ fields via the magnetic
moment. This can be seen in the following way.
As we have said, the motion of total magnetic mo-
ment in the rotating frame can be described as a
precession around y at a small angle pp from the z
axis. In this frame the phase of the transverse
component of the magnetization varies like g sinyt
and in the laboratory frame this becomes

P(t) = 2u&t+ q sinyt .
On the other hand, y is modulated by the component
h, sin(dt of the co field oscillating along the z axis,
so that

reason is for this different behavior. It is not dif-
ficult to see from expression (5. 32) that the aver-
age value of S, and S, in the initial, final, and in-
termediate states used in the calculations for K».
in the case of N spins is close to zero near reso-
nance; consequently, the orientation of the total
magnetization does not change very much during the
various steps in the generation of second harmonic,
remaining nearly perpendicular to the z axis. This
causes the o. /y dependence of E„,. To put it in
another way, all the relevant intermediate states
available to the system display a noticeable stability
in the total-spin orientation relative to the z axis.
On the contrary, for any state in the case of the
isolated spin the value of S, is a constant, even in
those for which the average value of S, is zero.
This is due to the fact that in order to build a state
with (S,) = 0 one has at one's disposal only the
states I+ p ), in each of which the value of S, is
relatively large. It follows that for the isolated
spin each step of the frequency conversion process
shall actually find the spin "up" or "down" with
respect to the z direction, and the value of K will
not show any dramatic n dependence. In other
words, the isolated spin fluctuates quite strongly
between the two opposite orientations with respect
to the z axis, and this spoils any effect related to
its perpendicularity to the z axis itself. Since the
structure of the (dp-~ line is indeed an effect of
this sort, in the case of the isolated spin it is
washed out by these fluctuations.

Another point which should be mentioned is the
following. If we add incoherently the emission of
N "isolated" spins, we obviously get a probability
for the transitions which generate second harmonic
which varies like ¹ On the contrary, the proba-
bility for the generation of second harmonic we
have calculated in Sec. V varies like N' as is ob-
vious from (5.45). It is evident that some coher-
ency mechanism which phases the emission from
the various spins is playing an active role in the
second case. This mechanism was first studied
by Dicke and is commonly known as superradiance.
As we have already pointed out, when the electro-
magnetic fields are uniform over the volume oc-
cupied by the N spins as in our case; the total spin
is a constant of motion. This means that the mo-
tion of the various spins are correlated, and so are
also their interaction processes with the field. As
shown by Dicke, this fact causes the matrix ele-
ments for the single acts of emission or absorption
of photons to be proportional to N when the total
spin precesses in the x-y plane. Since two such
acts are involved in the generation of second har-
monic, we get matrix elements proportional to N
and transition probabilities proportional to N .
The coherency which leads to this "super-second-
harmonic-generation" may be thought to be in-
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(a'n sin8 cos'8N)'(n'+ I/v 2a)

(n'+ I/r,'+ S')' (7 1)

when (dp" (d and where the saturation factor is
given by

duced by the interactions among the various spins
caused by the presence of the uniform electromag-
netic field. On the other hand, adding the transi-
tion probabilities for the isolated spins is equiva-
lent to neglecting these interactions, and now we
see that these play a very important role.

In the other region cop
-2~ the same way of rea-

soning applies, mutatis mutandis. In fact we find
the same stability of S, and S, in the case of N
spins which we have been discussing for the region

In this case however, this stability does
not cause the appearance of any structure in the
peak of the second-harmonic generation, since the
average values of both S, and S, remain about their
maximum value when the magnetic field is swept
through ~p- 2(d. Therefore at least aggarently, the
peak at cop

-2' which we have calculated for the
case of N spins is similar to the corresponding one
for the isolated spin. From a quantitative point of
view however, the S' dependence of the transition
probability should be remarked for the N-spin sys-
tem; this is in relation to the fact that, due to the
unfavorable orientation of the total magnetic mo-
ment relative to the x-y plane, the interaction with
the electromagnetic fields in this plane is not su-
perradiant. Formally this is characterized by the
appearance of the S' factors in the relevant matrix
elements (6. 12).

We now turn to a comparison of our results with
those of the theory by Ciccarello et al. , who use
a density matrix approach to the problem. Such an
approach is of a phenomenological nature in that it
relies on the introduction of the relaxation times
&, and &, and it can be shown to be equivalent to a
Bloch-equations approach. Its success in present-
ing a unified picture of the most relevant experi-
mental features of the phenomenon of second-har-
monic generation, however, makes the comparison
particularly desirable. The main result of the den-
sity matrix approach is that the power radiated at
double frequency by a system of N spins is propor-
tional to, using our notation,

(a„X,+ e,X„)™)'~'a,~na/y ', (v. 4)

where we have reintroduced the factor s,~n/y
which we had neglected for n «y. Our transition
probability is therefore proportional to

X m(a'n sin8 cos'8N'}an'
(n'+ a'n cos'8) ' (v. 5)

The factor X m, which is the squared amplitude of
the 2&v field, appears in (7. 5) because we take ex-
plicitly into account the interaction of the spin sys-
tem with the field that it generates, while the N
dependence has been previously discussed and it is
related to the fact that we do not neglect coherence
effects in the intermediate steps of the process.
Apart from these two differences, it is seen that
(7. 5) can be obtained from (7. 1) by letting v, = ra

In the neighborhood of +p- 2' our theory
gives a transition amplitude proportional to

f„c,nÃ sinpp . (7 6)

In order to make the comparison with the density
matrix approach, it is necessary to introduce in
(V. 6} the relaxation times. From (6. 28) we get

sinyo- tango- X,™z /(1+ 5'r2')'~'

and hence a transition probability proportional to

&'m(a'n sin8 cos'8N')'~',
+

(7 7)

which is the counterpart of (V. 3). We conclude that
there is a close analogy between the results of our
theory and those obtained by the density-matrix ap-
proach. We wish to mention however a physical
feature of the phenomenon under study which cannot
be reproduced by our quantum-mechanical ap-
proach. Since I S I

' commutes with the total Hamil-
tonian of the system, it is a constant of motion so
that pictorially speaking if we represent 5 by a
stick, we can turn it around at our will, but its
length is to remain constant. Relaxation times,
however, break this conservation law, allowing for
a certain shortening or lengthening of the total
magnetic moment under particularly intense radia-
tion. It is in fact well known" that the solution of
the Bloch equations (5. 2V} for slow passage entails
that at resonance

S'= a'n cos'8 r, /~, (7 2)
(I + pa~2) ~/a

Sp 1 + h &P'2
(v. 6)

and to

(a'n cos8 cos'8N)'
5'+ I/r ',

(7. 3)

when &p- 2'. On the other hand, we have shown
that for sufficiently short times the transition
amplitude given by our theory in the neighborhood
of (dp v is proportional to

where Sp is the total magnetic moment far from
resonance. If we use in (V. 8) the values previously
calculated for DPPH, h - 8 x 10 Hz, &,™9&& 10
sec, 7., - 10 ' sec, we easily obtain a very substan-
tial reduction of I S I at n = 0. In our picture this
would correspond to moving to subspaces of X
characterized by a smaller value of I S I . This,
of course, should mean a further reduction of the
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ability of the system to generate second harmonic
at resonance, and thereby a further deepening of
the antiresonance at the center of the ~0-co line.
We emphasize however that this reduction of l'S I'

is by no means conceptually essential in order to
have the antiresonance, as we have shown by our
theory.

We wish now to spend a few words to connect
our theory to the present and future experimental
developments. We have seen how our final for-
mulas for the transition probabilities which gen-
erate second harmonic are obtainable from those
of the density-matrix approach by letting the re-
laxation times go to infinity. Therefore we do not
need a detailed comparison of our theory with the
experimental results, since this has been done
quite successfully in the paper by Boscaino et al.
A conceptual point which shouldbeworthy of further
experimental investigations, however, is the N de-
pendence of the probability for the processes we

have calculated. As mentioned earlier, internal
coherence of the spin system in the intermediate
steps is essential in order to observe superradiant
effects, whose occurrence has also been recently
predicted in scattering phenomena. ' Experiments
of the kind discussed in the present work should be
particularly suited to investigate these coherence
properties by measuring the dependence of the sec-
ond-harmonic power on the concentration of two-
level systems, when a reliable method to compare
the intensities of 2' lines in different samples is
found.

In conclusion, we have discussed a purely quan-
tum-mechanical theory of second-harmonic genera-
tion at microwave frequency by a system of two-
level objects. The predictions of the present theo-
ry are in agreement with the experiments, and they
also agree qualitatively with the density-matrix
approach, when relaxation times are introduced.
Furthermore, we have presented a qualitative pic-
ture of the phenomenon, by which insight into the
physical features of the process can be gained. As
a by-product of our investigation, we have also ob-
tained an approximate solution in analytical form
for a canonical problem, that is the eigenvalue
problem of a set of two-level systems coupled to a
strong monochromatic radiation field. Finally we
have pointed out the role of superradiance in the
second-harmonic generation processes, and we
have suggested experiments by which the impor-
tance of this role could be further investigated.
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