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A quantum-mechanical study has been made of the galvanomagnetic effect including intraband elastic

scattering for electrons in bismuth-type metals with ellipsoidal-nonparabolic dispersion relation. The
analysis is based on the Kubo formulas for static electrical conductivity. The magnetoconductivity

tensor in the strong-magnetic-field region has been worked out in the general case where the magnetic
field is in an arbitrary direction with respect to the Fermi ellipsoid. The relative- and center-coordinate

operators for the electron cyclotron motion are properly redefined in order to accommodate the nonzero

off-diagonal effective masses resulting from the arbitrariness in direction of the applied magnetic field.

The difficulty arising from the nonparabolicity in the dispersion relation is also overcome, thus all of
the magnetoconductivity tensor elements can be obtained in compact forms when the magnetic field is

sufficiently strong. An explicit curve for the transverse magnetoresistance of bismuth in crossed electric
and magnetic fields has been computed. We find that, by using v„„„,„=2.3 X 10 ' sec and

r&,1,
——1.2 X 10 " sec, our computed result is in reasonable agreement with some experimental data

taken at T = 4.2'K.

I. INTRODUCTION

When the magnetic field applied to an electron
gas is so strong that there are only a few Landau
levels below the Fermi energy, the quantization of
energy levels plays an important role. In this case,
the classical Boltzmann kinetic equation is no long-
er applicable for the treatment of the galvanomag-
netic effects; a quantum-mechanical formulation is
required.

For electrons with spherical-parabolic (SP) dis-
persion relation, theoretical discussions of galvano-
magnetic effects in the quantum regime can be found
in the papers by Titeica, ' Argyres and Adams,
Kubo and his co-workers, ' Argyres, Adams and

Holstein, Kahn and Frederikse, Skobov, Zyryanov
and Kuleyev, etc. Some of these authors have
limited their work to either the transverse or longi-
tudinal magnetoresistance effect only.

For electrons with ellipsoidal-parabolic (EP)
dispersion relation, a quantum theory of the trans-
verse magnetoconductivity was developed by Davy-
dov and Pomeranchuk (DP) early in 1940. ' In

their paper, a transverse magnetoresistance curve
(up to 25 kG) for bismuth was computed by assum-
ing that the hole Fermi surface consists of three
ellipsoids, ' and that electrons and holes are spin-
less. This paper marked an important advance in
the theoretical study of magnetoconductivity. The
sound logical basis of the authors's interpretation
of the electrical conduction in terms of migrating
centers in a magnetic field has later been justified.

For electrons with ellipsoidal-nonparabolic (ENP)
dispersion relation, theoretical investigation of the
magnetoconductivity in the quantum regime does
not seem to have appeared in the literature. ' The
study of this model of electrons lends its usefulness
to the investigation of electronic properties of bis-
muth-type metals as theoretical and experimental
results have both indicated that conduction elec-
trons in these metals obey the ENP model. '
In bismuth, for example, the electron Fermi sur-
face consists of three Fermi ellipsoids. One of
them (ellipsoid I) can, in the absence of a magnetic
field, be described by the ENP model energy-mo-
mentum r elation'

E 1 (&xx &xx &xx ) (Px )E 1+ = —p ~ i ~ p —
&

(Pxg Pxx &xz ) (Px)

where EG is the energy gap in the two-band model,
E the energy measured from the bottom of the con-
duction band, and p, the inverse-effective-mass ten-

I

sor at the bottom of the band, which, in the crys-
tallographic axes system (with the x, y, and z axes
respectively parallel to the binary, bisectrix, and

3500



HI GH- FIE L D NAG NE TORE SI S TANC E 0 F. . . 3501

trigonal axes), is of the form

~(e)

tt(f) = 0

0 0

(e ) (e)

(e) (e)

(2)

II. KUBO CONDUCTIVITY FORMULAS APPLIED TO
ENP ELECTRONS

It is well established that the one-particle Ham-
iltonian of the ENP electrons in a uniform magnetic
field H canbe expressed in the form, due to Lax, '

H(i)= —7 + - o H 1+

(4)
where 0 is the Pauli spin matrix, g the canonical
momentum defined by the quasimomentum p and
the vector potential A through the relation

t(= p+ eA/c, (6)

m,„the spin-precession effective mass with re-
spect to the magnetic field direction, E' ' the eigen-
value of H' ' measured from the bottom of the con-
duction band, and e, c, h assume their usual mean-
ings. hen investigating the galvanomagnetic ef-
fect, we should take into consideration the perturba-
tions due to the electric field and to impurity scat-
tering, and some other collision processes. Fol-
lowing the equivalent-Hamiltonian theorem of Lut-
tinger, ' and the perturbation method used by Ba-
raff, ' we now assert that the total Hamiltonian HT

The other two electron Fermi ellipsoids (ellipsoid
II and III) are generated by rotating the coordinate
axes used in Eq. (1) through + 120' about the tri-
gonal (z) axis. The hole Fermi surface of bismuth,
however, contains only one Fermi ellipsoid, which
in the above-mentioned axes system can be char-
acterized by'6

Eh E E t (~ h(p)z +~
( )itpz ~ ~ (h ptz)

where Eo is the band overlap, E" and E„are the
hole energies measured, respectively, from the
top of the hole band and from the bottom of the elec-
tron band, and o.„'"' ct'"'(= n'"') and ot'"' are the
inverse effective masses of holes.

In the present paper, we shall first present the
quantum-mechanical formulation for the magneto-
conductivity of ENP electrons closely following the
calculation by Kubo et al. ' The magnetic field
region in which we are interested is essentially
governed by the relation Ar»1, where II(=eH/m, c)
is the cyclotron angular frequency and v the aver-
age time between successive collisions. This con-
dition assures that the "center-migration" picture
can be appropriately used for the cyclotron motion,
thus simplifying the calculation problem.

ek HK
$(, = —g ~ P, Tt + ' H=HK 1 +-

2m, „c Ec,
(8)

As a first trial to solve the galvanomagnetic prob-
lem of the ENP electrons systematically, we shall
restrict ourselves to the lowest-order perturbation
expressions for the magnetoconductivity. Thus,
we shall only use the unperturbed wave functions
to calculate the scattering matrices. In the un-
perturbed case, since both H' ' and HK represent
the same physical quantity (the total Hamiltonian
for one ENP electron), they will have the same com-
plete set of eigenfunctions. Therefore, we need
not bother with the relativistic resemblance' of Eq.
(7); in Secs. III-VIII, we shall not distinguish H(z'

from HK and use a single symbol H to denote either
one of them.

According to Eq. (6), we may write the many-
electron Hamiltonian 3CT for a system of N ENP
electrons in a weak electric field as

N N N N N+T +K++P ++I ++F +KPI++F y

where Kt" (i =K, P, I, P) a.re partial many-elec-
tron Hamiltonians corresponding, respectively,
to H; (i =K, P, I, F) So long a..s 3Cg is an additive
term in X~, we may readily apply Kubo's static con-
ductivity formulas ' ' to the ENP electron system:

(g)

(T„„(H)= (1/V) f dt f dX Tr [pi(p/Z„(iK&) J (t)j

(tt, v=x, y, z), (10)

where V is the volume of the system, pK» the
density operator defined by the many-electron Ham-
iltonian X~zet, p=1/kT (k is the Boltzmann con-
stant, T is the absolute temperature), Tr denotes
taking trace in the many-electron space, and J (t)
is a Heisenberg operator defined by

(t) ei kgp/t/ h j e-(It(e/t/ h (11)

with
N N

Z, -=Z j,"'= —e Z r„"' (y, =x, y, z). (12)

III. CENTER AND RELATIVE-COORDINATE OPERATORS
FOR CYCLOTRON MOTION OF ENP ELECTRONS

If the applied magnetic field is along the z direc-
tion in a Cartesian coordinate system oriented

can be written as
A A

HT ——HK+HP+HI+HF =—HKPI+HF (6)

where H; is the perturbation energy due to the weak
electric field F, H, that due to impurity scattering,
H p the over-all perturbation energy due to all other
sources, and HK the Hamiltonian for an ENP elec-
tron in the absence of perturbation. It is defined by

H„= ——,'E +(—,'E +E K) (7)

in which
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X= {0,xHc, 0), (13)

arbitrarily with respect to the electron Fermi el-
lipsoid, i. e. , H= (0, 0, H,), and the vector poten-
tial given by

is the phase factor,

)t)„(z(x —x$)) =N„e " '" "o' ' H„( z( x—x$)),

[z= (A, /lfp„)'~, N„= ( z/v v 2"n!)'~ ]
(23)

(o, =eH, /m„c (15)

is the spin precession angular frequency with re-
spect to the magnetic field (z) direction.

It is found that the left-hand side of Eq. (14}can
be diagonalized by two successive unitary trans-
formations defined, respectively, by the unitary
operators

hhh (cP„~ hh. *'h'2

)~= exp (16}

the completely unperturbed state ){)(r,S) of an ENP
electron satisfies the Schrodinger equation

2

2 " 2 ' c 2

+ p„p+ 'x+p+ 'x p,

eH, cc) A

+~3C Py+ " P~+ ~sgPXPgc

+
2

'
(0 1 f(r, S)=E 1+&— ){)(r, S), (14)(0 —1 0

where

is the nth order linear harmonic-oscillator wave
function, X~ the spin-wave function, S=+1, n=0,
1, 2. . . , and k„,= (2g /L, ,) N, , (N„,= 0, + 1, + 2, . . . ;
I,„L„,L, being the dimensions of the system).

With the aid of Eq. (21), we may define the cen-
ter- and relative-coordinate operators (with ref-
erence to the center of migration) for the ENP elec-
tron's cyclotron motion in a magnetic field along
the z direction (but for arbitrary vector potential
A) as

—(p, -m„,p, /m„)c {p,—m„p, /m„)cE E ES

(v„-m„p. /m, )c

respectively, where

—(v, —m„,p, /m„)c
ee.

(25)

v, =p„+eA, /c, v, = p„+eA, /c, (v, =p,). (26)

[For SP electrons, or for a magnetic field along
one of the principal axes of the Fermi ellipsoid,
Eqs. (24) and (25) reduce to the simple forms given
by Kubo et al. '

]

exp
z P'x~ SPY (17)

IV. MAGNETQCONDUCTIVITY TENSOR ELEMENTS OF ENP
ELECTRONS EXPRESSED IN TERMS OF MIGRATION-CENTER

COORDINATES

Therefore, Eq. (14) can be easily solved. The
eigenfunctions and the corresponding eigenvalues
are

)))„»„,,(r, S) = e' '*'$' 'ct) „(tc(x—x$))

x(L L ) ' e'"+'$+'g (18)

With the one-particle center- and relative-coordi-
nate operators of the electron's cyclotron motion
defined above, we can follow the method of Kubo
et al. ' to calculate the magnetoconductivity tensor
for a system of N ENP electrons using Eq. (10).
In the case where the magnetic field H is along the
z axis, the results are

$$ $ $@G+(cEG+@G[(++2)I~ +S21~

+ lt'k', /2m, .]}' ', (19)

respectively, where

~2 a B

o„,(H,) = — dt dX (X,(- i').)X,(t)),
0 0

3 B

o,„(H,}= — dt dl). (Y,(-i@it.) Y,(t)),
o o

(27)

eH,
(~m/m, .)' "c (20) eP ~ B

„(hh, ) ——f CkJ Ch(Z(-Ct)h)Z)t)),
0 0

(29)

is the cyclotron angular frequency, bm =-det ~m, & ~,

m;&(i,j =x, y, z) are the effective-mass tensor ele-
ments (m = p '); o„,(H, ) = +-

a ~0
dt dl). (1',(- i&.)X,(t)),

(30)
(Kk, —m„,kk, /m„)cXo-

eH,

is the center coordinate of the wave function,

(21) nec e"'H'= H
'

VC ~0
dt ) d) (X,(-iW.)Y,(t)},

&0 (31)

{22) o„(H,) = " + — dt dX (g(- iRX)X,(t)),
mac a 0 ~0 (32)
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40 $ ~ 0

o (H ) = — + —' dt dl). (X,(-iil)) Z(t)},m„Hg V .p p

(33)

o (H, ) = — "' +— dt dl). (Z(-i&) Y, (t)),m„Hg V p p

(34}

s„„t 0) = f dZ (-I&)

x[tr(f)(E —H)y, 5(E —H)y, )]„, (38)

g„(H,) =J dZ (- ~)

o (H,}= "* + — dt dl). (Y,(-t87),)Z(t)),m„H, V p p

(35)

where

g= — X =
V

J c

N N
Z' x,"', Y, = Z', y,"', N

z P (')
C=1

It is worth noting that two essential conditions must
be satisfied for the validity of these equations.
One is A, v» 1; under this condition, the correla-
tion between successive jumps of the centers of
electronic cyclotron motion due to collisional pro-
cesses can be neglected, convenient for the use of
center-migration picture. The other is that the
relative coordinates of the electronic cyclotron mo-
tion are bounded; therefore, the statistical aver-
ages of the relative velocities in this motion are
zero. We thus can get rid of the relative-relative
and center-relative terms in the derivation of these
equations. The latter condition is satisfied for a
system of ENP electrons as long as they are mov-
ing on closed Fermi surfaces.

In the following discussions we shall assume that
the applied magnetic field is sufficiently strong so
that the second terms in Eqs. (30)-(35) can be
neglected when compared with their respective
first terms. Therefore, we have

o„(H,) = —o,„(H,) = nec/H„—
o„(H,) = —o (H, ) = (m„/m„)(nec/H, ),

o„(H,) = —o (H,) = —(m„, /m )(nec/H, ),

(36)

o»(H, ) = dE
viz

"&min

x[tr(5(E -H) x, 5(E -H)x, )]„, (37)

As for the diagonal magnetoconductivity tensor
elements shown in Eqs. (27)-(29), they can be fur-
ther reduced from the many-electron description
to the one-electron description with the aid of simi-
lar manipulations as have been used by Kubo et al.
for the SP electrons. ' If we omit all the perturba-
tions other than those due to the weak applied elec-
tric field and the impurity scattering, and further
assume that the impurity scattering centers are
distributed randomly in the sample, we have, in
the lowest-order of perturbation,

5(E —H) + 5 (E + Eo +H)
1+ 2H/Eo

(43)

and according to the work of Smith, Baraff, and
Rowell" (SBR) the energy of the ENP electrons can
not be so small as to fall below ——2E~ measured
from the bottom of the conduction band [see Eq.
(19)], we have, when these operators are acting
on the eigenfunction of H,

5(E -H) = (1+2E/Eo) 5(e -X). (44)

We have now reached the point for detailed cal-
culation of the diagonal magnetoconductivity tensor
elements for the ENP electrons. Let us start with
the transver se magnetoconductivity. Substituting
Eq. (44) into Eq. (37), making use of Eq. (41) and

x[tr(5(E H)-&, 5(E -H) &,)]„, (39)

where fo—=fo(E) = 1/[1+e8'z t'], g is the chemical.
potential, tr denotes taking the trace in the one-
electron spa, ce, 5(x) is the Dirac 5 function, E ),
= ——,'E~ measured from the bottom of the conduc-
tion band as can be easily seen from Eq. (19), sub-
script sc means averaging over variables of the
scatters contained in the scattering potential, and

v, is the one-electron velocity (z component) opera, —

tor, which in this magnetic field (parallel to the z

axis) configuration can be expressed as

p„p, + t),„,(t), +eH, x/c)+ p„,P„5~= $[H+Hi(r), z]pn=
1+2H Eo

(40}
x, and yc are related to the impurity scattering po-
tential H, (r) [henceforth denoted by U(r}], respec-
tively, by the relations

x, =i [U(r), x, ]/3 and y, =i [U(r), y, ]/8 (41)

because x, and y, as defined in Eq. (24) both com-
mute with H. Equations (37)-(39) are correct only
for elastic scattering process. The two Dirac 5
functions appearing in these equations indicate that
the energies of the electrons in the initial and final
states are equal as required by the conservation of
energy in this scattering process.

To account for the nonparabolicity explicitly in
the magnetoconductivity formulas, we now intro-
duce a variable E, which is defined by

c = E(1 +E/E o) or E = ——,
' Eo + (—,

' Eo +Eo z) '
(42)

consistent with 3C= H(1~H/Eo) as defined in Eq. (8).
As23
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the basis functions shown in Eq. (18), and noting
that these functions are also the eig'enfunctions of

x, with eigenvalues xo defined in Eq. (21), we can
thus obtain

d„()d,) =
J dE

(
—') (( —

)
x P [( (v~ U(r)

~

v')~ ]„(x -x')

x5(e —e„)5(e -e„,), (45)

where v= nSk, k-„v'= n'S'k,'-k,',
I v) is just &()„~+, (r,

S) as defined in Eq. (18), e„=e„~)&„~„and xo is de-

fined by —(hk,
' -m„hk,'/m„) c/eH, [Eq. (21)].

To simplify the problem, we may assume that
the ENP electrons are elastically scattered by N,
randomly distributed centers with 5-function-like
impurity scattering potential, i. e. ,

NI

U(r)= Z U5(r —R&),
j=1

(46)

where U is the strength of the potential, r the elec-
tron coordinate, and R& the position of the jth im-
purity scattering center. Further calculation start-
ing directly from Eq. (45) can be easily made, the
final result is

o„„(H,)= I 5 p if A, dZ — 1+—
&-Et /2 aE G

++Pl +1
[g —(n+2)hA, —S 2 if&(&, ] [e —(n'+2)hA, —S 2)I&d&, ]

where the quantum numbers n, n', and 8 run over
those values such that the quantities in the radicands
are non-negative' (this restriction shall be main-
tained whenever such radicands appear in the fol-
lowing discussions), and

(48)

It is obvious that Eq. (47) goes over to DP's result
for EP electrons when EG-~, and to that of Kubo
et al. for SP electrons when appropriate limit is
taken.

Equation (47), as it shows, is a consequence of
ideally sharp energy levels. It might be a good

approximate (lowest-order-perturbation) expres-
sion if its value remains finite. Aswas firstpointed
out by DP, and later carefully investigated by Kubo
et al. , the corresponding sharp-level result for
SP (or EP) electrons leads to logarithmic diver-
gence. The presence of this same feature in the
ENP electron case can be easily seen as follows:
Since e = E(1+E/EG), and E(n, S), the lower limit
of integration (on E) of the term n=n' (S =+ or -)
in &x„„(H,) of Eq. (47), is determined by the relation

E(n, S) [1+E(n, S)/Ez ]=—e(n, S) = (&&+2) KA+ 2 Slf&(&,

we have, when integrating this single term,

dE —8 1+2E E dE
SE e -e(n, S)

~8f (1+[E+Z(n, S)] /Eo ].z&„z& SE Z(1+Z/Ez) —E(n, S)[I+E(n, S)/Zo ]

The last integral on the right-hand side of this
equation is approximately equal' to (kT) (ln[kT/(E
—E(n, S))]j&& z&„,~&. Thus, o„,(H, ) as given in Eq.
(47) also shows logarithmic divergence.

To avoid this divergence, we employed the theo-
retical damping formulation developed by van
Hove. In doing this, we first replace 5(Z —H) in
Eq. (37) by (I+2E/Eo) 5(e -X) [see Eq. (44)], and
then make use of the substitution

5(c —56) S(e) = I'(f )/&& ((3C+ h((d) —e] + I (e)],
(5o)

L(e) +if'(e) = lim G(c+ i&7),
q- 0+

G(~) = —U„,(r) [X+G(e) -e] 'U.„(r),

(51)

(52)

U„&(r) = U(r) + [HU(r) + U(r) H) /E (53)

where I'(e) is the effective level-width operator and
n, (e) the effective level-shift operator. To first-
order-perturbation approximation in the ENP elec-
tron case, f'(e) and b, (e) are defined by the rela-
tions
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The last equation is due to the fact that

5(e —[H+ U(r)] (1+[H+U(r)]/E })
-=5(e -K- U(r) —[HU(r) + U(r)P]/Ee) (54)

when we retain only the first-order terms of U(r).
Exact solutions for the average values of I"{f)and
f](e) are rather difficult to find as the value of
&G„(e)&„—= [(v IG(e) I v)]„is determined by the fol-
lowing complicated equation:

p (l(v IU,«(r) iv') I'&„
e„,+ &G„,(e)&,,—e

[1+(E+E„.)/Eo] (1(v IU(r) iv') I &„
v' e„,+ (G„,(e)&„-e

(55)
In practical problems, &1'„(e)&„aswell as &4„(e)&„
is not too large. We may then put E„,=E in (55).
This approximation does not lead to serious error
because &G„(e)&„has a dominant value only at e
=e„. (or E=E„,). With this preparation and after
Kubo et al. and Miyake's treatment of the SP
electrons, we can easily find the transverse mag-
netoconductivity of ENP electrons in the broadened-
level case as

e2 8'hm
o~(HS) —

2(2 )sg s Pzz RAS

2

dE — 1+ n+n'+1

where

(5 —(' ~ -', )SA, —S-', St5, —Z] ~ (]5 —(' ~ -', )ZA, —5-,'St5, —5]' ~ F5]'I )'
'

(55)
~

~

[e - (f +-,') KA, —S -,'ff(o, —a]'+ I'

(57)

when the magnetic field is so strong that the Lan-
dau level separation is large and the transitions be-
tween different Landau levels can be neglected. As
both I' and 6 approach zero, Eq. (56) obviously
goes over to Eq. (47).

The expressions for o (H,) can be obtained in a,

similar way, or simply by replacing all the sub-
scripts z by y in Eq. (47) for the sharp-level re-
sult and in Eq. (56) for the broadened-level result.

I

V. LONGITUDINAL MAGNETOCONDUCTIVITY TENSOR
ELEMENTS

From Eq. (40) we see that the longitudinal com-
ponent velocity operator 8, does not depend on the
perturbation potential U(r); thus the longitudinal
magnetoconductivity tensor element &r„(H,) as given
in Eq. (39) is much easier for further calculation.
By making use of Eqs. (18), (22), and (40), we ar
rive at

&v'Iv. lv& = 1 + E &v'I i -~~.+ ~,. )I&, + ' + ~:g
I
v&—-1 eH x 80

where 5+ „, etc, are the Kronecker 5 symbols. It follows that

and Eq. (39) reduces to the form

1 1
f«A A-i+(&+1)5A A55]5A A 5A A 5s ~ s) (59)

gg

5„(s)= f sz ( z)(1+—
)

r ( )
5(z —z„)5(z —z) (60)

as the off-diagonal terms in 1(v iv, I
v'&

I have all
been dropped out in the case of elastic scattering.
The two identical 5 functions appearing in this equa-
tion indicate that the longitudinal current will be

infinitely large if the collision with crystalline im-
perfections is absent. This can be compared with
the transverse case; without collision, the trans-
verse magnetoconductivity will be zero [see Eq.
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(56)]. Thus, both of these results are in agreement
with the classical picture of electronic motion in
constant and uniform electric and magnetic fields.

Since 5(E -E„)5(E-E„)=5(0)5(E-E„), if we con-
sider transitions in a given time interval (-r, r),
the 5 function will be smeared out and 5(0) can be
related to the relaxation time 7 by

5(0) = 7/vR

We may, with the aid of Eq. (44), obtain

(61)

where we have, for the reason to be made clear in
the following paragraph, assumed 7 to be energy
and spin dependent. This equation is in agreement
with that of Argyres for the spinless SP electrons
when we take the appropriate limits.

The relaxation time v(E, S) appearing in the above
equations can be computed from the definition

I/v(E„, S)= Z W„„.(kE —k,)/k„
pt

W.„=(2v/if) [I &~l U(r)
I
v &I']-5(E.-E").

(64)

Simple calculations making use of the 5-function-
like potential defined in Eq. (46) lead to the ex-
pression

(2gm)»'
v(E S) Il 4v~ff' ' Ec

x ~ E 1+ — pg'+ —SQ —$ g~E g 2 g

(65)
This result, when appropriate limit is taken, is al-

x Q ' r(E, S) 5(e —e„), (62)
Sk,

ft $k&k m gg

or, after some mathematical manipulation,

o„(H,) = fd'E(- ~)(1 + —)
x Z v(E, S)[e —(n+-,')flQ, -S-,'K(d, ]' ', (63)

so in agreement with that of Argyres' for spinless
SP electrons.

On substituting Eq. (65) into Eq. (63), we obtain
a longitudinal magnetoconductivity formula, which,
like the transverse magnetoconductivity [Eq. (47)
or (56)], can be evaluated if the strength of the 5-
function-like scattering potential U (and thus W

=I(I, U/V) is known. Equations (65) and (63) are
indeed "sharp-level" expressions. However, since
they give, respectively, only finite values of v and

o„(H,), these equations can be considered as rea-
sonable lowest-order-perturbation results. Thus
we shall not discuss the broadened-level case for
these quantities.

Up to now we have worked out all the magneto-
conductivity tensor elements for the ENP electrons
in a magnetic field arbitrarily oriented with re--
spect to t he Fermi ellipsoid. Further calculation
for the magnetoresistance and Hall effect in a suf-
ficiently strong magnetic field (such that there are
only a few Landau levels below the Fermi energy
and A, v» 1) can be easily carried out starting from
these explicit expressions. In the above discus-
sion, we have restricted ourselves to the case of
a magnetic field along the z direction. However,
as we have mentioned before, this direction is ar-
bitrarily oriented with respect to the Fermi ellip-
soid. Thus, for a magnetic field along the other
directions (x, y), similar expressions can be easily
obtained from these results simply by cyclic per-
mutation over the subscripts x, y, and z. It is to
be remarked that, for short-range (other than the
5-function-like) scattering potential, the above-
mentioned results are still valid if 8' is appropriate-
ly redefined. ' In this connection, the usefulness
of these expressions can be extended somewhat.

VI. MODERATELY STRONG-FIELD LIMIT

If the magnetic field is so strong that Eq. (36) is
approximately valid, and sufficiently weak that
AA, «f but the condition 9,v» 1 still holds, we can
neglect the electron spin and replace the summa-
tions in Eqs. (47) [or (56)], (63), and (65) by in-
tegrations. The result is

F(H, ) =

p,»I~
nec/H,

—nec/H,

p&& I~

(m„, /m„) nec/H,

—(m„/m„) nec/H, (66)

—(m„,/m«) nec/H, (m„,/m„) nec/II, Ii/m„

where

e' (2am)"', H " ~Sf,«1+ 2E/Eo r(E)
22 d If' 9E 1) f(E) ' 1 2E/E )'
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and 7 (E) the zero-field relaxation time, which is
related to W by the expression

4 1 p —(2hme) S/2

C
(68)

as can be easily figured out with the aid of Eq. (64).
These results are the same as those derived

in a separate paper ' where we discussed the
galvanomagnetic properties of the ENP electrons
in weak magnetic fields by means of a "drift-
momentum" approach, and, after taking the
limit EG-~, agree with that obtained by Mase
et aE. "

VII. TRANSVERSE MAGNETORESISTANCE OF BISMUTH

Let us calculate the transverse magnetoresis-
tance of bismuth as an application of the above re-
sults derived for the rnagnetoconductivity of ENP
electrons. In order to compare our calculated re-
sult with some published experimental data and
other computations, ' we assume that T =4. 2'K,
the applied electric field is along the trigonal (z)
axis, and the strong magnetic field along the bi-
sectrix (y} axis of single-crystalbismuth. Summing

up all the contributions due to the holes and the ENP
electrons residing on the three Fermi ellipsoids,
we have the total magnetoconductivity tensor as
[see Eqs. (36), (56), and (63)]

4

c (t)(H T)

(i)(H )

(t) (&)—n, q; cm„ /m, „H
tii q c/H

(&) f (r)n f q f mug / m yy Hy

(&) / (k)—n] qg cmg~ / m» Q„

—n, q, c/H,

tli qi cmgy /my' Hy

~(.')(H, )

(69)

where q, = —e (i = 1, 2, 3, for electrons), q, =+ e
(i = 4 for holes), n, is the electron (i = 1, 2, 3) or the
hole (i =4) concentration, and m»(3») (i =1, 2, 3;j, k

=x, y, z) are related by C3 symmetry. The explicit
expressions of c(»)(H ) [as well as &r (»)(H~„)] and

(»,",'(H„) can be obtained, respectively, from Eqs.
(56) and (63) by cyclic permutation in the subscripts
x, y, z, and the corresponding expression for i = 4
assumes a simpler form as the holes follow EP
model dispersion relation.

4

Z q; n; = —e(n) +n3+ n3 —n4} = 0.
&=1

(70)

The explicit forms of the n&'s of ENP electron are

Values of the chemical potential at the specified
constant temperature, implicitly contained in the
magnetoconductivity formulas through the Fermi
distribution function for electrons and holes, ca,n
be determined with the aid of the charge neutrality
condition

26m "
ni 2 3g 3 8AII ' dE — Z [E(1+E/Ec) —(n + 3) KA)I

' S35(d)I-' ]' (electrons, i = 1, 2, 3),
2g 5 Eg/2 n, SeE

(f) 1/2 O))( ™) kfi(») dE Bfp (E —Ep} p [E (
)
) fffl(») S))f (i )]

"~4min n, S
(holes, i =4),

(71)

where E4», =-3'h(Q,'4) —(d„' '). Numerical calculation has been performed using SBR's data. The results'
are illustrated in Figs. 1 and 2. From Fig. 1, in which n& is denoted by n&" for i = 1, 2, 3, and n4 by n'"',
we see that n, is approximately equal to np (= n3 by symmetry) for a magnetic field roughly up to 26 kG.

By making use of this approximation as well as Eq. (70), we can simplify Eq. (69) to the form

F"&(H„T)= Z
o„(„*'(H,)

(f) (i)—n»q» cm&t /m&& H&

n&q, cm„, /m» H,

(72)

since m~'=0, m„„=—m~', and m~ =0. There-
fore, when the applied electric field is along the
trigonal (3) direction and the applied magnetic field
along the bisectrix (y) direction, the total transverse
magnetoresistivity p„(H„T) of single-crystal bis-

I

muth is approximately of the simple form

p„(H„,T) =1 (i)(H ) (73)

Furthermore, the zero-magnetic-field electrical
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FIG. 1. Charge carrier density of single-crystal bis-
muth at T=4. 2'K vs H (parallel to the bisectrix axis).
n~ refers to the concentration of charge carriers in the
electron ellipsoid with lighter cyclotron effective mass.

FIG. 2. Fermi energy of single-crystal bismuth at
T= 4. 2 'K vs H (parallel to the bisectrix axis).

resistivity of single-crystal bismuth at 0 K can be
found to be~8

p &I

p
- 4x1Q

0

p„(0, 0)=1 (74)

(-) 2 (i)
&')

O O-" ( r)"- '-1 2 3
3(I 2E /E )

&4)(0 0) &+)eP (E )@&4&

(75)

- 3x1Q
6

where v, (E&,) [or v„(Ey):7'p(Ep Ey)) Ey (or E'p
—Er), and n' ' (or n&') are the zero-field relaxa-
tion time, Fermi energy, and the concentration of
the electrons (or the holes) at 0 'K, respectively.

Numerical values of p/pp [=p„(H, , T)/p (0,-0)]
at T =4. 2'K versus a magnetic field H from 5 to
26 kG have been calculated with the aid of an IBM
1130 computer. The result is illustrated in Fig. 3,
in which the nine dots denote the experimental data
of de Haas et al. In this calculation, the zero-
field relaxation times are taken to be

v, (Er) =—2. 26x 10 sec, v„(Er) —= 1.24x10 ' sec.
(76)

It is noted that in DP's work, the p/pp vs H, --
curve was calculated with v', = r„=4x10 ' sec. In

the comparison of their magnetoresistance curve
with the present one, we see two noticeable differ-
ences: (i) Our curve shows more oscillations; (ii)
the oscillation amplitudes in our curve are much

-2x1 Q

-1x10

kG
I

10 15 20 25 30 35

FIG. 3. Computed transverse magnetoresistance
curve of single-crystal bismuth at T =4. 2 K vs H (5 to
26 kG, parallel to the bisectrix axis) when the electric
fieM F is along the trigonal axis. The nine dots repre-
sent the experimental data of de Haas et al. (Ref. 29).
Triangles are recent experimental values obtained by P.
W. Chao (private communication).
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larger. [In Fig. 3, the magnetoresistance maxima
with (p/p&&)xl02=0. 274, 0.467, 0. 964, 2. 74 occur
approximately at 0„=5. 5, 7. 5, 10.5, 20 kG while
the minima with (p/p2)x10 =0.251, 0. 377, 0. 674,
1.43 occur approximately at 6, 8, 12, 24. 5 kG,
respectively. Also included in this figure are some
recent low-field experimental values obtained by
P. W. Chao (private communication). ]

VIII. REMARKS ON OSCILLATORY AND ASYMPTOTIC
BEHAVIOR

From our results of calculation as shown in Figs.
1-3, all the quantities n, , f, and p contain both an
oscillatory as well as a monotonic variation with
the magnetic field. The oscillatory part may be
understood in the usual way as in the case of SP
electrons while the monotonic part can be more
complicated. Since the experimental curves are
always due to a. superposition of the two parts, the
relative minima in the magnetoresistance curve do
not necessarily coincide with the minima in the
oscillatory part. The difference in position of the
mininurn which depends on the contribution due to
the monotonic part can become quite sizable in
some semirnetals.

If we ignore the monotonic field dependence and
spin splitting, Eqs. (4V) and (71) give the approxi-
mate oscillations in o(,"and n(, respectively, (i
= 1, 2, 3, 4) with periods in 1/H as

n"'(1/H, )= &;&. . . (electrons, i= 1, 2, 3),

(77)

b, ' '(1/H, )= 0. 082 kG

/4' ' '(1/H ) = 0. 041 kG

~"'(I/H, )=0.0005 kG-'.

(79)

(gm (i &)1/2fl (i) [t(I + t/H ) )f(g(i ) (i ))/2]1/2
i=?, 2, 3

(~m(4) )1/2fl (4& Q
n2$

These values are consistent with the oscillations
shown in Figs. 1 and 3 (6 lies somewhere between
0.038 and 0. 049 kG '), except for /),

( '.
The asymptotic behavior of n&, f, and p in high

magnetic fields can be understood through Eq. ('ll).
For the present case, H parallel to the bisectix
axis, the orbital-cyclotron effective masses of elec-
trons are greater than their corresponding spin-
procession effective masses, m,'„":m,'„"= 0.0084:
0.0079, m " ':m' '' '=0. 0168:0.0158 (once
again using values given by SBR). Thus, for these
conduction electrons, the lowest energy level will
decrease if we increase the magnetic field. Ac-
cording to Eq. (19), the quantum numbers n, S, k,
must be so chosen that the value in the radicand
remains non-negative, or the allowed energy levels
be greater than ——,'E~ measured from the bottom
of the conduction band. Under these conditions,
more and more electrons will reside on the lowest
level in an increasing magnetic field as the de-
generacy in each level increases. Consequently,
we obtain from (71) for the charge neutrality con-
dition at low temperatures

(1/H&)) =
&4&mica —L

(holes). x[(Z() —f) —(&(+~2)KA( & S~28(d( &]
/

~ (80)

These results are in accord with those calculated
from the simple Onsager relation '

r4(1/H) = 2&(eh/cS ~, (78)

where S ~ is the extremal cross-section area of
the Fermi ellipsoid in a plane perpendicular to the
field H. Using the parameters given by SBR with

267m-eV, we obtain from (VV)

g =Ep —AH,

where

(81)

The Fermi energy g is field dependent. One as-
sumes further that in the extremely high-field lim-
it: g(1+ f/EG) «)4(&d„"&- 0,('&) and the holes all re-
side on the lowest Landau level n. =0, ~,' '«9„' ',
hence (80) reduces to the form

eS 1 1 g-&i'~ m~
(4) + ~ (4 & (i) — (i) — (4)2cm; ~q3 hm m„m~ 2c m~

(82)

in qualitative agreement with Fig. 2.
From (Vl), we also find that n, goes as H2/2 in

this extreme limit. This accounts qualitatively for
the rise in high fields of n s in Fig. 1, although
quantitative agreement cannot be expected because
the conditions we have assumed for the extrerne-
high-field limit are not well satisfied in Fig. 1.

To look for the asymptotic behavior of p at low

temperatures in the extreme-high-field region, we
make use of Eqs. (4V), (63)„and (65) (y-z, 2-y)
in conjunction with (81). From these relations one
obtains

o„"(H~), os'(H„)- (1+2f/Ee), i = 1, 2, 3,

o,',"(H,) -H, (1+2g/Ee) 2,
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o„'4'(H„), o,', '(H„)- constant,

hence the transverse magnetoresistance as shown
in Fig. 3 should take the form

2f )P„Q o,",'(H„)
)

n (1+ —(+P
) I &cj

(84)

IX. CONCLUSION

We have performed a quantum-mechanical study
of the galvanomagnetic effects of ENP electrons
in a strong magnetic field along an arbitrary di-
rection with respect to the Fermi ellipsoid. The
difficulties due to nonzero off-diagonal effective
masses and the nonparabolicity in the dispersion

where a and P are two constants. As f decreases
with increasing H according to (81), p thereby in-
creases with H in the extreme limit.

From (84), we observe an effect in the transverse
magnetoresistance strictly due to the nonparabolic-
ity. In the case of parabolic band (Eo- ~), p„
shows saturation in the extreme limit. The final
increase in p„comes solely from the fact that E&
is finite.

relation have both been overcome. Agreement of
our calculated curve for the transverse magneto-
resistance of single-crystal bismuth with the ex-
perimental data indicates that the electronic prop-
erties of bismuth can be satisfactorily described
by the ENP model, although some experiments and
theories ' ' ~' 3 are in favor of more complicated
models for the bismuth electrons. Magnetoresis-
tance in the elastic impurity scattering region of
a nonparabolic-band or bismuth-type metal in an
arbitrary orientation with respect to the electric
and magnetic fields at any temperature can in prin-
ciple, be calculated by a simple extension of our
derived results. It is hoped that comparison be-
tween the experimental and calculated results will
help to reveal more information on the electronic
structure of these metals.
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