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The goal of this work is to provide an analysis of spaces of critical points for multicomponent
systems. First, we propose the geometric concept of order © for critical points; we distinguish it from
a previous definition of a “multicritical” point. Specifically, we may define the intersection of spaces of
critical points of order © to be a space of critical points of order (O+1). Ordinary critical points are
defined to be of order ©=2, so that the tricritical points introduced by Griffiths are of order @=3.
We discuss more general examples of critical spaces of order ® =3 which are known for a wide variety
of systems; we also propose several examples of models of magnetic systems showing critical points of
order O=4—i.e., systems having intersecting lines of tricritical points. The analysis of critical and
coexistence spaces also provides a new form of the Gibbs phase rule suitable for complex magnetic
models. Next we define—for the critical points of order © of which examples have been given—special
directions in terms of which to make a scaling hypothesis. We give the hypothesis for simple systems
and then for tricritical points, and then, in a subsequent paper, part II, the special directions are used
to make a scaling hypothesis at spaces of critical points of any order. Certain predictions (e.g., scaling
laws and “single-power” scaling functions) follow in a simple and straightforward fashion. We consider
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the scaling hypothesis at a critical space of order © in terms of a group of transformations. We can
define a set of invariants of the group. It is possible, for © >3, to make a second scaling hypothesis
for the space of order © — 1 using certain of these invariants as independent variables. This is
advantageous because certain “double-power” scaling functions then follow directly; these predict that
for O=3, experimental data collapse from a volume onto a line. This prediction is to be contrasted
with ordinary scaling functions, which predict that data collapse by only a single dimension (e.g., from
a volume onto a surface or from a surface onto a line).

I. INTRODUCTION: THE ORDER OF A CRITICAL POINT

The purpose of this work is (i) to propose the
concept of the “order ” of a critical point, (ii) to
give examples of critical points of orders three
and four, and (iii) to present a form of the scaling
hypothesis for spaces of arbitrary order. The
work is divided into two parts. In this paper (I),
we focus upon concrete examples illustrating criti-
cal points and scaling at critical points of order
three, while in a subsequent paper! (II), we con-
sider scaling for spaces of arbitrary order. First-
ly, we must develop the concept of the order of a
critical point, and that is the task of this section.

The scaling hypothesis was originally formulated
for the critical point of a simple magnet and a sim-
ple fluid.?™* These systems each have two purely
intensive variables [(H, T) and (P, T), respective-
ly]. Such variables we call fields, adopting the
terminology of Griffiths and Wheeler.®

A very wide variety of physical systems whose
critical phenomena are under active study have
more than two field variables; two common exam-
ples are antiferromagnets and binary mixtures.

In such systems, one can have lines (or, in gen-
eral, spaces of dimension larger than one) of crit-
ical points. Recently, special attention has come
to focus on those systems for which three lines of
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critical points intersect, and the point of intersec-
tion has been called a tricritical point by Griffiths.®

The scaling hypothesis has recently been ex-
tended’ to treat some (but not all) aspects of this
novel type of “critical point”, In this work we
present a comprehensive scaling treatment of gen-
eral multicomponent systems. First we give a
detailed treatment of tricritical points. Our ap-
proach is then generalized to more complex situa-
tions.

One example of a more complex situation is a
system for which four lines of critical points inter-
sect; in a natural extension of Griffiths’s termi-
nology, Nagle and Bonner® have called such points
tetracritical points. We show here that, in the
particular case studied by those authors, the tetra-
critical point is qualitatively the same as a tri-
critical point in the sense that the formulation of
the scaling hypothesis there is the same as at tri-
critical points.

Qualitatively different points (“spaces”)® can be
achieved in systems with more than three field
variables; a more general scaling hypothesis is
needed and correspondingly more predictions are
obtained. These are discussed in detail in Paper II.

Two simple examples of systems with more
than three field variables are provided by He®-He*
and ammonium chloride, and both these systems
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show lines of tricritical points.

Liquid He3-He* mixtures have thermodynamic
variables [P, T, W - i3, 1], where P denotes pres-
sure, T denotes temperature, p, and p; are the
chemical potentials of He* and He?, respectively,
and 7 is a variable conjugate to the superfluid den-
sity, The “X line” in the P-T plane becomes a
two-dimensional surface of singularities with in-
creasing mole fraction of He®. This surface termi-
nates at a line of special points, °® which is in
fact a line of tricritical points.

Ammonium chloride possesses an order-disorder
transition for which the transition temperature in-
creases with increasing pressure, and changes
from first order to second order at a tricritical
point. If one replaces some of the hydrogen by
deuterium in the ammonium group,'®® then the posi-
tion of the tricritical point (and the whole line of
crder-disorder transitions)changes. The variables
are thus (P, T, iy - Kp, 1), where 7 is a variable
conjugate to the order parameter.

In a system of sufficient complexity, several
lines of tricritical points can occur. A point of
intersection of lines of tricritical points is qualita-
tively different from a point where lines of ordinary
critical points intersect. This should be clear
from the topology of the situation: At a line of tri-
critical points, surfaces of critical points meet,
while at a point where lines of tricritical points in-
tersect, several surfaces of critical points (bounded
on each side by the tricritical lines) converge on
“the point.

To distinguish such points—and in general spaces
of such points—we will refer to them as critical
points of higher order, and we will associate a
number with each order as follows. We define
ordinary critical points to be of order © =2; then a
critical point (or space of points) of order 9+1 (o
=2) is defined to be a special point where lines (or
spaces) of points of order o intersect. Thus a tri-
critical point is of order ©=3 and a point of inter-
section of lines of tricritical points is of order
0=4,

Griffiths and Wheeler® reasoned that the dimen-
sionality of a space of ordinary critical points (of
order ©=2) is (- 2). In the systems we consider
below the dimensionality, d, of a space of critical
points of order ¢ is always one less than the dimen-
sionality of the spaces of critical points of order
(0—1) which intersect at it. Therefore, we find the
value of d for arbitrary © by induction from 9=2 to
be, in these cases,

d=n-o0, 1.1)

where 7 is the total number of field (and fieldlike)'!
variables available.

Critical points of complex thermodynamic sys-
tems can also be analyzed by making the scaling

hypothesis from the outset. The significant quan-
tity is then the number of relevant scaling vari-
ables. Using the renormalization group, it has
been suggested'® how more than two relevant scal-
ing variables can occur, but the geometry of the
phase diagram was not considered at all. In most
of the examples known to the authors, the number
of significant scaling directions is equal to the or-
der. This may not always be true for more com-
plex systems [e.g., fluid mixtures, for which Eq.
(1.1) may need modification, becoming d =n -0].

A specific example which demonstrates the im-
portance of distinguishing the order of a critical
point from the number of critical lines meeting
there is the tetracritical point. This is a point of
ordero =3 with true field variables (H, H,, T),
where H and H, are direct and staggered (i.e.,
wavelength 2 lattice sites) magnetic fields. When
a fieldlike variable & (the ratio of short- to long-
range-interaction strengths) is also included, (i.e.,
n=4), Eq. (1.1) indicates that the system has a
line of critical points of order ©=3. This is veri-
fied in the analysis of Sec. III, where it is shown
that in this model there are three surfaces of criti-
cal points of order 9 =2, meeting at the line of
points of order 9=3. The tetracritical point is
simply a point on a smooth line of tricritical points;
the “tetracritical point” arises because we have
chosen a section of the four-dimensional (H, H,, T,
®) space that is tangent to the line of tricritical
points, rather than a section which intersects it.

First we give, in Sec. II, examples of systems
exhibiting spaces of critical points of order 0=3,
and explain a convenient notation for the phase dia-
grams of such systems. This leads to an equation
equivalent to the Gibbs phase rule.

In Sec. III we explicitly demonstrate the impor-
tance of distinguishing between the order of a criti-
cal point and the number of lines meeting at a crit-
ical point—the former leads to an essential increase
in complexity, while the latter does not. To do
this, we compare several one-dimensional Ising
models with long-range interactions, all of which
are exactly soluble.

Special directions at spaces of order © are de-
fined in Sec. IV; these are analogous to the strong

and weak directions defined by Griffiths and Wheel-
5

“er.” A way of deriving these directions for tricrit-

ical points using the renormalization group ap-
proach has been pointed out by Riedel and Weg-
ner. 12(c) .

To make the formulation of a scaling hypothesis
easier to follow, we give an account in Sec. V of
the scaling hypothesis using generalized homoge-
neous functions ‘and equations invariant under a one-
parameter continuous group of transformations at
points of order 2.

In Sec. VI we give a full account of the scaling
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hypothesis at tricritical points and we include an
account of a space of invariant variables as a very
useful way to derive “double-power ” scaling func-
tions and to plot “crossover surfaces”. These
predictions have not yet been tested experimentally.

We present the scaling hypothesis at a critical
point of arbitrary order in Paper II. The hypothesis
is framed as a sequence of operations to be re-
peated as the hypothesis is formed successively at
critical points of decreasing order. The proposed
sequence is illustrated by detailed consideration of
a system of Ising planes with a variable interplanar
interaction.

_II. SYSTEMS EXHIBITING CRITICAL POINTS OF ORDER
HIGHER THAN TWO: NOTATION FOR SUCH POINTS

Critical points more complex than ordinary ©=2
critical points have been found in many experimen-
tal and theoretical systems. Without doubt, the
systems exhibiting the richest possibilities are
multicomponent fluid mixtures; however, specific
examples of critical points of order three or more
in these systems have yet to be found.

Systems on which experiments have been anal-
yzed are liquid helium, !*® ammonium chloride,!*®
metamagnets, !* and anisotropic antiferromagnets.*
In addition, one-dimensional magnetic models pro-
vide a rich opportunity for theoretical and numeri-
cal investigations. Liquid helium!*® and NH,C1®™
provide excellent examples where there exist lines
of tricritical points—as discussed in Sec. 1. In
metamagnets, 2 lines of tricritical points can be
generated by introducing transverse fields, and
also by introducing a parameter into the Hamil-
tonian which changes the strength of the interaction.
Decreasing the latter causes the tricritical points
to converge to a point on the temperature axis; this
point is a critical point of order 4 and is treated
in more detail below,

An anisotropic antiferromagnet, * which exhibits
a spin-flop transition, contains a point in its phase
diagram where two lines of ordinary critical points
intersect a line of first-order transitions. This
special point has an order of at least 3, but whether
it is 3 or more has yet to be determined.

To be able to discuss phenomena in phase dia-
grams of any complexity easily, we introduce a no-
tation for spaces of points where several phases
coexist and for critical points of arbitrary order
©. Critical spaces are denoted by an abbreviation
of the notation CRS of Griffiths and Wheeler®; the
order of the space will be given a preceding super-
script and the dimensionality a subscript, and
hence a critical space of order © and dimensionality
d is written as °R,. The relation between 0, d,
and the total number # of field (or fieldlike) vari-
ables, in general, is given by Eq. (1.1), 0=n-d.

Coexistence spaces are designated by an abbre-
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viation of the Griffiths-Wheeler notation CXS but
now the number of coexisting phases is given by
the preceding superscript; hence the general space
of dimension d where p phases coexist is written
as ?X,. The equation analogous to Eq. (1.1) is

(2.1)

The dimension d of the CXS may be interpreted
as the number of “degrees of freedom”, f, and for
a chemical system # is one greater than the number
of components ¢, Thus (2.1) is similar to the
usual statement of the Gibbs phase rule, p=c-f
+2, but it is in a form valid for all the systems
considered in this work, The Gibbs phase rule
contains an inequality because it refers to any
phase diagram, even those in a restricted space
of fields, For example, the 2X, in the H-T plane
of a simple nearest-neighbor antiferromagnet (with
field variables H, H,, and T) satisfies Eq. (2.1)
as an equality providing all three fields are con-
sidered, but as an inequality if only 7 and H are
considered. Consideration of other models® ¥
leads us to conclude that Eq. (2.1) is satisfied as
an equality (for 7 >0) if and only if a sufficient set
of conjugate fields (i.e., conjugate to every possi-
ble phase of the system) has been introduced.

Thus Eq. (2.1) can be used as a criterion for
whether enough conjugate fields have been consid-
ered or not. It is noteworthy that Eqs. (1.1) and
(2.1) depend only on topologically significant quan-
tities like the dimension of a subspace in the phase
diagram, and should therefore be understood as
topological statements.

To illustrate the notation and to provide a good
example of a system with a phase diagram exhibit-
ing critical spaces of orders 2, 3, and 4, we con-
sider the d =3 Ising model with variable interaction
strength ®J between planes of constant z:

== E Stvven [J(Sxol.y.l+ Ss,ye1,e )

Xy¥r %

p=n-d+1.

+ RISy, e+ H+ (=1)H, 1. @.2)

Here the symbol S, , . is the value of the spin on
lattice site with coordinates (x, y, z). The vari-
able ® allows for a variation in the strength of in-
teraction in the z direction. The phase diagram of
this model is four dimensional, with fields H, H,,
T, and the fieldlike variable & For ® >0, we
have a three-dimensional Ising model with “lattice
anisotropy,” which tends as & -0 to the two-dimen-
sional Ising model. The invariance of the Hamil-
tonian under the transformation S,y =~ (~1)*S, , .»
®—~—-®, H-~H, and H,~ H relates the phase dia-
gram for & <0 to that for ® >0,

For ®<0, Eq. (2.2) describes a metamagnet.
The phase diagram of this system is well known
and shown in Fig. 1. As |®] is decreased, the
values of 7, and T, decrease (unpublished results
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FIG. 1. (a) Phase diagram for ®=®; <0, in the (H, T)
plane (H’=0). The R, terminates at a pair of tricritical
points CR¢) shown as TCP. The X, separating the anti-
ferromagnetic phases A*A" is bounded below the tricritical
temperature T; by the lines of first-order transitions Lp,
which terminate at a magnetic field value Hg. (b) The
same for & <0, where |®,|<|®|. Note that Hoy <Hgy
and that both T; and Ty have decreased. See also, F.
Harbus et al., Ref. 1.

of F. Harbus). This is shown in the Fig. 1(b) as
compared to Fig. 1(a).

As |®|-~0, the behavior of Ty(®) is described
by the well-known crossover exponent and sym-
metry between ®<0 and ® >0 mentioned above
shows that in the plane H=H, =0 there is a reflec-
tion symmetry about &=0,

From these considerations we obtain Fig. 2,
which is a three-dimensional phase diagram in the
H,=0 plane. For ®R<0 and constant, there is a
phase diagram like Fig. 1, and for ®> 0 the ordi-
nary crossover behavior holds.

The two tricritical points in Fig. 1 become lines
of critical points of order 3, °R;, in Fig. 2. The
symmetry of the Hamiltonian shows that there are
two additional R, for ® >0 at nonzero H,. The
symmetry of the Hamiltonian forces these four
lines (tricritical lines) to converge upon a point
lying on the temperature axis—a critical point of
order 4. On the temperature axis below the ‘R,
four phases are in coexistence: it is a *X;.

The validity of Eqs. (1.1) and (2. 1) may be veri~
fied and it can also be seen that in this system a
?X,., is bounded for increasing T by a °R,, where
©=p. A CXS which in the full phase diagram is a
?X,. is, when considered in the zero-temperature
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plane, only a’X,. Inthe model considered in this
section, therefore, a coexistence hypersurface
which in the T=0 phase diagram is a ?X, evolves
as the temperature increases into an °R,,, with

0 =p. In other words, the space of critical points
of order © is the upper bound (as temperature in-
creases) of a space of points where © phases co-
exist.

This is a very significant point and can be under-
stood by examples, and from the following consid-
eration, In a phase diagram, a space where three
phases coexist is necessarily a place of intersec-
tion of spaces where two phases coexist. The spaces
where two phases coexist are bounded from above
by spaces of critical points of order two. There-
fore, the upper bound of the space where three
phases coexist is either the boundary of one criti-
cal space of order 2 or the intersection of all three
critical spaces of order 2. Because of the symme-
try properties holding in the present model, and

T Tv(R)

FIG. 2. Phase diagram in the H, =0 hyperplane for Is-
ing model with variable interplanar interaction. For ®
<0 the ®R=const sections are similar to Fig. 1. These
sections are schematically shaded. As ® varies continu-
ously the #X, and °R, of Fig. 1 become X4, and °Rg,,.
Thus the X, of Fig. 1 becomes the interior of the “moun-
tain”; this is a %X, separating phases A*, A", The lines
Ly where three phases coexist become surfaces of the
mountain (X,) below the line of tricritical points *R; cor-
responding to TCP of Fig. 1. The 2R1 of Fig. 1 becomes
a ’R,, the top of the “mountain” in Fig. 2. The T axis
becomes a line of special points where all four phases
A*, A" and the ferromagnetic F* and F~ all coexist; it is
a ‘Xo. The 3R1 meet at the T axis at the end of this line;
at a ‘Ro. The region ® >0 appears simpler because it
corresponds to the (H=0) section of ®<0, and the rest of
the mountain occurs at H, #0. See also, F. Harbusetal.,
Ref. 1.
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> Hp

(b)

FIG. 3. The phase diagram at T'=0 of an Ising (a) anti-
ferromagnet and (b) ferromagnet. The phases with spins
parallel are indicated by F* and with spins antiparallel
by A*, The lines indicate where the various phases are
in equilibrium.

also because it is an Ising model, the latter condi-
tion holds. An entirely analogous argument can be
constructed for critical points of order 4 or more.

It is therefore possible, for Ising models, to
make predictions about the relationships between
°R4 in the full phase diagram, by considering the
relationships between the ?X, in the T=0 phase
diagram. We will make extensive use of this meth-
od in Sec. III.

III. SPACES OF TRICRITICAL POINTS IN
ONE-DIMENSIONAL MODELS

There has been much work recently on one-di-
mensional Ising models possessing a long-range
interaction. ®'® The effect of this interaction is to
shift the critical temperature from the value 7=0
to 2 nonzero temperature, thereby enabling the
critical points to obey scaling laws.

The purpose of this section is to display two

models for which critical points of order ©=4 oc-
cur; these are both Ising models with long-range
interactions. ¢

Models exhibiting a critical point of order 4 also
possess a line of points where four phases coexist,
as explained at the end of Sec. II. Therefore, a
simple method of deciding whether a particular
model canpossess a critical point of order 4 is to
analyze the T'=0 hyperplane of the phase diagram
and see if points where four phases coexist con-
tinue to have four distinct phases in equilibrium as
T is increased. Cases where this does and does
not happen are discussed below.

Before analyzing a case where there is a long-
range interaction, let us consider the 7=0 phase
diagram of a one-dimensional Ising antiferromag-
net with only nearest-neighbor interactions.

Hamiltonians

The Hamiltonian is given by
N=1 N N
Hspn=—Jsp 20 8184~ H 2 Sy~ H, 2 (=)*s,,
i=1 i=1 (3.1)

where Jgp is the nearest-neighbor (nn) interaction
strength and s;=+1 are the Ising spins situated at
site ¢ of the chain. When Jgg >0 the interaction is
ferromagnetic and when Jgg <0 the interaction is anti-
ferromagnetic. H is the magnetic field and H, is
the staggered magnetic field of wavelength 2 lattice
sites. The phase diagram will appear as in Fig.
3(a). Here the four phases F*, A* are defined in
Table I: F means ferromagnetic and A means anti-
ferromagnetic. The T=0 “critical point ” of the

i=1

TABLE I. Definitions, energies, and equations of
Figs. 3 and 5. Here ®= Jgg/Jpp; #= H/Jyp; hy= Hy/dyg.
Star means not shown in Fig. 5.

Configuration Name Field Energy
t ot F* H Ep=—Jdip—Jsg—H
Voo F-
[ A* H, Ey=+Jgg—H,
Voot A"
Surface Equation Line Equation
[F*, F] H=0 Ly hy=1+2F h=0
®>-%
[A*, A7) H,=0 Ly hy=1-26 h=0
[F*AM* n—hy+1+2R=0 Ly  h==1=2§ hy=0
®R<-3%
[F-,ATT* h=—hy—1+2R=0 Ly ==1+20 hy=0

[F* A" 1* h+hy+1+28=0
[F~,A*1* h+hy—1—-2@=0
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FIG. 4. (a) The extension of Fig. 3(a) into the space
with T'>0 when a weak long-range interaction is included.
Note that the T'=0 plane corresponds to Fig. 3(a), and
that the [A*, A”] phase boundary only separates phases at
T=0. The other lines in Fig. 3(a) develop normally, giv-
ing coexistence surfaces (2X,) ending in critical lines *R;.
(b) The phase diagram of the same model but without the
antiferromagnetic interaction (Jgg=0 or Jgg >0). Now
all lines in the T'=0 plane become coexistence surfaces
%X,. The points of interaction become 3X; (lines where
three phases coexist) and there terminate at two 3R, (tri-
critical points).

Ising antiferromagnet becomes a line of critical
points for nonzero values of magnetic field. This
line bifurcates at points where it is energetically
more favorable! for the system to order ferro-
magnetically (i.e., with all spins parallel).
Normal scaling laws do not apply to one-dimen-
sional Ising models with short-range interactions,
as these display essential singularities at the 77=0
critical point. Thus the lines in Fig. 3(a) are lines
of both critical points and coexistence points.
These lines do not have very much in common with
either the conventional critical points 2R, or the
conventional coexistence surfaces ?X, that divide
up the field space at finite values of temperature,
A suitable nomenclature for the lines of Fig. 3(a)
might be “coexistence-critical surfaces” and we
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will denote them by CXRS. A CXRS is necessarily
confined to the 7=0 plane as for Fig. 3(a). Thus
we see that the nn Ising antiferromagnet contains
five CXRS lines where two phases coexist and two
CXRS points where three phases coexist.

Then we introduce in addition to ¥Cgy of Eq.
(3.1), along-range interaction, defined by the
Hamiltonian

Hpp=— i EJ(r)s,s,,, R

i=1 r

(3.2a)

where

Jr)=lim aye™""
7=0

(3.2Db)

the phases F* are stabilized at nonzero tempera-
ture and continue to show long-range order for
T>0. The phase diagram is given in Fig. 4(a).
The CXRS [on the H axis of Fig. 3(a)] is not sta-
bilized at 7 >0 by the long-range interaction; the
two antiferromagnetic phases A* coexisting at the
CXRS at T=0, simply become a single disordered
phase for T>0.

There are two 2X, separating the ordered (fer-
romagnetic) phase from the disordered phase at
higher temperatures. These X, end in 2R, (lines
of critical points).

If the dominating nearest-neighbor interactions
are ferromagnetic, Jgz >0, then the situation de-
picted in Figs. 3(b) and 4(b) results. The two
points where three phases coexist at 7=0 become
the end points of two 3X, lines where three phases
coexist. Each X, line terminates at a °R, (a tri-
critical point).

If sufficient care is taken to decide whether a
space in the T'=0 hyperplane is a CXRS or a CXS,
then the nature of the extension of the space and
its subspaces into T>0 can be easily ascertained.
The rules exemplified from Figs. 3 and 4 are the
following: (i) Two phases which can only be dis-
tinguished by a staggered magnetic field coexist
on a CXRS. (ii) Such staggered phases give only
one phase for T>0. (iii) A line where one phase
which maintains order for 7' >0 coexists with any
other phase is always a CXS. (iv) A point where a
CXRS meets a CXS has no special properties., It
is simply a point on a CXS,

Using these rules we can analyze the model of
Nagle and Bonner® which includes a long-range in-
teraction, a variable short-range interaction, and
the two fields of Fig. 3.!® A point where four
critical lines meet, a tetracritical point, is known
for this model, We will show here that this point
is a critical point of order 3. Since a variant of
this model, which we discuss below, shows a crit-
ical point of order 4, it is worth treating the
Nagle-Bonner model in some detail ficrst,

Figure 5 depicts the surfaces of coexistence of
the four phases in the 7'=0 plane. Definitions and
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F+

A+

)
i Y

FIG. 5. T=0 hyperplane for an Ising model with
competing long- and short-range interactions. Here ®
=Jgr/Jpr and Hy is a staggered magnetic field of wave-
length 2 lattice sites. The lines Ly, L, are in the (H,, ®)
plane, and the lines Ly, L, are in the (H, ®) plane. The
surfaces [A"F*], [A*F~], [F* A%, [F~,A"] have
been omitted. The surface [A*,A7] is a CXRS, Fig. 3(a) is
an (H,, H) plane for ®<®q, while Fig. 3(b) is for &> R,

equations are given in Table I. For clarity four
surfaces are omitted; e.g., those that separate
the phases [F*A*], [F"A"], [F*A”], and [FA"].

As may be seen there are four lines where three
phases coexist and a point @ where all four phases
coexist. The surface [A*A"] bounded by the lines
Ly, L,, is a CXRS since for constant values of &
less than x4, the phase diagrams are the same as
Figs. 3(a) and 4(a). Here

&'EJSR/JLR ’

(3.3)

’ Hz

|oo

FIG. 6. H=0 hyperplane of the model of Fig. 5. The
lines Ly, L, extend into T >0, The lines where three
phases coexist in Fig. 4(b) have become a single surface,
denoted here by 3X,. This terminates at a line of tri-
critical points 3R;; the 3R, also bounds a surface of or-
dinary critical points sz. The point ¢ where the °R; in-
tersects the plane ;=0 is the location of the tetracritical
point (Ref, 8). The ®&=0 section of this figure corre-
sponds to the H=0 section of Fig. 4(b). Note that at ¢ a
surface ®=const is parallel to the 3R,.

where Jp is the “equivalent neighbor” long-range
parameter, ® )

For T#0, the two 2X, surfaces [A*F*] and
[A"F~]of Fig. 5 end in a single surface of critical
points, and the same is true for the [A"F* ],

[A*F~] surfaces; this is shown in Fig. 4(a).
The point @ of Fig. 5, where four phases coexist,

FIG. 7. Ray projection of the
four—gimensional space, from @
onto ®R=0 showing the topology of

! the surfaces of critical points. The
R axis in Figs. 5 and 6 has become
a combination of ® and 4. The
curved sz surfaces are the ends
of those surfaces which end on Lg
and L, of Fig. 5. The %R, of
Figs. 4(a) and 4(b) are lines in this
surface. The flat 2R, shown in the
(T, H,) plane is the surface %R, of
Fig. 6.
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FIG. 8. Plot of the %X, and the four lines of critical
points meeting at the tetracritical point ¢{. The value of
the interaction strength ratio ®= Jgp/Jyg is equal to its
appropriate value & ,=0.

is seen (Fig. 6) to be only a special point on a %X,
and @ does not give rise to a 4X1 on increasing the
temperature., To see this (in the full phase dia-
gram) it is necessary to consider Figs. 4(b) and
5-7. First, in Fig. 4(), the phase diagram of the
system is shown at constant ®>0. The relationship
of this figure to Fig. 5 can be understood by looking
at the T'=0 plane of Fig. 4(b). The lines where two
phases coexist are lines on the appropriate sur-
faces of Fig. 5, and points where lines in the 7=0
plane of Fig. 4(b) meet are points on the lines L,,
L,. Therefore Fig. 4(b) shows that the lines L,,

L, do give rise to coexistence surfaces and are
lines on ’X,, as shown in Fig. 6. The line of points
where three phases coexist (’Xl) in Fig. 5 has be-
come a surface (3X2) in Fig. 6, and this surface is
terminated by a single line of tricritical points,
3R,. Figure 6 shows that the point @ is just a point
on a 3X,, and does not generate a ‘X,.

The three surfaces of critical points generated
by the lines of critical points in Figs. 4(a) and 4(b)
are shown schematically in Fig. 7. It can be seen
that the two R, (tricritical points) of Fig. 4(b)
form a continuous line (a °R,) bounding three %R,
(surfaces of critical points). The point ¢ was called
a tetracritical point by Nagle and Bonner® because,
for (ﬁ:(ﬁc, four lines of critical points meet there
(see Fig. 8). However, Figs. 6 and 7 show that ¢
is an indistinguishable point on a smooth line of tri-
critical points of order 3; this is corroborated by
the fact® that the exponents at ¢ are the same as at
the other tricritical points.

To produce a model where the point @ is stable
at higher temperatures demands only a slight change
in the structure of the interactions. We draw the
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linear-chain nearest-neighbor Ising antiferromag-
net in the form shown in Fig. 9, with the nn anti-
ferromagnetic interaction along the solid lines, and
a long-range interaction along each of the dotted
lines. The latter stabilizes each sublattice inde-
pendently, enabling the system to adopt an antifer-
romagnetic ordering at nonzero temperature:

¥y =3gp+ I p+3Ex, (3.4a)
where
HUE==23 20 J(27)8,S a2y - (3.4b)
i r

Here odd-numbered spins are on the top lattice of
Fig. 9 and 3¢° has all i odd. Even numbered spins
are on the lower lattice and 3C® has all i even;
J(27) is defined by Eq. (3.2b). The point @ is now
at the origin and stable for 7 >0, and we are ableto
have four 3X,; these are generated by the lines L,,
L,, Ly, L, (of Fig. 5) meeting at the *X,, generated
by @. The %X, should end in a °R, (as in Fig. 6)
but unlike the system of Fig. 6, the R, all termi-
nate at a ‘R,

This Hamiltonian has an important discrete sym-
metry which will necessarily be reflected by the
phase diagram of the solution of the model. It is
given by the operation s,~ (- )!s;, H~ H,, H,~ H,
Jgp~—Jgr. Therefore,

G(H, H,, T; + Jgp)= G(Hy, H, T; = Jgg).

Further, the point @ in Fig. 5 (which is now stable
at T>0) is now located at the origin. There are now
four 3R,; two of which lie in the H,=0 hyperplane
for ®<0 and these are symmetrically complemented
by two more °R, in the H=0 for ®>0. These four
SR, meet at the T-axis at some finite value of T.
This point at which all four 3R, meet is a ‘R, .
The phase diagram for this model is the same

as that for the Ising model with variable interplanar
interaction discussed in Sec. II (Figs. 1 and 2),

For the model just discussed, we were able to
make use of the extensive analysis of Nagle and
Bonner in conjunction with the 7'=0 phase diagram,
and thus we deduced the structure of the full phase
diagram. The existence of the discrete symmetry
and the consequent analogy with the model discussed
in Sec. II makes us more confident in our conclu-
sions.

For the next model, we use only an analysis of
the 7=0 phase diagram and we make the extrapola-

FIG. 9. Modified one-dimensional lattice exhibiting a
critical point of order ©=4. The solid lines represent
antiferromagnetic interactions and the dashed lines, long-
range (ferromagnetic) interactions.
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TABLE II., Definitions of spin orderings of phases and
fields for an Ising model with two staggered fields.

Spin configuration Name Conjugate field
t t t t F* H

' V ' [ F-

t [ t t A} H,

' t ' t A;

t t [ ' Aj H,

‘ ' t t A7

t t t ' M, $[H,+H, + H

t i ' ' M

t t ' t M 3~ H,+H + H]
¥ t [ [ M

4 ' t 4 M 4 (H,— H,+ H

V ' t ' M

' t t t My $(-H,- H, + H]
‘ ' ¥ t M3

u,=—1fori=4n-1, 4n. We define the names of
the various phases in Table II and also the phase of
H, relative to H,. We give the energies of the
phases at T=0 in Table III. The phase adopted at
T =0 is that of lowest energy, and so the problem
of finding the phase diagram at 7=0 is simple.

The phases coexist at points where the energies of
two different phases are equal, and the most im-
portant equalities are given in Table IV(a).

An extended analysis'® shows that the significant
values of ® are — 1, - %, ‘and 0, and a sequence of
phase diagrams can be drawn in the space of vari-
ables H, H,, H, for values of ® greater than, equal
to, and less than these numbers. A representative

TABLE IV. (a) Equations of planes and lines in Fig. 10
for an Ising model with two staggered fields. Here we
have divided all energies through by Jiy and defined #;
=H;/Jip, ®=Jgp/Jrg. In Fig. 10, Ris positive, e.g.,

% or «, Star means that the plane was omitted from Fig.
10. Double star indicates that this is only a line: (b)
Equations of lines in Fig. 10,

tions explained at the end of Sec. II. Our knowl-
edge of the extensive occurrence of tricritical
points in certain Ising models gives us a reasonable
basis from which to predict the existence of a crit-
ical point of order 4.

This second model for which an exact solution is
fairly readily obtainable!® is a model with a second
staggered magnetic field. It turns out that the
analysis for an exact solution is simplest if the
staggered field, “H,,” is of wavelength four lattice
sites.' The Hamiltonian will therefore be given by

.'}C=(}CSR+JCLR—H4£> u,Sy, (3.5)
1=1

where the number #;=+1 for i=4n+1, 4n+2 and

1ABLE IIl. Energies of various phases at T=0 for an
Ising model with two staggered fields. Here the long-
range energy is given by Jpy and the nearest neighbor by
Jgr. Only the phase +is shown; to get the value of Ex-,
reverse the sign of the conjugate field.

Phase Energy per spin

F* Ep=—dJpp—Jsr—H

A3 Ey=+dJgp—H;

Ay E,=-H,

M Ea=_%JLR_%[+H2+H4+H]
My E,=—% Jyp—3[—Hy+ Hy+H]
M Ey==% Jyp =3[+ Hy— Hy+H)
My Ey=—} Jip—}[~Hy— Hy+H]

Phase boundary E;i)ation Region
[F* F] =0
(g, M) h=0
[F*, Mi* By +hy=1=2@R=h kg, hy>0
[F*, Mp* hy—hy+1+2R=—h R, hy>0, hy<0
[F* A} hy=1—@R=n  R14>0, B >0
5 M) hy=—hy—1=h By hy>0, By >0
[A}, A3) hy+hy=1=h hyhy>0, hy< 0
[F*, Aj]** hy—=1—-2R=h By by >0; By=0
A3, M}) hy—hy—1—2@R=h Ry hoy By >0
b)
Line Intersection Equation
i:F*F-MM) (F*, ] M:, M) hy+hy=1+2R
[F*, M), LF~, M) B=0
"[B:F*FA}l [F*, F-][F*, A3l ny=1+®
[F-,AD* h=0
[3:F*MAl [F*, A%l A%, M) hy—h=1+R
[F* M* k=&
[3: F*M,A% [F*A}) AL, M}) h—h=1+&
[F*, My]* hy=—@&
[4: F*MiMEAS) [F*, MY [F M) * hy—h=1+2R
Mg, A31 (M, A3 hy=0
[3: 0, M, Aj] (Mg, M3) Mg, AY) hy=hy=1
(M, AG]* =0
[3: M, M, A7) M}, M3), IM:, A hy—hy=1+2&

[, A3 k=0
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diagram is shown in Fig. 10 for which the equations
of the lines are given in Table IV(b). Some of the
surfaces and lines of Fig. 10 are labeled and the
reader can discover the labels for the rest by ref-
erence to Tables IV(a) and IV(b).

There are several important points about this
model: firstly, the “mixed” phases M; are dis-
tinguished at 7=0 as M. -+M; but above absolute
zero there are only phases M* and M~. The phases
M?* are stable for T >0 because they contain a long-
range contribution to their energy; thus all the
lines and surfaces on Fig. 10 will survive at T>0
because they separate phases stabilized by the
long-range interaction from phases (43, A; ) stable
only at T=0.

There are several points where many phases
coexist, In particular, at the point P, the phases
F*, M}, and A} coexist. The lines where three or
more phases coexist which meet at P, are all stable
at T>0 and so should end in tricritical points.
Thus P, will give rise to a line of points where five
phases coexist; this line ends at a critical point of
order 4, Other points in Fig. 10 (viz., P,) are
much more complex in structure and will not be
discussed here. The object of introducing the
model given by Eq. (3.5) was to show a critical
point of order four and this, at least, we have done.

In this section we have shown that it is reason-
ably easy to find model systems which are soluble
and which show critical points of order 4 or more.
The analysis of the two models suggested was
omitted for the sake of brevity, and will be given
in future work, '

IV. SPECIAL DIRECTIONS AT CRITICAL SPACES OF
ORDER 0: A SET OF “CANONICAL DIRECTIONS”

In order to properly formulate the scaling hy-
pothesis for multicomponent systems, it is impor-
tant to choose the proper independent variables. It
is this problem that is treated in the present sec-
tion. We shall argue that the considerations that
Griffiths and Wheeler® applied to their discussion
of second-order critical spaces (ZR,,) can be ex-
tended to spaces of higher order in a natural and
straightforward fashion.

A %X, is, bydefinition, a hypersurface where two
phases coexist; it necessarily divides the total
space of n field variables locally into two regions
and is therefore of dimension d=7n-1, where = is
the total number of truly intensive or “field ” vari-
ables.® A 2R, (a simple second-order critical
space) is the boundary of a 2X,., and is therefore
of dimension d=n- 2.

At a ?R,_, there are n - 2 directions parametriz-
ing the critical space. The two remaining directions
are of significance for the generalized scaling
hypothesis. Directions not locally parallel to
the zX,,_l (coexistence surface) we call strong di-
rections, and directions locally parallel to the
2x,., but not in the ?R,_, we call weak directions.
The strong and weak directions will be called direc-
tions of type 1 and 2, respectively; this terminology
is useful in Sec. VI and in Paper II, where the ap-
propriate generalization to critical spaces of order
larger than 2 is made. - Examples are given in
Figs. 11 and 12,

FIG, 10. Coexistence surfaces in

the T=0 phase for a system with a

long-range interaction, anninteraction,

magnetic field 2, and staggered mag-
e hs netic fields &;, k4 of wavelengths 2 and
4. Here the short-range interaction is
also ferromagnetic. The surfaces are
labeled by the phases in coexistence.
The surface [F*, M}] is omitted. The
lines are labeled by the three or four
phases in coexistence there. At the
point P,, five phases coexist; at Py,
seven phases coexist. The phases F
and M are stable above T'=0.
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FIG. 11. (a) Phase transition for a ferromagnetic sys-

tem. The coexistence surface 2X1 ends at a critical
point 2R;. The strong direction H and weak direction

7 are defined at the 2R). (b) Phase transition for a sim-
ple fluid. The coexistence surface 2X; ends at a critical
point 2Ry, The strong direction x; and weak direction X9
are indicated; both P and T directions are strong.

Next, we introduce the concept of a direction of
type 3. In the examples discussed, the critical
spaces of order 3 have a dimension of d=n-3, If
one approaches a particular tricritical point along
a line of critical points of order 2, then in addition
to the two directions singled out by the R, (and its
associated 2X,), there is a third direction of signifi-
cance for scaling. This direction, which we call a
direction of type 3, is a direction tangent to the
line of critical points (Figs. 12 and 14). This concept
is easily generalized to n >3 for the case mentioned
above, for which the dimension d of the space of
critical points of order three is indeed given by
d=n-3. Inthis case directions of type 3 are those
directions which are neither strong nor weak for a
particular R, _, bounded by the °R,_;, nor are they
locally tangent to the space of critical points of

FIG. 12, Phase transition for an antiferromagnet.
The coexistence surface %X, lies in the H, T plane and
the line of critical points ’R; bounds it. The strong direc-
tion is everywhere Hgy;, the staggered magnetic field.
The weak direction may be either H or T, except at the
Néel point where it can only be 7. The independent
direction x; lies in the %R;.

AND STANLEY

|

X2
[Hge 7271
FIG. 13. Invariant
space for an antiferromag-
net. (x3 is merely a pa-
rameter.)

X3

third order.

In the similar cases where Eq. (1.1) holds as an
equality, one can generalize the above concepts to
define directions of types1, 2, ..., 0, andtheseare
important in applying the scaling hypothesis to criti-
cal spaces of order ©. Specifically, since a criti-
cal point of order o is, by definition, a particular
point on a “line” of critical points of order 0-1,
the generalization follows by analogy with the case
treated above. The directions of types 1 through o
are of great importance because they are used as
the independent variables of the Gibbs function
when the scaling hypothesis is made. Accordingly,
they will be referred to in later sections as the
“principal directions of scaling.”

Thus, to set up a coordinate system at a °R,.q
(a general critical space of order ©), a set of crit-
ical spaces ‘R,_, of ordersj=2, 3, ..., ©® must be
selected. This set of spaces must satisfy an inclu-
sion principle: °R,.oc ‘R,.,c’R,., for j<i<®. The
directions of types 1, 2, ..., 0 are then sequential-
ly defined. Here the inclusion symbol ¢ means
not only that the *R,_; is also part of a /R, (for
i>7) but also that the R,., can be reached as a
limiting point or boundary of the ‘R,.,.

The hierarchy of spaces ’R,,_, is not unique, and
the large number of choices available presents an
apparent problem because many more than © lin-
early independent vector directions are definable.
For the ©=3 example of Fig. 14 the °R, can be ap-
proached along any of the three ?R,, and each of
these three “critical lines ” (with its associated
®X,) defines a set of directions of types 1, 2, and
3. This apparent problem is resolved by the gen-
eralized scaling hypothesis, because the shape of
each critical space of order j (j <0) near the °R,
is constrained by the scaling hypothesis so that all
the different directions end up mutually consistent.
Accordingly, we now turn our attention to the scal-
ing hypothesis, making it firstly in Sec. V for sim-
ple systems (#=2), for n=3 systems with a *R,
(tricritical point) in Sec. VI, and in Paper II for a
°R,.o (a general critical space of order 0).2°

V. INVARIANT THEOREMS OF ONE-PARAMETER
CONTINUOUS GROUPS; APPLICATION TO THE
SCALING HYPOTHESIS FOR CRITICAL SPACES OF
ORDER 2

The scaling hypothesis for a simple system with
two independent field variables can be made in
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FIG. 14. Phase diagram for a metamagnet. The three
%X, end in lines of critical points ?R;. These lines inter-
sect at the tricritical point 3R,,. At a point P on the line
Ly, a triad of strong, weak, and parallel (to L) directions
is shown, This triad attains the limiting orientation
(1, %;, %y at the tricritical point 3R, .

several essentially equivalent fashions, One state-
ment is that the singular part of the Gibbs potential
is asymptotically a generalized homogeneous func-
tion (GHF) of the appropriate variables.? For
the simple magnet, this statement takes the form
that there exist two numbers a,, a, (called “scaling
powers ”) such that for all positive X,

GO\'#H, \*"7)=\GH, T), (5.1)

where H is the magnetic field and 7=7- T,. Using
Eq. (5.1), one can express all possible thermody-
namic exponents in terms of (a, a,).%

This form of the scaling hypothesis implies that
the singular part of the Gibbs potential

G=F(H, 1) (5.2)

is an invariant equation under the “scaling ” trans-
formation defined by

G'=)G, (5.3a)

H'=\"BH; v'=2""7, (5. 3b)

such that G’=F(H’, 7’). The transformations de-
fined by Eq. (5.3) form a one-parameter group®?
G » and the scaling hypothesis may be restated in
the following fashion: (5.2) is an invariant equation
under the group of transformations G, of (5. 3).
For a simple magnet the thermodynamic axes
are parallel to the directions used in the scaling
hypothesis (5.1) (the “principal axes of scaling ).
In other systems, this is not always so. In Fig. 11
we contrast the phase diagrams of a simple fluid
and a simple magnet, and show the orientations of
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the strong and weak directions (x,, x,) for each,
For a magnet, H is a strong direction and 7 is the
weak direction, but Fig. 11(b) shows that for a
simple fluid, both P and T are strong directions
and that the weak direction, x,, is a special com-
bination of the P and T directions.

This is usually the case for general thermody-
namic systems—more than one thermodynamic axis
is strong (as for the simple fluid) or more than one
axis is weak (as for an antiferromagnet, see Fig.
12).

The scaling hypothesis at a ?R,_, for a general
system can be made by choosing the strong and
weak directions as the principal axes of scaling.
Then the statement is that the singular part of the
Gibbs function

(5.4)

is an invariant equation under the one-parameter®
continuous group of transformations §:

G=F(xy, %53 e 0v, X,)

gc'=xc, (5.5a)
S
2x,’=7\a‘x4 , i=1,2,...,n, [a;=0, i>2].
' (5.5b)
Equation (5.5) is defined for all positive \; the a;,
are called scaling powers, This statement is
equivalent to the scaling hypothesis
GO\ ™x,, N"2x,; g0 0 2x,) = AG(xy, Xp; ++ - %,).

(5.6)
For future reference, we will use a superscript

s to denote the subgroup generated by the trans-
formations of the independent variables x; (i=1,
2, ..., n). Thus we may generally define the full
group by two equations, where the second denotes
the subgroup §°.

To illustrate the scaling hypothesis when an in-
active parameter is present, we consider the exam-
ple of the antiferromagnet (see Fig. 12). Here we
hypothesize that the singular part of the Gibbs po-
tential

G= 5A(Hst » X2y xs) (5. 7)

is an invariant equation under the one parameter
continuous group of transformations G,:

G'=2G,
S, (5.8)

r _ 31 r_ 9% r_
Hst_)‘ Hsh xa"A X3y X3=X3,

where x, is a weak direction, [T- T (H)] or [H

- H,(T)], and x; parametrizes the position of the
critical point on the line of critical points. Equiva-
lently G satisfies a GHF equation®

(5.9)

Here H,, denotes the staggered magnetic field.
Scaling functions for ferromagnets and antifer-
romagnets can be obtained the usual way® from

GO\ Hyy, X225 %3) = NG (Hyy, %p5 %3) .
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Egs. (5.1) and (5.9), respectively. For example,
by setting A=1/1HI*# in Eq. (5.1), we obtain®

cQ, v/|B|""H = |H| ™ Howm, 7). (5.10)

The function G(H, 7) can be plotted as a curve in a
two-dimensional plane with coordinates specified
by G/|H|Y% and 7/|HI|% /4, We note that both
G/|HIY*# and 7/|H|%/%H are absolute invariants of
the group G defined by Eq. (5.3), i.e.,

G’ G
Gy= |H | Yer = [g[Yay > (5.11a)
= T’ T
T”=IHIIa,-/aH = ‘H|a,/aﬂ ’ (5'11b)

where the second equalities in (5.11) follow from
(5.3).

Similarly, by setting A=1/|H,,1'% Eq. (5.9)
may be written

G(ly xz/letlaz/al; x3)= let ‘ -I/GIG(Hsb X33 xs) ’

‘ (5.12)
and G/| Hy|1V/*1, x,/|Hy1%2/%1 x; are absolute in-
variants of the group G ,. In addition, the last two
quantities are absolute invariants of the subgroup
S%.

To derive exponents and scaling laws for the
antiferromagnet, the procedures developed in Ref.
21 can be simply applied to Eq. (5.9). At points
where the critical line is not parallel to the T axis,
it is easily shown that

B=(1-a,)/a,, (5.13a)
1/6=(1-ay)/ay , (5.13b)
-y=(1-2a,)/a, , (5.13c)
-a=(1-2a)/as , (5.13d)

where the order parameter M, tends to zero when
the critical line is approached in a weak direction
with exponent B,

My o< | T- T (H)|®, (5. 14a)

and with exponent 1/6 when it is approached in a
strong direction

Mg < HY®. (5. 14b)

The staggered susceptibility x4 = My, /8H,, di-
verges with exponent vy,

Xet &< | T= TJH)|™, (. 14c)

and the specific heat at constant order parameter
diverges with exponent a:

Cuy | T- TolE)| ™.

The last two exponents y and « refer to weak direc-
tions of approach (in the plane H,, =0) to the criti-
cal line, 28

In the same way, exponents for the ordinary

(5.14d)

|

magnetization M, and ordinary susceptibility y
= 8M/5H can be derived. It turns out on using Eq.
(5.13d) that

M= M (H)< | T= T (H)| (5.15a)

x| T=-T @)™, (5. 15b)

From Eqgs. (5.13a)-(5.13d) the usual scaling law
equalities can be derived by eliminating the scaling
powers a, and a,:

a+2B+y=2,  BB-1)=y, BOB+1)=2-o0.

These results are also obtainable from two sim-
ple group invariant theorems which we shall find
particularly useful in making the scaling hypothesis
for critical subspaces of higher order.

Theorem 1. Consider a one-parameter continu-
ous group of transformations:

xé:f()\’xo), (5.16a)
x{:f,()\|x1,xz, ooy x,), i=1,2,...m,
: (5.16b)

There exist » functionally independent absolute in-

variants of the x; (=0, 1, ..., n). This theorem

is proved in Appendix A.

For our applications, we shall choose the invari-
ants, denoted by y, ((=0, 1, ..., n~1), such that,
fori=0,

8% 40

axo ’ (5. 17&)
and for >0,

(ylr Y2, "'ayn-l) (5- 17b)

are the n - 1 functionally independent absolute in-
variants of the subgroup G°.

For the simple ferromagnet, G/|HIY%# is an
absolute invariant under G, [see Eq. (5.3)] and
7/ H|°7%H ig the functionally independent absolute
invariant of (H, 7) under the transformation G%.
For the antiferromagnet, G/|H, |/ is an absolute
invariant under §,, and (v,/|H, 1%/, x,) are the
two functionally independent absolute invariants
under G,

Theovem 2. I

%9=Xo(%1, Xz, ++ o, %p) (5.18)

is an invariant equation under G defined by (5. 16)
(i.e., if X, is a GHF), then it can be expressed as

Y0=Yo(¥1, Y25 oo vy V) (5.19)

where the y, ((=0,1, ...,n-1) form a set of func-
tionally independent absolute invariants of G given
by (5. 16), and satisfying (5.17).

The proof of this theorem is given in Appendix
B. Equations (5.10) and (5. 12) are simple applica-
tions of these theorems. The usefulness of theo-
rems 1 and 2 will be apparent in Sec. VI,
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VI. SCALING HYPOTHESIS FOR TRICRITICAL POINTS

Before making the scaling hypothesis and exam-
ining its consequences for a critical space of arbi-
trary order o, we will make it for the special
case of a ”Ro (tricritical point) for which there are
three fields available (2=3). This will clarify both
notation and concepts, and make passage to the
general case more painless.

As was shown in Sec. IV, it is possible at a crit-
ical point to select strong and weak directions (di-
rections of types 1 and 2). These we call x, and x,
as before. In a space of total dimension three, the
critical subspaces terminating at a 3R, are all %R,.
At a point on a ?R, we may select a direction tan-
gent to the line, Thus as one approaches the 3R,
along a given R, the directions of types 1, 2, and
3 are uniquely defined (see Fig. 14).

Since three critical lines meet at a °R,, three
“rival” coordinate systems exist at the point °R,.
A scaling hypothesis cannot be made at the tricriti-
cal point unless a unique coordinate system can be
defined, and this represents an apparent obstacle.

The solution of this problem is somewhat subtle,
and the full details have been given in a previous
paper.”® The basic idea is that a scaling hypothe-
sis at the 3R, determines the general shape of a
line of critical points near the °R,; thus a scaling
hypothesis made in a coordinate system defined by
one line will restrict the shapes of the other two
lines meeting it (at the tricritical point).

The coordinate systems defined with reference
to the other two lines are consistent in the sense
that we could have selected any line first to make
the scaling hypothesis and we would have obtained
the same final result.

To set up a coordinate system in which to make
a scaling hypothesis at the °R,, we choose a point
P on one of the critical lines (say L,) and we set up
a triad of directions x,(L,). Two of these direc-
tions are of types 1 and 2, while the third is tan-
gent to the 2R1. The coordinate system at the tri-
critical point is now defined to be

%,= lim x,(P) (6.1)
P-3R,
(see Fig. 14). The direction ¥ is of type 3. The
bars are used in order that the present notation be
consistent with that of Ref. 7(b).
We now introduce a scaling parameter A (A>0)
and make the scaling hypothesis that the singular

part of the Gibbs potential is a GHF, i.e.,

GO\*1%,, A2%,, \%3%,)= \G(%,, %,, %3), (6.2)

where (a,, a@,, @;) are the “tricritical scaling pow-
ers”, Equation (6. 2) is equivalent to the statement
that G=§ (X, X,, ¥3) is an invariant equation

under the one-parameter continuous group of trans-

formations

[9)
"

"=2G, (6.3a)

Ss .

xi=\"x, i=1,2,3. (6.3b)
According to theorem 1 of Sec. V, the hypothe-
sized invariance property of (6.1) under G, implies
that there exists a basis set of functionally indepen-
dent absolute invariants of §;. We adopt a canoni-
cal form for the invariants y, by scaling ¥, with re-
spect to the tangent variable—here x;—as follows:

X, X,
y0=2§>ﬁsv yl=§§1/53 y Y2 = 32533 ’

Xy

R

(6.4)

with ¥,=G. Thus, theorem 2 of Sec. V states that
G(X,, X,, X3) may be expressed as®’

Yo=Fa(y1, 32). (6.5)

Since the variables y, and y, forms a basis set
of functionally independent absolute invariants of
the scaling field variables ¥,, ¥,, and ¥; of the
group of transformations §3, any point (&, &,) in
the two-dimensional space (y,, ¥,) gives rise to an
invariant curve of points in the three-dimensional
space (¥, ¥,, ¥3). That is, the point given by

(6.8)

corresponds to a line in the x; space that may be
conveniently parametrized by

yl=k{r i=1’2

(%y, T, X3)= (A71, k272, 2AT3) 6.7)

where A is an arbitrary parameter (see Fig. 15).
In particular the lines of critical points L, con-
verging on the tricritical point can be expressed in
the form of Eq. (6.7), since according to the scal-
ing hypothesis (6.2) they must be invariant under
the group of symmetries G of (6.3).

Previously’® we have derived Eq. (6.7) directly
from Eq. (6.2) and demonstrated that if the scaling
powers a; are all different, the curves parame-
trized by Eq. (6.7) end up parallel to the axis ¥,
corresponding to the minimum @, (unless k;=0).
Although the direction of type 3 defined for one
line is not necessarily parallel to the direction of
type 3 defined for another line, it will at least be
parallel to some member of the triad defined for
that other line. Thus all choices of scaling direc-

* tions will be mutually consistent!” 28

Along a critical line ?R,, the conventional scaling
hypothesis is normally stated in terms of a GHF
equation of the form

(6.8)

where x5 is a parameter and does not scale. Near
the R,, however, the shape of the critical line is
determined by Eq. (6.7). A %R, near the ’R, maps
into a point (&,, ;) in the y, -~ y, plane given by
Eq. (6.6). Furthermore, the value of y,=%,/%

G(u®xy, L*2xy; x5) = LG(xy, %35 %3),

1/a;
g's
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= G/ ¥ }/® changes only if y, and/or y, changes. It
is therefore more proper to make a precise scaling
hypothesis about the critical line 2R, near the °R,
making use of the variables (y,, y,).

If we adopt the strong requirement that a point in
one phase remains in that phase under the scale
transformation Gg, the CXS surfaces become lines
in the y,-y, plane. Hence, it is possible to choose
the principal directions of scaling for the %R, _, as
linear combinations of the variables y, y,.

Because the scaled variables must be zero at the
critical line we consider the variables

(6.9a)
V2=ya—ks. (6.9b)

For the line L, of Fig.15, k,=0, the coordinate

¥;, is everywhere strong and (y,+%) is weak, For
L, and L,, the weak direction is parallel to the CXS
mapped in the v, - y, plane, and both %,, y, are
strong directions unless the wings end up parallel
to one axis,

We therefore define linear combinations of the
variables (y, - k,), which give the weak and strong
directions (they are of necessity also absolute
invariants of the group Gs):

L =y, -k,

2
545 ZERU(yj_kj)’ (6.10a)
!n

where R, is a “rotation matrix”. Defining
Yo=Y, (6.10b)

we hypothesize that along a ®R, near the °R,, 7, is
a GHF of (§3, ¥,),

j"o(l»’-alj"l, “425)2):“&0(5,’“ ¥a), (6.11)

i.e., ¥o=5,(¥,, ¥,) is an invariant equation under a
group G, defined by

gz{itz:“it)’
5l=u"3,, i=1,2.

(6.12a)
(6.12b)

Ingeneral, the group §, will be different (having
different a;) for eack critical line at the tricritical
point, and will only be valid within a certain region
close to the critical line. The different groups G,
for the different lines L; do not have regions of
overlap and there is therefore no conflict.

We can now form absolute invariants of G,.
Scaling with respect to the weak direction we obtain

Theorem 2 of Sec. V states that under the hypothe-
sis (6.11), 3 (31, ¥2) may be expressed as?’

(6.13)

(6.14)

The simplest example of this is for the line L,
of Fig. 15. Here the variables of scaling are

Zp= 51(11) .

AND STANLEY 8

Y, =%,/ T/ (6.15a)

9= (Fo/ X2 1k), (6. 15b)
where % is defined in Fig. 15. Rotation is not nec-
essary and R, =5,,. Hence on using (6.13) and
(6.15), Eq. (6.14) can be written in the “double-
power law ” form?’

G
(%, /T % k)

%
_51[;31/33(;2/;332/33+k)a,/.z ] (6.16)

For a simple system with » =2, scaling functions
predict data collapsing for functions of two variables
from a surface onto a line. For n=3 and functions
of three variables, data collapse from a volume
onto a surface. However, the double-power scaling
function of Eq. (6. 16) predicts that data will col-
lapse from a volume onto a line. Clearly this hap-
pens only within the region of validity of both
groups of transformations G, and Gs.

The region of influence of G, in the neighborhood
of the tricritical point °R, should also be controlled
by the group §;. This means that the region of in-
fluence of G, should be bounded by a surface which
scales toward the *R,. In Fig. 15, where a line
which scales is represented by a point, a surface
which scales will be represented by a line. We
therefore plot the surfaces bounding the region of
influence of the group G, (of transformations about a
2R1, L,) as a line surrounding the point in the y,-y,
plane, representing the particular line L,.

In terms of the variables y,, ¥, such a line will
be represented by the equation

(31, ¥2)=0 (6.17a)
Yo X2
'
Xy
Lie oL,
N Tcp® %3
5 o XL
= Crossover
Ccurve
(a) (b)

FIG. 15.
G; of transformations about the tricritical point. The
strong and weak directions for the line L, are y; and y,.
The circle around L, is a possible shape for the crossover,

(a) Plot of the invariants (y;,y,) for the group

region. (b) The principal points of interest of Fig. 15(a)
in the full space (%;,%;,%3). The point labeled L; has be-
come a line and the circle surrounding it has become a
cone.
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TCP

Lyt yz=-k

y2 =C2

FIG. 16. Figure 15(b) sliced in the %;, X3 plane. The
cone has become the two lines labeled y,=Cj, C, [see
Fig. 15(a)l. These are generally referred to as cross-
over lines: (T/,g')=(T~Ty,g-g.

or
F(%,/ 7|27, %, / |7|%/%)=0. (6. 175)

The area bounded by this curve (6.17) maps into
a conical volume surrounding the critical line L,
(Fig. 15). Scaling will not tell us the actual shape
of the curve in the y, — y, plane but it does limit the
shape in the (¥,, ¥,, ¥;) space, since all points in
the y,-y, plane give rise to curves approaching
the tricritical point along a particular direction—
the axis corresponding to the minimum a;.

In the plane ¥, =0, Eq. (6.16) requires® that

GocX M3 (%, /T 2/Ps  k)/o2 (6.18)

and the conical surface of Eq. (6.17) becomes the
two “crossover lines”

Xy = cl.zzgz/is , 6.19)

as shown in Fig. 16. The crossover exponent
@,"™® given by

p=a3/a,, (6.20)

determines the shape of the crossover lines, and
it can be determined directly from the shape of the
line L, (?R,).

The lines are called crossover lines, because the
behavior of a particular function crosses over from
an exponent characteristic of the *R, far away from
the line, to an exponent characteristic of the *R, at
points close to the 2R,. It is important to realize
that the group G; does not cease to be valid, and the
crossover does not refer to changing from one
group to another. The group §; is everywhere
valid, and the crossover merely marks the limits
of validity of G,. This principle will be extended
in Paper II and the groups g 4 will control cross-
overs (or boundaries for the regions of validity) of
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G, where j >i.

Finally, a few remarks should be made about the
exponents and the directions of approach to the tri-
critical point. Equation (6.18) shows that if X,/
|%31%2/3 is a constant the exponent for G is 1/as.
For a function f with a tricritical-point (TCP) scal-
ing power @;, and a critical-line scaling power a;,
the equation analogous to Eq. (6. 18) predicts expo-
nents @;/a and a;/a,. For example, for the stag-
gered susceptibility x,,=92G/8HZ,, from (6. 16),

X ot ocf;l'ﬁl’/’s(;a/§§2/13+k)‘1'3¢1’/°z , (6.21)

and @;=1-2a, and a;=1- 2a, for this case. Thus
for all the exponents considered below the numer-
ators can be appropriately be replaced by @, or a,.

If the aR0 is approaches along a direction not
asymptotically parallel to the ¥; axis (i.e., outside
the crossover lines), G scales with a power 1/a,.

If the 2R1 is approached along a line of constant
%3, in the plane ¥, =0 Eq. (6.18) shows that G has
an exponent 1/a,. This is expected, of course,
since G has an exponent 1/a, for any point (i.e.,
fixed x4) on the line 2R, even when the point is far
away from the °R, [see Eq. (6.8)].

In Sec. V, exponents were demonstrated in terms
of the scaling powers a, [Egs. (5.13)] and the same
can be done here for the 2R, (exponents in terms of
a,;) and the 3R, (exponents in terms of the @,) sepa-
rately. The only new exponents, which will be de-
rived, are exponents for the directions of approach
to the R, along y, =constant and these give expo-
nents of the form

£~ |xg| %/, ®.22)

These can be related to exponents of approach
along directions of type 2 by relations of the form

a,/ay=(a,/ @)/ ¢. (6.23)

These are new predictions of scaling specific to
tricritical points [the others are analogous to Eq.
(5.13)1.™@

Finally, we emphasize the importance of expres-
sing the scaling relations in terms of invariants.
For example, Eq. (6.21) may be written in the
alternative “mixed-exponent form ”

Xt < C(X,+EX )7, (6.24)
where

Cox{rPle, (6.25)
with

yelzle 1ot 6.20

Expressions (6.24) and (6. 25) appear more compli-
cated than they actually are. The exponents are
actually not mixed when expressed in the invariant
from as shown in Eq. (6.21).
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APPENDIX A: PROOF OF THEOREM 1

Theorem 1. Consider a one-parameter continu-
ous group of transformations

S x]=f,(\|xg, %y, e ev,\ %), (A1)

where =0, 1, ..., n. There exist n functionally
independent absolute invariants of the x; ((=0, 1,
oo, M),

Proof of theorem 1. Consider a function F(x{,
%1, +++, %,). Assume the derivatives of f; with re-
spect to X exist. We expand F(xJ, x1, ..., %)) in a
Maclaurin series

”
F(xé, xl') cen, x,")=f+f’(5)\)+£—l (5)\)2+ e,
(A2)
where
f=F(x0’x1v "”x")'
f'=(_¢_£) =VF(x0v xl)""x")’
dx =g
. (A3)

d’F
f”:(-d—)\z->,t ,‘0-—_ VzF(xO’ X1y 000y xn)’

with ), the value of A corresponding to the identical
transformation and

v= ‘2%5,(8%) (A4)
545(3{‘) (A5)

If, therefore, F(xg, x,, ..., %,) is an absolute in-
variant of the group G, then

Flg, x{, vou, %2 )=Flg, %1, o0uy %,). (A6)

The necessary and sufficient condition for F=const
is that

n

VF=2 5,(—85 )=o. (A7)
1=0 27

Thus, F is a solution of the partial differential

equation (A7) and consequently, F(xy, %y, «+., %,)

=const is a solution of the system of the equivalent

ordinary differential equations

dxg _dxy _ ., _dx
t & T, (a8)

These equations admit » independent solutions (first
integrals)®%'and theorem 1 is proved.

|co

APPENDIX B: PROOF OF THEOREM 2 ‘
Theorem 2. If the equation
xo=Xo(xuxz, ""xn) (Bl)
is invariant under

Jxo= £t |z,
S

(B2)
2x,’=f,(x|x1,xz, e, %),
then it can be expressed as
y0=Y0(y1)y2! "'1yn-1); (B3)

where (yg, ¥1, «++, ¥p) form a set of functionally
independent absolute invariants under §, with

o
_8;6: +0,
and (¥,, Y2, «++, Y1)y the n—1 functionally indepen-
dent absolute invariants of §°.
By hypothesis, y, is an absolute invariant of (x,;
X1, +++,%,) 0f S, Thus, (B3) implies that the in-
variant equation (B1) may be written

yo(xo; X1y Xy 000y xn)=Y0(y1’ Y2y eoey yn-l)- (B4)

Since (9,, ¥2, ++ +, ¥n1) form a basis set of func-
tionally independent absolute invariants of (x,, x,,
«ee,x,) of G* (B4) is equivalent to the statement
that x, is expressible as an implicit function of
(xl.s X2y 000y xn):

YolXo3 X1, Xy 0oy %,) =81, Xa, oo e,y X,), (B5)

where g is an absolute invariant of (x,, x,, ..., %,)
under G°,

Before we launch into the proof of the theorem,
we give a proof of the following lemma, 3

Lemma. A necessary and sufficient condition
for x,, implicitly defined by (B5), as a function of
(x4, X3, «+ 4, %,), to be the same function as x| of
(x], x5, ..., x}) implicitly defined by

yo(x(;’ xl” xz” ""xl:)'—-g’(xl” xa” "'!x’:) (BG)

is that g is an absolute invariant of (x,, x5, +.., %,)
under G°,

Proof of lemma.
ant of §, we have
Voleos X1, X2,y o0y X,) =90 (005 %1, 23, « o, %)

(B7)
Since we require x4(x;, x5, ..., x,) to be exactly the
same function as xg (x4, 3, ..., %), (B5)—(B7) re-
quire that
8oy, gy vun,x,)=8"(x{, x4, 0., %))

) Xn) e (B8)

Since y, is an absolute invari-

_ ’ 14
=gx], x5, ...

This is the necessity proof.
We now demonstrate (B8) is sufficient to ensure
(B5) and (B6) admit an invariant solution such that
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%o(*y, X3, .., %,) is exactly the same function as
x3(x{,%3, ... ,x3). Inverting (B5)and (B6), we obtain

xo(xl’ Xay e0ey xn)=h(g; X1y Xy 0oy xn) ’
14 14 14 14 ’ ’ (Bg)
xo(xu Xy eoey xn)':h (g 3 X1y X2, e 00y Xp),
in some neighborhood of the (x,, x5, ..., x,) and
(x!, x5, ..., x]) spaces, respectively. It is obvious
that h(g, X1y X3, « « « %) iS exactly the same function
as h'(gy; X1,%,+.+,%,). But, by hypothesis,
&%y, %3, .4+, X,) is exactly the same function as
g’ (x{,x5,...,%)). Therefore, x,(xy, %, ...,%,) is
exactly the same function as xo(xl, Koy oo x,,).
Proof of theorem 2. Using the lemma and the
factthat g(x;, xz, ..., %,) in (B5) is an absolute in-
variant of (x;, %z, ..., x,)under§ S, weimmediately
verify the statement of theorem 2.

APPENDIX C: PROOF OF THEOREM 3

Theorem 3. Consider a one-parameter continu-
ous group of transformations §G:

. x0=)\x0,
g (c1)
x[=fiMx,, i=1,2,...,7.

x0=F(xl’x2;°“7xn) (CZ)

is an invariant equation under G, the most general

form for f;(A) is X%, where a, are constants.
Proof of theorem 3. We transform (C2) by

means of (C1) for two successive values of A=2,,

Az,
MAe%o=FIAiN)f100) %y, L)L) %, - ..,

fn(xl )fn(xz)xn ] ’ (C3)

and again for the value of A=2;},,

MA2xo = F[fi(0 )2y, (0N )es, o oo,y fa(Midg)x,].
(c9)
These results are to hold for all values of x,.
Setting %, =x3=+++ =x,=0, we have from (C3) and
(c4)

Fli)fig)xy, 0, ..., 0)=F[fi(\25)x,, 0, ..., O].

(C5)
Therefore,

A0)ARR) = filxg).

The solution® of the functional equation for fQ)
for A>01is

A)=2", (c)

where g, is a constant. This process may be re-
peated for each fi(n), i=1, 2, ..., n. Thus, theo-
rem 3 is proved.
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a line L and the second (X,’, X,’, x3) with repsect to L',
then the second set is none other than a permutation of the
first set.

POur expression differs from that given in Ref. 7 [Eq. (8)},
where the constant k is not present. The constant k is
needed to ensure the divergence property of X, (and other
second derivatives of G) along the critical line.
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