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The pseudospin formalism developed in a previous work to study the magnetic properties of the

singlet-triplet system has been extended to the present case where the crystal-fieldcnly levels are two

singlets and one doublet, again in the presence of exchange interactions. The lowest-four crystal-field

levels of the Pr+ in Pr,Tl and the hexagonal sites of double hcp Pr are believed to have such a level

structure. Using a simplified hybrid molecular-field and random-phase approximation, we obtain the
excitation spectrum both in the ferromagnetic and paramagnetic regions. Of particular interest is that
the present calculation does not show full soft-mode behavior at critical pvint, similar to the
singlet-triplet case. The present model has been used to look at the experimental work on the excitation
modes propagating along the hexagonal sites of double hcp Pr single crystals using Bleaney and
Rainford's level schemes. Discussions and suggestions are provided.

I. MODEL AND MOLECULAR-FIELD APPROXIMATION where

In a previous work' (referred to as I), we studied
the magnetic properties of the singlet-triplet sys-
tems in the presence of exchange interactions by
using a pseudospin formalism both in the molecular-
field (MF) and the random-phase (HP) approxima-
tions. Although the singlet- singlet systems have
been studied quite extensively both in the ferro-
and paramagnetic regions by Wang and Cooper,
the necessity of including the other higher excited
states seems to be theunavoidable conclusion when
real materials are encountered. "' Moreover,
the modified level scheme proposed recently by
Rainford for the hexagonal sites in double hexa-
gonal-close-packed (dhcp) Pr single crystals re-
verses the order of the first (another singlet) and
the second (a doublet) excited crystal-field levels
proposed by Bleaney to account for the correct
anisotropy of the susceptibility measurement. 7 We
shall therefore work out a scheme which can en-
compass all these four levels.

Taking account of the nonideal c/a ratio, the
crystal-field potential for the hexagonal site in dhcp
Pr on a point-charge model can be written

V= baOa+ BQb404+ lass bs(Gs+ s Os),0 1 0 i 0 ~ e

where the b's are the crystal-field parameters and
the 0's are the equivalent operators. The eigen-
values and eigenfunctions of V in the manifold of
4= 4 are then given by

E,'= —20ba+ 18bs —20bs I g» =
I
0)

Ea'= l7ba+9bs+ bs I ga& =
I

+ I&

Ea='Iba-2lbs+vbs Ig=(I/~2)(l»+ I
—»»

«' = 7ba —2ibs - ~~as bs, I &4&
= (I/~2)(13& —

I
—»),

(2)

'i +f [( —f) '+ 4d']-"')

I g g = c,,, l
~4& c,„l +2&,

Es.s d
s, s [(Ep f)a da]1/a s s, s [(Eg f)a ds]1/a

e = 28hz+ 14b4+ 4be,

f= —Sba —1lbs+ 22bs,

d =-~ii Wibc.

Ig,&, I(IIa&, lips& and I Qa&, I/a&, Ig,& are the lowest
four levels according to Bleaney and Rainford,
respectively. Working in the same spirit as in I,
the pseudospin Hamiltonian which can account for
the aforementioned level schemes in the presence
of bilinear exchange interactions can be written

3C=Z[a /a((S/T)+S, T', )+ n(Sf' ]
—Q J(i —j)[(a'S; b'+P, )(a' S/+b'T/)

)sf

+ (aSf+ bTf)(aS/+ b T/)], (3)

where 6, is the crystal-field splitting between the
singlets I G,) and I Ga&, 6(= 26' —n, „where 6' is
the splitting between the doublet ID'& and the ground
singlet I G,). S& and T& are spin-a operators as-
signed to the ith ion. J(i-j) is the exchange inter-
action between ions i and j. a', b', a, and b are
determined by the relations

&D'I &
I Ga& = - (Ga I

&'ID &
= (I/~2)(s'+ b'),

(Gil J'I~a =- «'I J
I G» = (IH~ )(s'- b'),

«'I&. ID'&=- &D I&.ID & =-'(s+»

&G, lz, l Gg =-,'(a- b).

(4)

Anisotropic exchange is therefore introduced as a
result of the present level scheme.

Molecular-field calculations show that in the
presence of exchange fields, the crystal-field levels
become
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E, = n'- (a+b)J(0)M,

Ea = n'+ (a+ b)J(0)M,

Es = ~ {6)+[4,+ 4(a —bpJ (0)M ]' Q,

Z, = —,'(n, —[n', +4(a- bPJ'(0)M']"g,

(5)

snd the E's are given by Eq. (5).
Correlations on the same site between the S and

T spins are then given by

(e ))e-s e-884)

2ZO[b, + 4(a —b) J (0)M ] i

where M =a(sg+b(TJ and J(0)=g, J(i j)-In. terms
of these parameters, we again find three regions
of magnetic ordering near T=0: (i} The MF ground
state is fully saturated, i.e. , M=-,'(a+b), if

J(0)(a+bp &4k, '

[n, +J (0)(a —b ) ]' &t),) — 2d' + J(0)(a+bp.

(ii) The MF grouna state is of induced moment and

M is given by

[J'(0)(a —b)'- t),']"'
2J'(0)(a —b)

J(0)(a —b p & n)

8 &+8 2 —8 3 —8 4(s'rg =
0

The Curie temperature T~ is determined by

1+ e ~c~)+2e ~c~ = [J(0)/b))](a —bp(1- e ~a~))

+ [J(0)/k sT c](a+bPe ~c (5)

and above Tc, (S'T ) and (S'T*}become

1 8-@'i

2(1 e-))6) 2e-))))')

4(1+ e-")+2e-"')

Heat magnetization is also to be expected to show

up in the present level scheme. The criterion is

Ah'
q 2+A 1+9 (~e ~~) (~~z,.

(
nR )/2

J (0)(a —b p — ' &2n'- n)+ J(0)(a —bp

(iii) The MF ground state is nonmagnetic, i. e. ,
M=O, if

J(0)(a —b) & n) and J'(0)(a+bp& 44'.

At finite temperatures, M has to be determined
self-consistently,

M= ——, (a+b)(e s)- e 2)
ZQ

(a —b) J'(0)M .))e ))s'
[n', + 4(a —b)'J'(0)M']"'

where

4

Zo= Q e m, P= I/keT,

with T' determined by

A = (1 —B)e~ ~s + (1+B)(1—1/C)e'

J(0)(a+ b P J(0)(a —b P b, '

1
\

To show the roles which the present level scheme
can play, we present some numerical results in
Fig. 1 which are comparable tothe previous work.

II. EXCITATIONS IN THE RANDOM-PHASE
APPROXIMATION (RPA)

A. Transverse Mode

By considering the same Green functions and
decoupling scheme as in I and after Fourier trans-
forming them, we have

[E 2aMJ(0)+2a—' (Sg J(k)]G~"(E)+2 a' b'(,S) J(k) G','(E) —n)G)', '(E)+t))G,' '(E)=( g/S,w

a2' b'(TJ J(k }G)I(E)+[E—2bMJ(0)+2b' (TwJJ(k)]G& (E)+n)G), (E) —t))G,' '(E)=0,
—[—,

' n) + a'J(k)s, .),.]G~)"(E)+ [& n) —b)J(k)s, .)).]G)', '(E)+ [E- 2bMJ(0)]G~) '(E) = —(S T'}/2w,

[& t))) — J(ak)s ]&G (E~)- [&n)+b'J(k)S ])G '(E~)+[E—2aMJ(0)]G~ '(E)=(s'T p/w,

where

J(k) Q J(g n)e)k(g n)

S,.); = a'(S'~ —2b'(S',
S))., = b'(S'T ) —2a'(S'~,

and the Fourier transforms (FT) follow:

G,"'(Z)= FT of ((S,'(t)iS „(t'))},

G,'"(Z) -=FT of ((T,'(t)i S„(t )}},

G)', '(E) = FT of ((Sg(t)Tg(t)
~
S„(t')}), —
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FIG. 1. Temperature dependence of the spontaneous
magnetization M in units of &(a+ 5) for various crystal-
field and exchange parameters defined in Eq. (8). (A)
A = 4. 5, B= 0. 9, C = 0.8. (8) A = 1.82, B= 1.5, C = 1.1.
(C) A = 3.0, B= 0. 9, C = 1.2.

G,'"(E)=- FT of ((S,'(t)T,'(t) I S„(t'))).
B. Longitudinal Mode

Similarly, we have the following set of equations:

EH ' (E)——' b, ,H' '(E)+ —' tk.,H' '(E) = 0,

—[-,
' t, +2a(a- b)(s'T )J(k)]H,'"(E)

+ [ h~ 2b(a b)(s+~ J(k)]Hk (E)

+ [E- 2(a —b)MJ(0)]H„"'(E)= —(S'T )/2m,

[-,
' t, + 2a(a - b)(S ~J(k)]H,'"(E)

—[z 6, —2b(a —b)(S T')J(k)]Hk( '(E)

+ [E+2(a —b )MJ(0)]H~( (E) = (S T')/2s,

where

H,'"(E)-=FT of ((St(t) IS:(t'))),

H,' '(E)-=FT of ((T,'(t) ~
S„'(t'))),

H,"'(Ej=-FT of ((S,'(t)T;(t)
~
S„'(t'))),

H,"'(E)= FT of (-(S,(t) T,'(t) ~

S„'(t '))) .

The excitation modes are then determined by the
vanishing of the determinants of the respective
coefficients in the above two sets of equations.
We shall classify them according to the MF ground
states listed in Sec. I.

a. ME ground state fully magnetized The.
transverse modes have the following four branches
of excitations at T=O:

R, = —,
" {t,'+ (a+ b)'J(O) —[~', + J'(O)(a' - b')']"Q,

Rz= —,'{b,,'+(a+bj J(0)+[a', + J (0)(a —bzj ]'~Q,

R~ = z ((a+ b ) J(0) hf- (a'z+—b' )J(k) {[+t)2a'b'J(k)] + [(a - b )J(0)- (a' —b' )J(k)][' ),

R, = —,
' ((a+ bPJ(0) 6(-(a' -+b' )J(k) —{[4,—2a'b'J(k)] + [(a —b )J(0)—(a' —b' )J(k)]['~z).

(10)

Ry and Ra are independent of k and can be identified
in the MF picture to be E2- E, and Ea —E4, re-
spectively. R3 and R4 do have a propagating na-
ture. However, owing to the anisotropy introduced
in the exchange interaction, they do not vanish at
k=O.

b. MF ground state of induced-moment nature.
We again find that there are four branches of ex-
citations at T=O.

Rf = —,
' [2(a+ b)J(0)M+ 6k' —(a —b) J(0)],

R) = —,
' [2(a+ b)J(0)M —t) f+ (a —b) J(0)],

RS=M[(a+b)J(0) —(aa —b' ()kJ) (/—a b)]+ —,'R,
R~k = M[(a+ b)J(0) —(a' —b ~)J(k)/(a —b)] —z R,

'

with

M= [J'(O) (a —b )' —d.']"'
2J(0)(a —b)

)('= k,' ~ Z(0)(k —kl' —(k' —k')'Z(k)(1 ~ '
~)

I

x 4(+J(0)(a —b)z —(a'+b'j J(k)

"(' ~(())( - k)')

E = 6, + 2 (a —b j [6,(s'T )J(k) + 2Mz J (0)],

which reduces to 6', + (a' —bz)'J'(0), (a- b)zJ (0)
—b, ,J(k)/J(0), and 6, —b, ,(a —b j J(k) for saturated,
induced-moment, and nonmagnetic MF ground
states, respectively. They are quite different

(12)

R, and Rg can similarly be identified in the MF
picture to be E,—E, and E~ —E„respectively.
The same situation occurs at k=O for R,' and R4.

c. MF ground state nonmagnetic. Excitation
energies are then given by b' —6, and b' —b, '
x(a'- b') J(k). They are single-ion crystal-field
transitions which propagate through the lattice via
the exchange interaction. However, they are
transitions from the doublet to the singlets, not
between the singlets as in the singlet-singlet case.

For the longitudinal mode, we have
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5.0—

2.0

&&(S'~J(k). If we again use the temperature-de-
pendent correlations in the MF picture, i. e. , Eq.
(7), together with Eq. (6) for these energies, we
see that all three modes do not become zero for
k = 0 at the Curie temperature; hence they do not
show full soft-mode behavior. A similar picture
has already been found in the singlet-triplet
case. ' Figures 4 and 5 show the temperature
dependence of the paramagnetic excitons for which
6, is smaller or larger than 2b', respectively.
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FIG. 2. Temperature dependence of the excitation
spectrum for a fully saturated MF ground state, corres-
ponding to case (A) in Fig. 1. Solid line is for y= 0. 1;
dot-dashed line is for v= 0. 37; dashed line is for 7 = 0. 73.

III. APPLICATION TO dhcp PRASEODYMIUM SINGLE
CRYSTALS

Praseodymium has the double hexagonal-close-
packed structure in which the stacking sequence
along the c axis is ABAC. Atoms in the A layers
have a local enviroment of approximately cubic
symmetry, while in the B and C layers, the atoms
have a hcp symmetry. The lowest crystal-field
levels at the cubic sites (A layers) are a singlet
and a triplet, while for those at the hexagonal sites
(B or C layers), they are two singlets and one
doublet. ' Since at present there is no informa-
tion available which allows us to characterize the
wave functions of the eigenstates for the cubic
sites, ' we shall concentrate on the excitations

from the transverse modes and are all magnetic
excitons.

Temperature dependences of the excitation spec-
tra are also of great interest. MF values of those
correlation functions can be substituted to find
them. Examples for a sample of hexagonal struc-
ture and nearest-neighbor interactions with sat-
urated and induced-moment ground states are
shown in Figs. 2 and 3 using the parameters from
Fig. 1. All four branches are now k dependent
when Tw 0. Excitation energies decrease in gen-
eral as the temperature is raised. In the para-
magnetic region where the temperature is above
the Curie point, the transverse modes have the
energies

B', =-,'(-,'(r ', + ~~)+X- Y+([b.,b., + (X- Y)]'

+ 2(b,' —hi)(hfX+ b, Y)] ),
E~--2 (2 (b.|+hi )+X- Y

—([b,,h(+ (X- Y)] + 2(hi- b, )(h(X+ ng Y))'i ),

with

2.0

1.0—

0

-1.0
0 o.e 0.8 1.2 l.6 2.0

(l4)
X= b, ,J(k)[(a' + b ~)(b"T ) —4a'b'(S'~],

Y=26(J( )k[
'a'b( 'ST) —(a~+ b' )(S'],

and the longitudinal mode becomes 4, + 2b, (a —b)

FIG. 3. Temperature dependence of the excitation
spectrum for a partially saturated MF ground state, cor-
responding to case (B) in Fig. 1. Solid line is for y= 0.1;
dot-dashed line is for v= 0.37; dashed line is for y= 0. 73.
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which propagate on the hexagonal sites.
The pseudospin Hamiltonian which accounts for

the crystal-field and exchange interactions between
the Pr atoms in the B and C layers is

3C = E [2 t»1 (S1T1 + S1T1 ) + t»f S1 T1 ]+5 [2 t»1(SJ Tj + S~ TJ ) + &fSg Ty*]

—Sw 8(i -i')J 1J(e —Sa e9(j -j ')J) J).—5 8'(i j)J1-J),
f&f' j&f

where

J& = a'S';+O'T& and J', = aS&+bT'; .
The notations have been explained in Sec. I. The
indices i, i' and j,j' refer to atoms in the B and
C layers, respectively.

To study the transverse modes, we look at the
following eight Green's functions and use the same
RP decoupling scheme. For abbreviation, we in-
troduce the following notations:

G,'"(E)-=FT of,((S,'(t)i S„-(t )))„
G,"'(E)=- FT of ((T;(t)

~
S„(t'))),

G,"'(E)=-FT of ((S,'(t)T,'(t)~s„(t')))2,

G»'41 (E)=- FT of s((s', (t) T', (t) i
S„(t')))s,

G,"'(E)= FT «((s'(t)
I s„(t')))„

G,'"(E)=FT -of c((T,'(t))S„(t'))&2,

G» '(E)-=FT of c((s,'(t)T2(t) ~s„(t')))2,

G,'"(Z) = FT of,((S;(t)T,'(t)
~
S„(t'))),.

The scripts B and C refer to the respective layers.
After Fourier transforming the equations of mo-
tion of the above Green functions and substituting
the molecular-field values for these correlation
functions, we have the following set of equations,
in the paramagnetic region:

EG» (E) n1G» (E)+ nfG» (E) = 0 EG»1 (E)+ hfG» (E) n1G»1 (E)= 0

—[—,
' 6, +a'$(k)s, ». ]G»1"(E)+ [—,

'
t»f —b'g( k) S,. »]G»'(E)+EG» '(E) —[a'G»1 '(E)+ b'G» '(E)]S;»g'(k) = —(S P)/2w,

[—'61- a'g(k)s». ,.]G»1 (E) —[—'61+ bg(k) S. »~ ]G»1 (E)+EG»1 1(E)—[a'G» (E)+b'G(»1E))s». .9'(k)=(S /w,
EG» (E)—t»1G» (E)+ nf G» (E) = 0 EG» (E)+n1G» (E) t»1G» (E)= 0

—[a' G"»'(E) +O' G»a'( E)] S; »g'(k)- [—,
' t», +a'S;». „'}(k)]G»1 '(F)+ [—,

'
hf —b'S, , g»(k)] G»1(E)+ EG~~'(E) =0,

—[a'G,'"(E)+b'G»N'(E)]s;, .g '(k)+ [-,
' 6f- a'S».,4(k)]G'(E») —[-,' n, , + b'S»...,'i(k)]G,' '(E)+ EG»121 (E) = 0,

@1 X1+ Y1 E2 X1 Yl2

3 —-X~+ Y~, E4—-X~- Ya

where

(15)

X, = —,
'

(b,2, + n1a)+ —,
' (X- Y)[g(k)+8'(k)],

X2 = —,
' (6, + 41a)+ -2' (X- Y)[g'(k) —}'(k)],

Y, = —,
' (n, n f + 2(xn f —Yn', )[g(k) + 0'(k)]

+ (X- Y}'[A(k}+8'(k)Q,

F2 = —,'(n, nf + 2(xnf —YzP)[g(k} —„'} '(k)]

~ (X- Y}'[g(k)- g '(k)Pj,

where P(k) and 9'(k) are the Fourier transforms of
the exchange interactions g(i —i') and 8 '(i —j), re-
spectively. S, , and S»... are defined in Eq. (9).
Correlations (S'T") and (S*~ are given by Eq. (7).

We then find that there are four branches of ex-
citations, all doubly degenerate:

X= t»,[(a"+ b")(S'T ) 4a'b '(S'P) ]-,
Y=2n f[a'b'(S'~ —(a' +b' )(S'~]

We note that at T = 0, E~ = E4= b, ' and

E, = n~ —n'(a' —b') ['}(k)+„'i'(k)],

E = b, ' —6'(a' —b') [g(k) —8'(k)].

The latter are exactly the same as obtained by
Rainford and Houmann, while for a'+b'=0, Eq.
(15) reduces to E»=E, = 6',

E1 = 6' + 2n'(a' —b')S, .»a[8(k)+ 0'(k)]

and

E, = n, "+2n'(a' —b')S,...[8(k) —t}'(k)].

Hence there are only two k-dependent branches
since in this case the matrix element of J+ between
the doublet and the excited singlet is zero.

The above results have been used to fit the ex-
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FIG. 4. Temperature dependence of the paramagnetic
excitation spectrum for a system where 4, &2&'.

FIG. 5. Temperature dependence of the paramagnetic
excitation spectrum for a system where 4, & 26'.

perimental data" at points F, A, I", K, and M
using Rainford's' (where a'+ 'f)=0) and Bleaney'sa
level schemes at 4. 2 'K. The exchange integrals
are found to have the values, ') (nns) = l. 39 'K,
$(nuns) = —0. V6 'K, a) (nnnns) = —0. 51 'K, 0 '(nnd)
=- 0. 11 'K, and 8'(nnnd)= —0. 146 'K for Rainford's
scheme and the corresponding values for the

Bleaney's are —0. 25, 1.12, 1.4'7, —0. 154, and
—0. 206 'K. The abbrevations nns and nnd stand
for nearest neighbors on the same and different
sublattices, respectively, nnn for next nearest
neighbors, and so forth. These parameters show
several interesting features. They suggest that
the exchange in Pr is long ranged and resulted
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FIG. 6. Dispersion
curves (solid and dashed
lines) fitted and plotted in
various directions using
Rainford's level scheme.
The points are the experi-
mental results of Rainford
and Houmann.
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from a large conduction-electron contribution. The
sign of 9' indicates that the hcp sites in Pr have a
tendency to order antiferromagnetically along the
e axis. With these values, we plot the whole spec-
tra in various directions at 4. 2 K and one (four)
for the Rainford's (Bleaney's) scheme at 18 'K.
Results are shown in Figs. 6 and 7.

IV. DISCUSSIONS AND CONCLUSIONS

The collective excitations in magnetic systems
with one doublet and two singlets crystal-field-
only level scheme and their temperature dependence
in the ferro- and paramagnetic phases have been
studied in a simplified hybrid MF-RP approxima-
tion again using pseudospin formalism. Aniso-
tropic exchange is introduced because of its sym-
metry-broken level structure. To have stable
transverse modes, one needs criteria among the
exchange and crystal-field parameters even at
T= 0 in addition to that provided by the MFA [e.g. ,
see Eqs. (10) and (11)). Nevertheless, the pres-
ent calculations show that the critical values for
the exchange interaction to have the nonmagnetic
ground state to be unstable are different for the
transverse mode [J(0)(a'- O'P = d, ') and the longi-
tudinal one [J(0)(a- b) = 6,]. This originates from
the present level structure which naturally pro-
vides such transitions among them. It would be
very interesting to see this experimentally.

The temperature dependence on the excitation
modes in ferromagnetic state in general reflects
the results from MFA. Hence as shown in Fig. 3,
energy gaps between the levels can at first in-
crease as the temperature is raised from zero.
When the temperature is further increased, spon-
taneous magnetization begins to decrease. As a
result, excitation energies between the levels will
be narrowed as well.

Using a hybrid MF-RP approximation, the pres-
ent model again shows no soft-mode behavior at
the critical temperature. However, the calcula-
tion is so simplified that probably one should draw
no conclusion about the phase transition from it.
In particular, whether RPA is applicable at critical
point is still an open question. To have a reliable
picture, as mentioned in I, one needs at least to
do the RPA self-consistently. For a further study
on this problem, it should be helpful to use the
high-temperature series-expansion method. These
possibilities are at present under detailed investi-
gation.

It is of particular interest to notice that the pres-
ent model offers two branches of transverse ex-
citations, both are A dependent even at T=O when
the system is in the paramagnetic phase and
b, , (2b'. An example is shown in Fig. 4, where
the two branches show quite different dispersions
since the matrix elements of J is different between
the doublet and the two singlets. However, when

Ay & 2b ' as shown in Fig. 5, there is only one
dependent branch at T= 0, while the other one does
not show any dispersion at all. As the tempera-
ture is raised, it first decreases in energy and
shows little dispersion. As the temperature is
further increased, it begins to increase and finally
at high temperature, to the original crystal-field
level difference. Qne can trace this peculiar be-
havior back to our pseudospin treatment, Eq. (3),
where we see as 6, &26 ', so that b, ,'(0, the para-
magnetic ground state, where the S and T spins
on each site are antiparallel to each other, is no
longer stable since the ferromagnetic (parallel
arrangement of S and T spins) state will have an
energy which is less than the paramagnetic one.

The present model has been used to look at the
experimental data" on the modes propagating along

o 6.0
f

a 4.0

2.0

I I
I

~ ~

I

OOOi~ODD

0
0

I f I

I

I

I

I

I

I

I

I

I

I

I

I

II

I
I l

~

I

cs o o o
o o I

r A
s

I
I

I I
'

I

I

o Io ~ Io o
I o o

I

I

I

I

I

I

I
r ~ ~%APlF» ~a

~ .'."~
—-- Ile K

I Ii I

Dispersion curves
(solid and dashed lines) fitted
and plotted in various direc-
tions using Bleaney's level
scheme.

0.4 0 8 l.6 l.2 0.8 0.4 0

NAY E VECTOR ( A )

0.2 0.4



Y ~ Y. HSIEH

the hexagonal sites of dhcp Pr single crystals,
using Rainford's and Bleaney's level schemes.
We see that the comparison between our calcula-
tions and the data is in general good except at
small wave vectors. This lack of agreement is due
to the reason that we have neglected the interac-
tions between atoms in the 8 or C layer and that
in the A layer, which we have already shown' '
to be rather important and connected with that
branch of excitation propagating along the cubic
sites. Unfortunately, there is no detailed informa-
tion available on this branch at the present time.
Experimental studies (e. g. , measurements on the
dispersion of the exciton mode of this branch in
the presence of high magnetic field, temperature de-
pendences of the induced magnetization, and the sus-
ceptibilities) are therefore strongly recommended.

It should be pointed out that if we regard the
lowest four crystal-field levels to be responsible

for the transitions, Rainford's scheme can only
give two branches of transverse mode since the
matrix element of J' between the doublet and the
excited singlet is zero in his scheme. In case
where this matrix element is nonzero, as in the
Bleaney's scheme, our model gives four branches
of excitations, a third possibility other than those
proposed elsewhere. ' Yet the use of Bleaney's
level scheme to see this possibility is not success-
ful. We see that in Fig. 7 the other two branches
are almost indistinguishable from each other and
show very little dispersion at 4. 2'K. They are
clearly separated from each other at 18 'K. Al-
though susceptibility measurement favors the Rain-
ford's level scheme, there are discrepancies which
should not be overlooked. A thorough understand-
ing on the magnetic properties of dhcp Pr is pos-
sible only when enough experimental information is
in hand.
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