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The Hubbard model in the»~it of uxfinite intrasite interaction and a related projected Hubbard
model, which includes this extreme limit, are considered. This projected model is that portion of the
full Hubbard model which preserves the number of sites of each possible occupancy, 0, 1, and 2. For
the linear case, this projected model is solved exactly, both for the eigenvalue spectrum and the static
thermodynamic properties. A second-order phase transition is found.

I. INTRODUCTION

The Hubbard model has' found wide use in the
theoretical description of electronic states in mag-
netic insulators. It involves a matrix element &
for electron transfer between neighboring sites and
an intrasite Coulomb repulsion matrix element I.
For a linear chain of N sites, the -Hamiltonian
takes the form

N-1
e=& Q Z (d'„~„„„+a'„,.a„,)

n1 fy

N

+I+ a„a„a~a~, (I. I)
n 1

where a„, and an, are fermion creation and anni-
hilation operators for an electron of spin o = a, P
on sile n. When I &!« I, we say we are near the
so-called atomic limit in which I- ~, When ~ = 0
there generally is not only a high degree of spin or
permutation degeneracy, but also a great deal of
orbital degeneracy. These degeneracies are large-
ly lifted for finite nonzero values of the intersite
and intrasite interactions, 4 and I. Even for
I- ~, ~&0 much of the degeneracy is lifted. The
band energies can vary linearly with the strength
& of the hopping term, regardless of how much
greater the band separation I is. Such properties
of this I-~, ~&0 atomic limit render it of special
interest. The existence of ferromagnetism for
certain lattices has been indicated through the use
of perturbation techniques. Moment analyses
have helped demonstrate the varying degrees of
inadequacy of a number of the conventional many-
body solutions near this atomic limit. Numerous
Green's-function decoupling schemes have been
studied for application to this limit. A few other
studies have been made' in this limit, and some
exact results' for arbitary ~ and I, but severely
restricted numbers of electrons and/or tempera-
ture, also apply here.

Here we consider a projected Hubbard Hamil-
tonian which includes the special I-~, & 4 0 case.
We let s(NO, N„N2) be the projector onto the space
with No unoccupied sites, N, singly occupied sites,

and N2 doubly occupied sites. Then we define the
Pxoj ected Hubbard Hamiltonian

a'=- a"+ v',
N-1

H —= r& 4 &(No&N&&Nq) Q Q (a„,a„,q,
NON1N2 n 1 fy

+a„,g„a„,)6'(No, Nq, N2),
N

V =—I Q a„a„, a„&a~ .
n1

(1.2)

II. EXACT EIGENSOLUTIONS

We denote N as the number of sites, N& as the
number of sites with occupancy i ( =0, 1, 2), N, as
the number of electrons, and N' as the number of
nonsingly occupied sites. We expect N=NO+N1

This projected model H evidently preserves the
number of sites with a given occupation number.
That is, the usual charge transfer interactions of
the full Hubbard model which carry an electron from
a doubly occupied site to an unoccupied site are
excluded. This projected Hubbard model is then
expected to be similar to the full Hubbard model
solutions in regimes where there are either very
few doubly occupied sites or very few unoccupied
sites. Hence, this regime of similarity should in-
clude the case when I 4 I/I is very small and the
number of electrons differs significantly from the
number of sites.

The projected model has been diagonalized ex-
actly in the N2=0 subspace (where V is effec-
tively zero). In Sec. II we extend this work to ob-
tain the complete eigenvalue spectrum of 8 . In
Secs. III and IV we proceed to evaluate the static
thermodynamic properties of the projected model.
For suitable values of & and I and appropriate
numbers of electrons a second-order phase tran-
sition is found, despite the one-dimensional short-
range nature of the model. For fewer electrons
than sites one finds a single phase with very few
doubly occupied sites on one side on the transition
point. On the other side of this point a second
phase with many doubly occupied sites and few un-
occupied ones is found to condense out.
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+N2, N, =N1+2N2, and N'=No+N2. The basis
kets for our calculation are to be single determi-
nants. Each of these basis kets is then uniquely
labeled by a set of indices

n=—(n~, np, . . . , n„),

p=(Pi&&p&

0= ~&1~&a~ ~ ~ ~ ~N )~
1

where

(2. 1)

0, site i is nonsingly occupied
1, site i is singly occupied;

0, ith nonsingly occupied site is empty
2, ith nonsingly occupied site has 2

electrons; (2. 2)

e, ith singly occupied site has up-spin
P, ith singly occupied site has down-spin.

The basis kets are thus expressed as In;p;8&,
and the total vector space can be broken up into
subspaces V(Np Ng Np), with Np Ng and Np being
exact quantum numbers. For example, in the
two-site case we have

H" lol. o a&=~at. lo&=allo;0;c&,

aPPl10;0;c&=~a',.lO) =~[01;0;a&.
(2. 7)

In fact, since the intersite interactions only involve
transfer between nearest-neighbor pairs we see
that for general N the H operator does not affect
the p or o indices in the basis kets. It is this
property of the open one-dimensional chain with
nearest-neighbor interactions which enables our
solution.

We define operators c& and c& which act only on
the n indices in the basis kets

gives zero unless a singly occupied site is adjacent
to a nonsingly occupied site. Thus for the two-
site case, H gives zero unless the basis ket is in
'0(1, 1, 0) or 0(0, 1, 1). For the basis kets (2. 4) of
'U(0, 1, 1) we have

= ~l lo; 2;a&, (2. 5)

=~lol;2;o&.

For the basis kets (2. 5) of &(1, 1, 0) we have

&(2, o, o):&l oo; 00;&j,

&(1, l, o):&llo;o;a&, lol;o;a&;a=a, P&,

~(1,0, 1):(loo;02;&, loo;20;&&,

~(0, 2, 0):(l 11;;a.&;a,.= a, p),

&(0, 1, 1):&I10;2;a&,101;2;a&;a=~,e),
'0 (o, o, 2):(loo;22;)].

(2. 3) (2.3)

lnl ' ' ' nj 1»' ' ' nN&p&a&'

j~1

e,'~;p;e&-=O( „O)e p( E
Ar 1

lnx». . . , n&+1, . . . , n„; p;o),

e,
~

e; p; ir& -=etc„&}exp (~ 2 ',)0 1

To complete the description of the basis kets we

specify a phase convention which shall prove con-
venient. The kets In;p;a& are formed by applying
a product of at, creation operators to the vacuum
with a, to the left of a~ if m &n; in the case in
which both a„and a+ occur in the product, we
place at to the left, or right, of a~& as n is odd,
or even. As an example, the basis kets for
U(0, 1, 1) are

01' 2'a& =ay atp ap 0)
10;2;a&—= a„appap, 0)

and the basis kets for U(1, 1, 0) are

ol; 0;c& ==a',.lo)

10; 0; a& = a~, lo)

(2.4)

(2. 5)

Having introduced the notation we now check to
see how the Hamiltonian H acts on these basis
kets. The V term of (1.2) acts very simply on the
basis kets, just giving IN~ times the same basis
ket back. The H term gives zero unless it can
move an electron without changing N2; that is, it

c& and c& are apparently fermion creation and an-
nihilation operators. However, in their definition
additional nonphysical kets In;p;a), for which the
sum of the n& in n is different from the number of
a& in o, and for which the number of zeroes in n

is different than the number of P& in p, are im-
plicitly introduced. These c& and c; thus do not
represent the creation or annihilation of any con-
ventional electronic orbital. Now a product as
c;c& does not mix physical and nonphysical kets.
Further in the physical space, c&c& merely rep-
resents the transfer of an electron from a singly
occupied site j to a site i singly occupied after the
operation. Indeed it is seen that

N-1
&P' Z (C)Cgeg+CgegCg)&

9~1
(2. 9)

at least when the right-hand side is restricted to
the physical spaces. The nonphysical spaces in
principle offer no problem, since the projected
Hamiltonian H does not mix physical and nonphys-
ical spaces, and one may simply discard the non-
physical solutions.

The V operator acts only on the p indices and
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lf (6f lyf +64f 1}

is simply diagonalized, 9

~ Ufl~+kUkl 6lief i
gA

ef = 2& cosffl/(N+ 1},

~U„= [2/(N+1}]'f sinw j&/(N+1),

we obtain

l llel ~ f~f~f '
fl

(2. 10)

(2. 11)

(2. 12)

Here we have defined the canonical creation opera-
tors

U])ct
i

The eigenvalues spectrum for H is

(2. iS)

then only in the manner of a number operator. Thus
to solve H all one need do is diagonalize the qua-
dratic H o by a suitable canonical transformation.
Noting that the matrix

we take the number of electrons to be less than the
number of sites so that N& = 0. The grand-can-
onical partition function is

OCC

:-00= Z 2 l Q' exp[ —PE.(No, Nl, 0)
No+

+ PffooN, ], (3 1)
N

where p, is the chemical potential and 2 ' is the
spin degeneracy of a level with N1 electrons. The
j and NON, summations in (3. 1) are to go only over
the physical states. In general for a given No and

N1, there are many nonphysical c-orbital occupa-
tion schemes; however, for every c-orbital oc-
cupation scheme there is a value for N„N, that
is physical. Letting M different c orbitals be oc-
cupied, we see that the physical choice is N, = M,
NO=N —Nl. Thus, in the partition function (3. 1)
we may sum over all c-orbital occupation schemes
if we change No and N1 in the proper manner at the
same time. Hence,

OCC
're

Eo(NO, N&, N&) =NP+2& Z cos N+1 ' (2. i4)
=O'=5 2 ' exp[ —%1(NONl0)+Pff"Nl]

where j indicates the occupancy scheme, which for
the physical states involves occupying N1 of the
c orbitals.

From (2. 14) we see that a simple band picture
describes the eigenvalue spectrum of the pro-
jected Hamiltonian H . The band structure is in-
dependent of the number Nz and positions of doubly
occupied sites. The degree of occupancy in the
band is determined solely by the number of singly
occupied sites.

In the limit of an infinite number N of sites we
find it convenient to define

r, = N/N, i=0-, 1, 2, e,
8= v~/N,

so that the energy expression becomes

(2. iS}

III. THERMODYNAMICS IN ATOMIC LIMIT

We consider the limit in which intrasite Coulomb
repulsion I becomes infinite. The number of
doubly occupied sites is then a minimum. First

Eo(N, N, N ) =NaI+2& —
f~

cos8d8. (2. 16}
N r

& OCC

For the lowest-lying state of a given Nm we thus
have

E00(NO, Nl, Nm) =NgI —2
~

&
~

(N/w) sinrlfl (2. 17)

These solutions of (2. 17) include the ground-state
solution with N~ = 0 as obtained previously. ~

Further we note that the eigenvalue spectrum (2. 16)
is independent of the sign of &, so that from now
on we choose &~0.

=Tr[2 ' exp( —PII +Pff N, )], (3.2)

cos8[1+ & exp(2aP cos8 —Pfl )] 'd8,-oo 1

7T p

ef
F =r, fl ——

~~ In[l+2exp(pfl —2&pcos8)jd8,
7rP .p

8 =PA E -Pk E (3.4)

f
zoo

1
7T o

[1+& exp(2&P cos8 —Pfl'0) j' d8.

Here k& is Boltzmann's constant, and we have de-
fined

where this time the j sum is unrestricted and the
trace is over all c-orbital occupation schemes.
Also N, =-gf", cfc, is the c-orbital number operator.

Evidently, we may treat much of the present
problem in the same way as that for N fermion c-
orbitals vfith a Hamiltonian as in (2. 12). In the
present case, ff +ln2/p appears in place of the
chemical potential in the usual fermion property
formulas which are linear in the density matrix.
In computing the entropy in the present case we
note that there are 2 levels with an occupation
scheme j with N1 occupied c orbitals, and the prob-
ability of any one of these levels being occupied is

(:-00) ' exp[ —pE-'(Np;0) + pfl~], (3. 3)

so that this simple replacement is modified for the
entropy, or free energy. The internal energy,
free energy, entropy, specific heat, and average
particle numbers per site are, respectively,
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OCC OCC

=00=+ 2 ~exp[ —PE.(O, N~, N~)+ Pp(,N~+2N~)]=+ 2 'exp[ —PE (N —N„N„Q)

—P(N —N, )I+ Pp (2N —N, )]=exp[NP(2p —I)]Tr[2"s exp( —PH + PIN& —Pp N&)]. (3.7)

~00 ~00 (3.8)

At a given value of r~& we let p. & and p, & denote the
chemical potentials for the more than and less
than half-filled cases. We then see that

Hence in the limit as N, N, - ~, relation (4. 2)
should be exact. Since the term traced over in
(4. 2) is just an atomic-limit grand-partition func-
tion,

For the more than half-filled case, N, =0 and
N340, one simply adds(1-i~0)I to the internal
and free energies of (3.4); the entropy and specific-
heat expressions remain the same

Z exp[P(2p -I)N, ]
Ng

0, exp[-, P(2p, —I)N(1 —r~~)] —1
exp [P(2p' —I)] —1

(4. 3)

IV. THERMODYNAMICS FOR PROJECTED MODEL

We now lift the restriction that the intrasite
Coulomb repulsion I be infinite, in which case both
unoccupied and doubly occupied sites may arise.
The grand canonical partition function is

& Q' exp [ —PE (No~ N» Na)
NON182

+ pp (N1+ 2Na)] (4. 1.)

Again requiring only the physical states to be in-
cluded in the sums, we obtain

=Z' exp(2Pp, Nz —PNSI)
N~

&&Tr[2"i exp( —PII + Pp, N~)] (4. 2)

in a manner similar to that leading from (3. 1) to
(3.2). The trace in (4. 2) is over different occupa-
tion schemes for the c orbitals, just as in (3.2).
For exact equality in (4. 2) we should restrict the
trace to states with N& such that N, = 2N~+N, is no
greater than 2N. However, the trace is dominated
by states with single occupancy particle number
N~ within 1/~N~ of the optimal value determined by

3-

Here, approximating the lower and upper limits to
the Nz summation as 0 and & N(1 —r,), again en-
tails errors -vN, in the exponent. This lower-
limit approximation applies for the case with few-
er electrons than sites; the corresponding lower-
limit approximation of N{r,-r, ) applies for the
case with more electrons than sites and may be
developed in a similar manner.

The average density of doubly occupied sites is
(=o)-~

NON~N3

CCC

&&2' exp[ —PEQNO, N» Nz)+ Ppo(N~+Na)]

N'=—~ N(1 —r,), (4. 6)

and carrying out the summation over N~ from 0 to
N —1, we obtain

exp[P(2p. o I)N ] N'—
exp [P(2p' —I)N'] —1 N

exp[P(2p'-I)] 1
)

exp[P(2p, -I)]—1 N

If 2p. —I is negative by a finite amount in the limit
as N-~ and N -~, then r~ is seen to approach
zero. On the other hand if 2p, —I is positive by a
finite amount, then the right-hand side of (4. 6) is
computed to approach N'/N = ,' (1 —r,). Evident-ly,
this double-occupancy density r~ behaves in quali-
tatively different manners for different signs of
2 p

0 I Now if 2 p
o I approaches zero as N and

N' ~, say

= —(:-') ' ="Q N, exp[P(2p, '-I)N, ]. (4.4)
Na

Now denoting

.9
1/pa

1.2 1.5 1.8 2p —I A/PN',

with A/P finite, then we compute
FIG. 5. Specific heat vs temperature for particle den-

sities r& =0.1, 0.2, and 0.4. The results at particle
densities of 1-r~ are iden. tical.

1 —r, 1 1
(4. 6)
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2.5-

1.0-

.5-

I/b, = 15

I/5=9
just as in (3.6), that (r~) =(r', )0. Hence the dif-
ferent systems in our grand ensemble almost all
have nearly the same number of singly occupied
sites while all numbers, between 0 and N-N, =N',
of doubly occupied sites are found comparatively
frequently. However, since p, differs from being
less than 2 I only very slightly, a slight change in
the system Hamiltonian might stabilize these den-
sity fluctuations. We thus seek to introduce a sym-
metry breaking perturbation which may accomplish
this stability, take the thermodynamic limit and
then take the limit as the perturbation vanishes.
(This program of action is similar to that in the
theory of magnetism with magnetic field perturba-
tions and in the theory of superconductivity with
particle nonconserving perturbations which are al-
lowed to vanish after taking the thermodynamic
limit. } Here an appropriate perturbation is

.5 7
l'OO

.8 .9 1.0 t tE ~ a o a o afft~ afoot~
—~ ~ a N q, ofa& a~,

mEQ n&

FIG. 6. Critical temperatures for the phase transition
as a function of particle density V~ and interaction ratio
J/~.

Thus, if a temperature is approached when (4. 7}
applies, we see that there are large fluctuations in
the double-occupancy density.

As a consequence of these considerations the be-
havior of the projected model is determined in
terms of the atomic limit model of Sec. ID. As
long as the atomic-limit chemical potential p, is
less than & I, we find rz =0 and p. = p, , to order
1/WN; hence, all the thermodynamic properties for
the projected model are the same as those of Sec.
III. Values of p, greater than & I by a finite amount
are not allowed, since rz- —,

'
(1 —r, ) and the number

of electrons cannot be restricted to a sufficiently
small value. Hence for values of p ~2 I we ex-
pect p to equal —,'I to order 1/uN. When p, ~ —', I,
the average number of particles may be constrained
properly if p, =2I, although extreme fluctuations in
the double-occupancy density appear. Evidently,
then we have a phase transition at the temperature
for which p, = 2 I. This critical temperature is
plotted in Fig. 6 for various choices of I/n. In
this figure values of p, & &I occur to the left of the
curve, while values of p. & &I occur to the right.
When the average number of electrons is greater
than N, we recall (3.6) so that 2p& —I= —(2p, ~& —I),
and consequently, Fig. 6 may be extended to
x, &1 merely by reflection about the r, =1 axis.

The p 0 & & I phase requires some additional con-
sideration. Now when p. ~ 2 I we have noted
{r2) e (rz), but in computing r~~ and {r,) we find,

(4. e)
where 8 and are a partitioning of the sites of a
chain into two disjoint sets. In place of I we now
have I + & and I —& on the 8 and sites so that
doubly occupancy is more favorable on the + sites.
Further, with I —&&2p, =I&I +E, we take the
number of & and sites to be such that on leaving
unoccupied all the nonsingly occupied sites of 8
and doubly occupying all the nonsingly occupied
sites of the total number of electrons is Ni, .
Letting I ~ I and I + I be the orders of sets o and
N, we thus have

(4. 10)

where r~~ is evaluated from the r~ formula of (3.4)
with p =

& I. With these choices then the 8 sites
will have nearly no double occupancies and the
sites will have nearly no unoccupied sites, even in
taking the limit a- 0+ after the thermodynamic
limit.

V. DISCUSSION

We thus have obtained the static thermodynamic
properties for the linear projected Hubbard model.
These results are exact in the thermodynamic
limit, while the eigenvalue spectrum is exact even
for finite chains. Despite the one-dimensionality
of the model, we found a second-order phase
transition. On one side of the transition point the
condensation of a second phase was found to be in-
duced by a symmetry breaking perturbation which
could be allowed to become arbitrarily small after
taking the thermodynamic limit. We note that the
one-dimensional short-range nature of the model
is emphasized if we write
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n, a n, -aan+l, -a n+], -a+an, -a n, aana], a-a tn], - )a

in place of the expression of Eq. (1.2). It appears
that although the projected model may approxi-
mately describe some complex TCNQ salts with
r, & 1, none have corresponding I/t] near which a
phase transition occurs. Further even if such
free radical salts with I/t] and r, near such a phase
transition point for IIO were obtained, it seems
unlikely that they would be well described by H',
because of the exclusion in H of electron trans-
fers from a doubly occupied site to an empty site.
However, the exact solution does have attendant
uses indicated in the introduction. Further a per-
turbative treatment of the linear Hubbard model
might be developed in terms of the projected model
taken as the zero-order result.

Solubility of the projected model was found to de-
pend on the fact that the Hamiltonian did not affect
the "spin distribution*' in that the number and order
of unpaired spins was preserved. Modifications

of the Hamiltonian with additional intrasite inter-
actions and/or different strengths for nearest-
neighbor charge transfer interactions could be
treated similarly. Next-nearest-neighbor charge
transfer interactions, higher dimensionality, or
intersite Coulomb interactions would apparently
spoil the solution.

Finally, we note the magnetic properties for
the atomic limit, and projected models, are simply
those of a collection of Nr, and Xx, noninteracting
singly occupied doublet sites.

Note added in proof. Recently G. Beni, T.
Holstein, and P. Pincus, [Phys. Rev. B 8, 312
(1972)]have obtained via a different approach some
of the same results of Sec. GI.
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