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The system is considered which is brought into a state far from thermal equilibrium by a sudden

change of independent variables. Its approach towards the equilibrium state is studied introducing
nonequilibrium relaxation functions. Near the equilibrium state the lowest-order relaxation functions
reduce to the time-dependent pair correlation functions. The relaxation process is especially interesting
near a first-order phase transition, where metastable states can occur. Characterization of these states in
terms of the nonequilibrium relaxation functions is discussed, and a "constructive" definition of the
metastable states in terms of a "flatness" property of the relaxation curve is proposed. In order to give
explicit results, the time-dependent Ginzburg-Landau theory is treated in detail, and exact solutions for
the relaxation functions are given. If an equilibrium state is described by a real-valued order parameter,
the inverse lifetime of a metastable state is determined from the imaginary part of its order parameter.
Transition from the "metastable" to the stable state is characterized by fluctuations which increase with
time for wave vectors up to some critical value, and later decrease again because of the nonlinearity of
the Ginzburg-Landau equations. The validity of these results is discussed with respect to systems with
long-range interactions, and also a few remarks are given concerning systems with short-range
interactions and the nucleation picture.

I. INTRODUCTION

The equilibrium aspects of interacting many-
body systems which exhibit phase transitions are
now rather well understood' within the framework
of equilibrium statistical mechanics. Thus it
seems legitimate to proceed to the investigation
of phenomena far from thermal equilibrium in
terms of a statistical theory, where linearized ir-
reversible thermodynamics ' cannot be applied.
Some of the most striking phenomena of this kind
associated with phase transitions are hysteresis
and metastability. These phenomena are indeed
very frequently observed in all kinds of experimen-
tal investigations of first-order phase transitions.

It is the aim of the present paper to make a con-
tribution to the theoretical description of such non-
equilibrium processes; we are especially interested
in making the connection of the treatment to the
theory of second-order phase transitions as trans-
parent as possible. Stimulated by the experimen-
tal procedure, an isolated system is considered,
which is assumed to be in some thermal equilib-
rium state, and it is supposed that at time t= 0 a
sudden change of some external variables is per-
formed. Then it is asked in what way the system
relaxes (eventually) towards a new equilibrium
state.

The first step in this task consists in providing
a formal statistical description, which is both appro-
priate to nonequilibrium processes and as simple
as possible. In Sec. II it is suggested that this
can be done conveniently defining a nonequilibrium
relaxation function [Eq. (13)]; this function is eas-
ily related to the familiar description in terms of

the equilibrium correlation functions for all states
apart from the phase boundary. In Sec. III it is
then discussed in which way the existence of a
metastable state should show up in such a non-
equilibrium relaxation function. A "constructive"
definition of metastable states is proposed, i.e. , a
prescription to derive their properties from the
nonequilibrium relaxation function. This method
is briefly compared to some previous general
treatments. ' It is a well-known fact that ap-
proximate methods of evaluating a partition func-
tion in equilibrium statistical mechanics also yield
easily metastable states, e. g. , all types of mean-
field' or van der Waals approximations. From
rigorous treatments ' it is clear that a correct
treatment of the thermodynamic limit does not
yield these states even in cases where the van der
Waals description is correct for the true equilib-
rium states. Thus the both fascinating and diffi-
cult question, in which way one can extend equilib-
rium statistical mechanics to include both equilib-
rium and metastable states, is circumvented by
our procedure. A disadvantage of the dynamic
descriptions may be that it does not yield a precise
distinction between unstable and metastable states;
but note, the same difficulty may occur also in the
experiment. We then treat a simple example, the
time-dependent Ginzburg- Landau theory, '
which is outlined in Sec. IV. The nonequilibrium
relaxation function for the Fourier component k = 0
is calculated and its analytical properties dis-
cussed in detail. Exact formulas are given for
the associated relaxation times. It is shown that
"metastable states" exist according to our definition
for fields slightly exceeding the usual limit of meta-
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stability h*. It is argued, however, that the meta-
stable region will stop at some h &h* in a more
realistic case (Sec. V).

In our case (and in the work of Griffiths et al.
on finite mean-field systems") the order-parameter
field associated with true equilibrium states is
strictly real valued, in contrast to the complex
field in the case of superconductors. ' How-
ever it is observed that the inverse lifetime of non-
equilibrium states (i.e. , for fields exceeding the
limit of metastability) increases like the imaginary
part of the associated order parameter, while it is
strictly zero for fields not exceeding this limit.
Section V is devoted to a critical discussion of the
validity of the present treatment and tentatively
generalizing some exact results of Penrose and
Lebowitz' a validity criterion is proposed in
analogy to the "Ginzburg-Brout criterion"'
for systems with a large but finite range of inter-
action. Possibilities for experimental applications
of the present results are also discussed. Finally,
Sec. VI contains some conclusions, and we give
some brief remarks concerning the most interesting
case of systems with short-range interactions. In
this case it is clear that the present approach can-
not be carried out in a similarly exact fashion,
since rigorous treatments of dynamic relaxation
near the equilibrium state are not available either.
Approximate treatments like nucleation theories
or numerical calculations like molecular dynamics
or Monte Carlo computer experiments immediately
yield the nonequilibrium relaxation functions. It
is stressed that the Ginzburg-Landau results for
spatial fluctuations (i.e. , nonequilibrium functions
for Fourier components ke0) are in qualitative
agreement with the nucleation picture.

II. DYNAMIC DESCRIPTION OF NONEQUILIBRIUM
PHENOM. ENA

A system of N»1 particles is considered, where
each particle (labeled i) is described by a set of
dynamical coordinates (a",(f)], and it is assumed
that only the vth degree of freedom, a",(f) -=p, (t},
will be essential to characterize the state of the
systems with respect to the phase transition con-
sidered. The evolution in time is given by the
quantum-mechanical (or classical) equations of
motion

ig „a{(t)=[a",(f),—3C,].

Macroscopically, the state of the system will be
described by thermodynamic coordinates, one of
the (independent) intensive variables being the tem-
perature T and the others being denoted by {Ij
(e.g. , the magnetic field H). Then the expectation
value of some operator A, in this state is

Tre ~~a'A,
(lt&T, {I{ TrPT, {I{~ Tre-x /a HT

The total Hamiltonian X, ccntaining all coordinates
[a",(f)] may have a part depending on the coordinates
[p, (t})only; this part of the Hamiltonian is denoted
simply by K. As an example, one may think of

p, (t) being the magnetic moment of the particle,
and the reduced Hamiltonian X may be the Ising
Hamiltonian

= —~ ~{lP,{ll—+Hjl, , +{=+1.
f

(3)

1
4(T, H)=(P&r, »=H ~ ({ l&r. » (6)

For simplicity, periodic boundary conditions are
considered throughout, and because of translational
invariance we have (p,)r, »= (p&r,„.

Introducing a Liouvillean g by

p, (f)=e "'p, (O) (6)

leads to the Bogoliubov- Born-Green-Kirkwood-
Yvon (BBGKY) hierarchy for the correlation func-
tion;

d
(i{{(f))rll i(gij l(f))T, H 1

(P {(i)Pf(f)&T, H X([g'I {(f))Pl(f)&T,H'
—i(P, (t)[ZPl(t)] &r„.

In general it will be inappropriate to replace $C,

by 3C in Eq. (1) in order to derive Eqs. (6) and (7),
although the weak-coupling assumption has been
made [replacing Eq. (2) by (4)]. This fact is easily
recognized in the Ising example Eq. (3) where p,
commutes with 3C; all the dynamics in Eqs. (6) and
(7) come from coupling to the other degrees of
freedom.

An approach to avoid the complicated derivation
of Eqs. (6) and (7) from Eq. (1) is to postulate the
"Liouvillean" L =-i Z in a more or less ad hoc fashion,
as done for example in the stochastic Ising mod-
el. 25™In Sec. V it wi11 be pointed out that this
model is closely related to our Ginzburg-Landau
treatment of Sec. IV, thus we quote this model in
more detail. Postulating a master equation for the

Provided that coupling between the p, ,(t} and the
other degrees of freedom is sufficiently weak, the
expectation value of an operator A„canbe ex-
pressed with the reduced density matrix p~, ~;

Tre-"~'a~A„
(~„&r, H TrPr, »ll»= T -xl» rTie

Without restricting further analysis to the Ising
example it is assumed that there is only one in-
dependent variable (in addition to T), namely, field
H which couples to the order parameter g(T, H),
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N particle probability distribution

p(u1». . . u1& .. .
& uN& f}

d (u1» u1»' ' ' uN& f)

), hH&(t), AT&(t)

=-+ yi'(u1- u-1) J'(u1, "., u&, "., u„f)

+Z ( u1 u&) (u1& ~ i u1& ~ ~ ~ i uN& t)&

(5)
one again derives Eq. (7) for the correlation func-
tions

&p;()» H ~

(9)

W(u& u&)I (u1& ~ ~ ~ i u& i ~ ~ ~ i uN)

&u1(f)&= &-u1I'(u„.. . , u„,f},
(Vg ]

&u1(f)u&(f)&=- & u&u, I'(u„... , u„,f)
In order that Eq. (9) be consistent with Eq. (4) it
is sufficient to require the detailed balance for the
single spin-flip transition probability per unit time
W and the canonic equilibrium distribution P~
= Pr. H y

(b)

(c)

T, H +
) hHc. aTc ~

(k, t)

= W(- u1- u, )P (u». . .
&

—u» ~ ~ ~ i uN)i (10)

i=1, .. . , N.

Because of this property the stochastic Ising model
is ergodic by construction. %'ithout restricting
further analysis to the example the ergodicity
property of the systems considered will be as-
sumed throughout.

For the general case, van Hove' has been able
to show that a description in terms of a Markoffian
master equation together with a detailed balance
condition can be derived from Eq. (1) in the weak-
coupling and large-time (f-~) limit under fairly
general assumptions about the nature of that cou-
pling. A derivation for the Ising case postulated in
Eq. (8) is due to Heims and Goldstein ef al.

The higher one proceeds in the above hierarchy
of correlation functions, the more detailed will be
the information about the system. Adhering to the
"philosophy" that the essential information one
wants to know is already contained in these lowest-
order functions, which contain "structure" both in
space and time, only a small number of correlation
functions has to be considered in thermal equilib-
rium: the one-particle function &u, (t)&r „,i.e. , the
order parameter [(Eq. (5)], having neither structure
in space nor in time. The equal time correlation
S(k) has "structure" in space only,

S&k) =&e'""«u15u1&r, N, 5u&-=u& &u1&r. N, -(11)

where r—= r1 —r&. With the knowledge of $(T, H)
[Eq. (5)] and S(k), a description of static phenom-
ena is obtained which is sufficient for most pur-
poses. Usually these quantities are derived from

FIG. 1. Dynamic description of the nonequilibrium
relaxation process of the order parameter g&(t))g~
(b), after a sudden change of external variables ~~(t),
AT&(t) at time t= 0 (a), in terms of the relaxation function
@hH)shT~(k t) (C)

methods of the equilibrium statistical mechanics
without any reference to dynamic considerations.

In order to have "structure" also with respect
to time it is appropriate to consider a time-dis-
placed pair correlation function &u1(to} u&(fo
+ t)) rrN, its normalized Fourier transform will
be denoted an "equilibrium relaxation function"
4&tt~„(k, t),

pp~ (k, t) = [S(k)] 'g e"'&5u, (to)5u, (to+ t)&r, N. (12)

With the knowledge contained in Eqs. (5), (11), and

(12) one is fairly able to interpret available experi-
ments, for example, linewidth measurements in
resonance techniques, or scattering experiments
with energy analysis of the scattered radiation,
etc.

Now consider a nonequilibrium process. It is
supposed that the system is in thermal equilibrium
at times t & 0 in some state T, H. At time t = 0 a
sudden change of variables &t, , &H, is performed
[Fig. 1(a)] which may depend on the coordinates of
the particles. Now we must have some relaxation
process also of the order parameter from (u, )r, N

to (u, (~))r 1N [Fig. 1(b)]. Evidently the one-particle
function will have "structure" both with respect to
space and time during the course of the relaxation
process; in a sense it is thus a function analogous
to the equilibrium relaxation function Eq. (12).
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Z3Ct=$C-~ psn'Hi, Ti= T+ riTi, Hi=H+ riHr,

(14)
we have from the ergodicity property

&p &(")&r,s= &p «&r, ,H, ~ (15)

For the present purpose it is sufficient to con-
sider a case where $C and p, , commute; then it is
found for +Hi 0 +T

-X / k~ T "E)3C ) / kg P)

' -Z" "
) (is)4'~T T, k~T

From Eqs. (4), (15), and (16) it is seen that

1
&V (f)&, =&p &, ,-Z T

&&+ [&~;(f)u~(0)&r
„

—
&V~&r, .s, (Vi )r, .s,]»~

Q [&p, (t) jC, (0}&
1

To make this analogy more transparent we define
a "nonequilibrium relaxation function" [Fig. 1(c)]
by

ydsghr((k f) Zr( [& i( ))rH &0t( '))rH] (13)
Z., e'""~[(V~(0)&r 8 & I("}&rH)

Special functions of this type have been considered
previously in connection with kinetic Ising models
by Suzuki and by Bedeaux et al. ' It is interest-
ing to note the connection with the equilibrium
case for the limit of small changes bA, -0, 4T,

0.
Since the Liouvillean governing the motion of

p, (t) depends on nT, and n H„' it is convenient
to transform also the expectation values from the
state (T, H) to the state (T+ n,T„H+r HJ. Intro-
ducing the abbreviations

expansion breaks down necessarily. Now it is
precisely this situation in which we are interested
(with n.H, =- n, H) to discuss the properties of an
(eventually occurring) metastable state. The defi-
nition Eq. (13) has always a precise meaning, how-

ever, and in Secs. IV and V it will be pointed out
that Q „"'~r'(k,t) can be calculated rather direct-
ly, without using explicit representations in terms
of equilibrium properties.

In the thermal equilibrium the description by

g(T, H) and S(k) is appropriate for static phenomena
and by Q ~„(k,t) for dynamic phenomena. The
static phenomena may be studied quite independent-

ly from the dynamic ones. These findings do not

apply to the nonequilibrium case, however; here
the correlation function of lowest order —the single-
particle function —is time-dependent, of course.
Thus the crudest possible description —in terms
of Eq. (13)-has already dynamic character. From
this "first-principles" point of view all attempts to
construct properties of metastable states from the
evaluation of a partition function turn out to be
somewhat dubious. It is seen that a well-defined
characterization of the phenomena of metastability,
hysteresis, etc. , should be given in terms of the
dynamic description of nonequilibrium processes.

Of course only small parts of this formal intro-
duction are new, but we have given this discussion
in order to make our notation precise, and to justi-
fy the restriction to study nonequilibrium phenom-
ena associated with first-order phase transitions
using a correlation function of lower order than
appropriate for the equilibrium case, which might
be contrary to naive expectations. In Sec. IG a
definition of metastable states is proposed, based
on the properties of the nonequilibrium relaxation
function Q~ ' (k, t) [Eq. (13)].

III. DYNAMIC DEFINITION OF "METASTABILITY"

Here we consider the relaxation function for
k= 0 which will be abbreviated by Q(t),

P(t)=- P,"' (0, t). (19)
AT)

&P4& g,rHg &+l&r( Hg] IT (17)

On the right-hand side of Eq. (17) we could omit
time arguments of the single-particle functions.

Most interesting is the case bT, =-O, and 4H,
4 0. Then it is found from Eqs. (13) and (17}that

lim P"' (k, t)= $6~„(k,f).
AH) 0

(18)

Taking into account higher-order terms in the ex-
pansion Eq. (16) would allow to represent the non-

equilibrium relaxation function Eq. (13}in terms of
higher-order equilibrium correlation functions also
for finite L1H, 4 0. But if such a change is per-
formed near a first-order phase transition, this

re= J P(t}dt.

We introduce the averages

(20)

t2
& (t}&r.s«

2 1 tg

and formulate the following criterion: During the
course of a nonequilibrium relaxation process a
"metastable" state occurs (with order parameter
pM~+5g) if two times tr «r„,fr can be found, so

(21)

A characterization of a metastable state will be
based on a "flatness" property of this relaxation
curve [cf. Fig. 2]. It is assumed that the area be-
yond this relaxation curve is finite, i.e. , we may
define a relaxation time v„by
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FIG. 2. "Flatness" property of the relaxation curve
Q~' (0, t). For the explanations of the various times tI,
t~, tq, tq, and tz, see the text.

that for all times t„t'„t2 which satisfy Eq. (22),
the inequalities Eqs. (23) and (24) hold;

(5G),~= 0, (29)

while stability of a state against perturbations is
ensured by

(&G)„&0. (30)

is also likely from a discussion of the mechanisms
by which metastable and unstable states decay
(e, g. , some brief remarks are given at the end of
Sec. IV), that no sharply defined "coercive field"
or "spinodal" exists in real systems.

Note that we are speaking of a large finite N and

have not given any assumption of the dependence of
~ Ms and p Ms on N.

It is interesting to compare the definition by
Eqs. (22)-(28) to previous work. A concise formu-
lation is due to Gibbs where it is assumed that
also metastable and instable states are described
by a thermodynamic potential G(T, H). Equilib-
riurn is characterized by

5) I5) g (tp tg)Iraq

(22)

(23)

(24) (~'G)s. , MS & 0~ (31)

If for a state Eq. (30) is violated for certain finite
perturbations, but still holds for infinitesimal ones,

where the notation is introduced,

50 s ™in()Jt, t (p&r, s+aa) ~

Then the order parameter p.„sof the rnetastable
state can be defined by

(25)

Wars= W~ t„
and its lifetime v„s

~MS tF tI y

(28)

(2'I)

or alternatively in terms of the (p(f)&r s function,

(p(o)&r.s —() (")&r.s,
) M. —

&) (")&r.s
(28)

The basic ingredients of this definition are the
following: (i) A metastable state has a finite life-
time per definition. This time can be very large,
however; it must be large in comparison with the
characteristic relaxation times of the system at
equilibrium, which are roughly of order &z. (ii)
Any property characteristic for the metastable
state has a finite inaccuracy, for example, the
order parameter is p, Ms+ 5p, . The lifetime v „s
may depend on the choice of 5p, to some extent.
In the limit 5p, - 0 eventually no metastable states
exist. In a practical case 5p, may be nonzero but
extremely small. (iii) There is no sharp limit
between metastable and instable states, both of
them change with time. The precise location of
the "coercive field" separating the metastable
states from the instable ones may show some de-
pendence on the choice of 5)),. Again in a practical
case this inaccuracy of the coercive field may be
extremely small as will be discussed later on. It

this state is called metastable. This criterion has
been recently discussed from more general points
of view, and it is stressed that the existence of a
thermodynamic potential outside thermal equilib-
rium is an open question. In fact, it is not clear
how to construct such potentials explicitly, since
equilibrium statistical mechanics yields informa-
tion about true equilibrium states only, as shown
from the rigorous treatment of the van der %aals
gas. " Langer postulates the existence of the

thermodynamic potential as an analytic continua-
tion of the equilibrium potential; its imaginary
part is identified with the lifetime of this metastable
state. The latter conjecture is substantiated by dy-
namic considerations of the nucleation process.
Later it will become evident that our different
method leads to a similar result. Then the kinetic
theory of stability is to be mentioned; this method
separates the instable states from stable and rneta-
stable states by considering their normal modes.
If modes occur ~hose frequencies have a positive
real part, i. e. , increase with time, the state of
the system is called instable. Again, it will later
become evident that our method leads to a similar
result. Perhaps the most interesting definition is
contained in the recent important work of Penrose
and Lebowitz. ' These authors call a state meta-
stable if

(i) only one thermodynamic phase is
present,

(ii) a system that starts in this state is
likely to take a long time to get out.

(iii) once the system has got out, it is un-
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likely to return.

It is intuitively clear that our "flatness" criterion
of the relaxation curve [Eqs. (22)-(28)] is also con-
sistent with Eq. (32). But like the other defini-
tions mentioned, Eq. (32) does not provide an im-
mediate tool for constructing the properties of the
metastable states, as done by Eqs. (26} and (28).
In fact, additional considerations had to be given
in Ref. 10 to draw more precise conclusions from
Eq. (32). It is not claimed, however, that the
criterion Eq. (20)-(28) provides a unique defini-
tion of metastability. While the inequalities Eq.
(22)-(24) describing the flatness of Fig. 2 mathe-
rnatically are certainly necessary conditions for
the occurrence of a metastable state, they may
not be sufficient. In fact, one may like to call
some of these states "long-living unstable states"
because of other grounds. We do not treat this
question further, however, since it is less im-
portant from the experimental point of view, and
we believe this distinction is doubtful in models
with short-range forces. Thus we use Eqs.
(20)-(28) as a working hypothesis in Sec. IV.

IV. TIME-DEPENDENT GINZBURG-LANDAU THEORY

In Sec. IV A the time-dependent Ginzburg-
Landau (TDGL) equations are formulated for the
case of small spatial variations of the orderparam-
eter. In Sec. IVB, we rederive the equilibrium
properties needed for comparison. In Sec. IVC,
the kinetic equation for go(t) is solved to derive the
nonequilibrium relaxation function Q(t) [Eq. (IS)],
whose behavior is discussed in detail. The proper-
ties of the rnetastable states found by using Eqs.
(22)-(28) are also given. In Sec. IVD, the question
of whether spatial fluctuations die out also in the
course of the nonequilibrium relaxation process is
investigated. A brief comparison with the spatial
fluctuations considered by the nucleation theory
is also made.

A. Time-Dependent Ginzburg-Landau (TDGL) Equation

will be different from the extensive investigations
of the TDGL theory of superconductors (for cal-
culations of the resistivity see, for example,
Refs. 14-17). The Langevin noise term added in
the treatment of Tucker and Halperin' will not be
included in the present treatment.

In the TDGL theory the lowest-order term of the
gradient expansion is included only, thus only
slow spatial variations of g(r, f) can be considered.
We cannot hope to obtain a faithful description of
nucleation which starts on the atomic scale of
lengths. Thus we further assume that either g is
itself small (e. g. , for T &T„herethe term Bg
can be neglected) or at least the fluctuations g, (t)
are small in comparison with the homogeneous
part of g(r, f) [$(r, t) = g„g(t)e '],

g„(t)«0o(t). (34)

While in the equilibrium case Eq. (34) is necessary
for the justification of Eq. (33) itself, ~'9'I in the
nonequilibrium case Eq. (34) restricts us to con-
sideration of situations where Eq. (34) holds for
the initial condition (at f = 0). Using Eq. (34) it is
easy to linearize Eq. (33) in terms of the g, (t), '

—~3 d
= —u I ——40(f)+Bfo(f) —Ho(f)

d&0(t) T

C

for k = 0, (35)

4'a(f) T 2= —a 1 — —Ck' q (t)dl; T,
+ 3B$&(t)$0(f) —H, (f) for k a0. (36)

Once the solution go(t) of Eq. (35} is known, it is
easy to solve the linear inhomogeneous first-order
differential equation (36) for g„(t) The stati. onary
solutions dgzldt = 0, dg, /dt = 0 describe the well-
known static equilibrium case. ' '

B. Summary of the Equilibrium Properties of the TDGL
Equations

If the static homogeneous field Ho is zero, one
finds from Eq. (35}

A real-valued order-parameter field g(r, f) is
assumed obeying the equation

$0= 0, T ~ Tg

(37)
= -a 1 — g(r, t )+By (r, f}

sg(r, t) T
C

—CV'q(r, f) H(r, f) (3-3).
Here a, B, C, and r, are phenomenological (posi-
tive) parameters; T, is the critical temperature
of the second-order transition. This is essential-
ly the same equation as in the case of supercon-
ductors, ' but there f is complex, and the con-
jugate field H(r, f) has no simple meaning so is
usually omitted. We want to study the relaxation
effects produced by a sudden change of the homo-
geneous part of this field; therefore our treatment

1 1
Xk C P2 K2

with the inverse correlation length $ '= K,

(38)

C
1 ' T~T

Defining the susceptibility X, by

a —XaHa, HI4 0,

one gets from Eq. (36) the Ornstein-Zernike formu-
la
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1- T&T
C

(40)

H* 2 3 8/2 s/2H 1 8 (I T/T )3la

Scaling the variables

(41)

If HOLLO, three real solutions $0, gtb $0 exist for
Ho&HO (the "coercive field" or "limit of metastabil-
ity"),

m
I~

Imp-I-I-I- I-I~I
I

h Ih'
I

I

I

I

I

I

.~r—

t'= —a I—

Eq. (35) reads

——= —m (t')+ m'(t')+ h .

(42)
FIG. 3. Kinetic consideration of stability for the three

solutions m~, m2, and m3. No value of mo leads to a re-
laxation ending at m2, the right-hand part of the figure
is the corresponding construction of hysteresis.

For h &k*=2/3v 3 the one real solution m, is

m, = [- —,
' h+ (-,

' h'- ~2,)'"]"'
+ [ ——,

' h —(-,
' h'- $)' ']"', (44)

while the three solutions for h, &h* are expressed
in terms of @=arccos(-3 —,'h) as

p+ 4m2x3 cos —, m2 ——2 x3 cos

ms= 2x 3 cos p+ 2w
(45)

Note for h near h*

(46)
which implies a divergent susceptibility at h = h~,

1 z a T zk + — 1 ——(3m —1) (47)

and a divergent correlation length

e =3 2 (a/C) (1 —T/T, ) (I - h/h*) . (48)

Since the second solution mz implies a negative sus-
ceptibility it is necessary to consider the stability
of these solutions m„m„andme. This can be
done' using Eq. (43). It is assumed that the sys-
tern is in a state m 04m „m~,or me at the time
t = 0. It is then asked to which of the three "equi-
librium" states the system will relax (cf. Fig. 3;
here it is convenient to construct m „m2,and
m 3 graphically as indicated).

If ma &m
„

it follows from Eq. (43) that the final
state will be m~, since dm/dt' & 0. But at m~ the
sign of dm/dt' changes, if mz &mo&m»dm/dt' &0, and

again m g is reached, and not m~, however close to
m& the state m 0 may be. Similarly, for ma& m~
it is always found that the third solution m3 is
reached. Including an arbitrary small Langevin

random force [cf. Ref. 17], the unstable solution
m& would be removed from the equilibrium states,
and no extra thermodynamic stability requirements
are needed to exclude the states with negative sus-
ceptibility. In the limit of vanishingly small ran-
dom forces the lifetime of the "metastable" states
m, (for fields in the range 0&k ~ k*) is infinite.

Next let us briefly treat the dynamic suscepti-
bility of the equilibrium states. One has to put
t)lo(t) -=t)IO (independent of t) in Eq. (36) and then con-
sider the linear response to a time-dependent field
H~(t). Introducing the Fourier transforms

4 co +eo

H~(t)= — e' H„"d(u, q~(t)= — e' 'q~ d(u,
~ 00 m IQ

(49)
and defining a dynamic susceptibility X(k, ~) by

II'a = X(k~ ~)Ha ~

it is found from Eq. (36) that

(50)

X(k i ~)= Xa (1+ I ~/~a) ~ ~a = T/Xa ~

Equation (51) is consistent with the dynamic scaling
hypothesis, ' ' of course. Since go diverges not
only for T- T, but also for h- h*, Eq. (51) implies
a "soft-mode" behavior not only for T- T„but
also near the limit of metastability h*. Similar
instabilities have been conjectured for various
other kinds of first-order transitions, too, for ex-
ample, in the case of the liquid-solid transition.
It is straightforward to find the equilibrium relaxa-
tion function defined in Eq. (12) from Eqs. (51) and

(47),

$~~5~(k, t)=e +'

=exp —t' 3m —1 + —& 1 ——p C 2 T
a TC

(52)
i.e. , a simple exponential behavior. If the system
is in the state m, instead of m& as assumed here,
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the factor 3m, —1 is replaced by 3ms- 1.

C. Investigation of the Nonequilibrium Relaxation: Spatially
Homogeneous Case

One has to integrate Eq. (35}for a given initial
condition (for algebraic details see the Appendix).
The result is typically a transcendental equation
for m = m(t'), for example, for h & h* and mo &ms
it is found

~(f)-="'
mp my

(p) t - I/1 -
I/

mp —mp

( g-Tftg /(ffta-%3

!
m~q ~~- m3

1
-(Sm -f) t' ~

mp ms
(53)

If the initial state mp is very close to the final state
m„we may replace m(t') on the right-hand side of
Eq. (53) by the initial state, and thus see that Eq.
(53} immediately reduces to Eq. (52) [for k = 0];
this is an illustration of the general result Eq. (18).
If the initial state differs appreciably from the
final state, however, the decay law is more com-
plicated; but for large times the decay is always
exponential with the same relaxation time as in the
equilibrium case, independent of the initial condi-
tion [compare for example, the "large-time ap-
proximations" of the Appendix, Eqs. (A3) and (A4)].
Because of this property, P(t') will also exhibit a
critical slowing down if h-h*, since then m, m*
= 3 ', and the relaxation time vanishes. The am-
plitudes in the Eqs. (A4) and (A3) still depend on the
initial state mp also in the final stage of the re-
laxation process. As an example in Fig. 4(b) the
relaxation functions have been plotted for several
values of mo at a field h/h*= 0. 5 as indicated in
Fig. 4(a). More interesting is the case h &h*.
As indicated in Fig. 4(a), two solutions m„ms
become complex,

my m2=$+M (54)

—arctan . 56

near h* the imaginary part increases as a square
root, while the real part remains nearly constant,

z = (4ms- 1) = (h/h* —1), y = —sms=mo. (55)

Straightforward integration of Eq. (43) yields

m(t')-m, (mII y) pzs-—t'(ms —1)= ln I 2 3mo-ms [m(f')-y] +z

In ~ e (T,h) /e (T,O)
Alp

I

INSTABLE 0& +41 0
SOL UT ION
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REAL ~'' .. A 0.7 SOLUTI
PART~

S 0.5
IMAQINARY

PART

BLE"
ON

, 0.0
I

I IT

STABLE
SOLUTIONS

(a)

NONE OUILIBRIUM RELAXATION

I
F UNCT ION S

(t')
S.O

OF
St

0.5

0
0

&y, since a small variation of m(t') around y in
the arctan leads then to a large variation of time.
In this regime the relaxation function may be ap-
proximated by a linear variation of the order
parameter with time

FIG. 4. (a) Relaxation processes considered in the
m-h plane. Stable, "metastable, " and instable solutions
are shown (in the latter case both real and imaginary
parts are indicated). The various starting values mo are
shown. (b) Nonequilibrium relaxation functions for vari-
ous mo (parameter of the curves). The corresponding
equilibrium states are seen in (a). At m0= 0.7 the short-
time approximation tEq. (AS), dashed-dotted curve] and
the large-time approximation [Eq. (A3), broken curve]
are also shown.

From this result it is readily recognized, that y
behaves as a metastable state according to our
definition Eqs. (22) to (26), if z is small and m o

y —ms+ svz z (3ms —1)t'
mII- ms (y —ms) (mII- ms)

(57)
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y —m& h
(58)

which is independent of m0, as it should be. In
Figs. 5 and 6 the relaxation functions are plotted
for several h/h P' & 1. Both for h/hk' = 1.01 and 1.03

The change of the order parameter 5m in this state
is proportional to z, i.e. , very small. From Eq.
(56) it is also recognized that the lifetime of this
"metastable state" is proportional to z '. [This
fact is also borne out by the direct calculation of

rs, Eq. (A15). ] It is seen that asymptotically for
h/h* —1-0, mo &y, the lifetime of the metastable
state is according to Eq. (28)

one might call the state y a metastable state ac-
cording to the definition Eqs. (22) to (28). The
lifetimes of these states are large in comparison
with the characteristic time (3m,'- 1) ' of the cor-
responding equilibrium state, as expected from
Eq. (58).

D. Spatial Fluctuations and Nucleation

We briefly discuss now the spatially inhomo-
geneous case [Eq. (36)] with the restriction of
small inhomogeneities [Eq. (34)]. In equilibrium
it follows from Eq. (36) that a spatial fluctuation

g~ at time t = 0 will decay exponentially with time

])t,(t)=]tt, exp~ —C(k +K) —+» 1 —exp —C(k +K )—0 t'
2 t H„ 2 2 t

C(k +K ) S

In the nonequilibrium case one gets from Eq. (36)

(59)

p (t ) = P e ,p ——C [k + tt (t )] ~ , ( —e p ——C[k ~ (t (])Ck+K(t) TS

t 1 ' t——exp ——C[k'+ K'(t)] ]C]0(t,)- — ]Ct()(t2)dt2 exp + ~ C[k + K (tg}] dt's, (60)
S S S

where we formally introduced a time-dependent
inverse correlation length K(t),

K (t)= —— 1 ——+——
()] (t ) dt .a T SB1

0 1 1' (61)

p (t] p~ ( ( 'p -)

])'0(t) & —])(0 .

or m(t) &m*,

(62)

The homogeneous state is stable as long as ]to(t)
exceeds its critical value. This happens for m0
& m, and h &h* during the whole course of the re-
laxation —for h &h~ this is only true as long as
m(t) &m*=y —when the system leaves this meta-
stable state spatial fluctuations get enhanced. This
also occurs for h & h* if m0 is in the range —m*
& m0& m*. A similar enhancement has been found

If ])(0(t) and hence K (t) are very slowly varying, the
integral in Eq. (60) can be neglected and then Eq.
(61) has precisely the same structure as Eq. (59).
This is a fair approximation for a system in a
metastable state, and thus Eq. (60) meets the re-
quirement that thermodynamic relations should

apply to a system in a metastable state, too.
From Eq. (61) it is immediately recognized that

K (t) may assume negative values: In such a situa-
tion a spatial fluctuation ()]„(t)tends to grow instead
of decay as in an equilibrium state. Since ]t(0(t) is
a monotonously varying function of time, a sufficient
condition for decaying fluctuations is

in the linear mean-field theories for the spinodal
decomposition of alloys. ~3 In these treatments the
fluctuations ]tt,(t) increase indefinitely [correspond-
ing to a K (t) which consists only of the first con-
tribution to Eq. (61)], while due to the nonlinear
term present in our treatment a stabilization of the
fluctuation takes place, and afterwards the fluc-
tuation decreases again when ]1]0(t) approaches its
new equilibrium value. This behavior can be seen
more clearly by studying in detail the k-depen-
dent nonequilibrium relaxation function [Eq. (60),
Hk= o1

(k, t) =
p],.(t' ) = exp(- —t'[k' + K'~(t)]], (63}

where we introduced k' = C'~ a '~~(1 —T/T, ) 't'k,
and from Eq. (61) it is deduced that

6
K' (m)= —1+, t'(m) mdm+~m for m &0,

t'(m )
(64)

K' (m)= —1+, t'(m)mdm — t'(m)mdmt'(m ) 0

+ am for m &0. 65

Using Eqs. (64), (65), and (56) it is not difficult to
calculate (t]„.(t')[Eq. (63)]. Since the resulting ex-
pressions are rather lengthy, they will not be re-
produced here, but rather we show the results of
this calculation in Fig. 7 for h/h*= 1.05, m o= 1,
and various k'. t((tk)dtecreases steadily with time
for large k'. For smaller k' it decreases first but
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m(t') —ma(t')
mo- m~

1.0

0.5

0
0

(a}

m(t ) —mg(t') =
mp —my

1.0 h = 1.10h

tion tends to its new equilibrium value, and the
fluctuation described by Qt (t') decreases again.
For h ~ h* the cluster spreads out according to
the Cahn and Hilliard theory, its central density
diminishes, and its energy of formation goes to
zero. ' One may argue that for fields where this
energy is of order k~T the droplet mechanism is
rather indistinguishable from the unstable spinodal
mechanism. Note, that the description in terms
of the $„.(f') functions is unambiguous also in this
region. We do not claim, however, that Eqs.
(63)-(65) or Fig. 7 provide already an accurate
description of the phase transition, since by a
TDQL theory only the smallest k could be taken
into account.

V. VALIDITY OF THE TIME-DEPENDENT GINZBURG-
LANDAU THEORY

0.5

0
0 as 7.5

Considering the second-order phase transition at
T-T, it is argued ' ' that the Ginzburg-Landau
theory is an accurate description if the range of
interaction R gets very large. Writing Jt& = J(rt
—r&)= J(r), R is defined by

2 f J(r)t' dr 1
R =

I&( )d =&(0) J(r)r dr. (66)

FIG. 5. Nonequilibrium relaxation functions plotted
versus time for II;=1.5h* (a), and h= 1.lb* (b). Parame-
ter of the curves: mo [cf. Fig. 4(a)]. For h= l. lb* and
ma= 0.5 we show the short- [Eq. (A5), dashed-dotted
curve] and large-time approximations [Eq. (A13), broken
curve], while for mp=1, 5 the approximations Eqs. (57),
(A13), and (A14) are shown.

Since the Ising model considered in Eq. (3) is sup-

m {t') —mp(t') =
mp —mp

h = 4.05 h*

10— 0.7
1.0

starts to increase again. The function ln Q,.(t')
has its minimum value at m = (I/tt 3) (1 —k' )', its
maximal slope 1 —&' at m = 0, and its maximum
value at m = —(I/~3(1 —k' )'~a.

Note that in the nonequilibrium case lim; 0$,.(t')
4 Q(t'), contrary to states near the equilibrium.
At this stage we should mention the relation of the
unstable "spinodal" mechanism to the nucleation
mechanism. As will be pointed out in Sec. V, true
nucleation is absent in the Ginzburg-Landau model;
but in a real system states with 0&h «h* will de-
cay by nucleation, while states with h» h* may de-
cay by the growth of unstable modes as described
above. Both processes may lead to a rather simi-
lar behavior of the Q,.(t') functions. The maxi-
mum value k' = 1 (for h &h*) corresponds to the
minimum size of a "stable" cluster, a "critical
cluster" (for h & h*). Clusters larger than the criti-
cal cluster tend to grow in the course of the mag-
netization reversal process, until the new phase
is built up and they disappear again. This growth
process of clusters corresponds to the shift of the
pronounced maxima in the Q,.(t') function towards
smaller k'. Later on, Q(t '}-0, the magnetiza-

4.5

0.5

0 }

0 5
(a)

20

m (t') —m~
4 (t') *

mo —m~

0.7
5.0
1.5

h ~ 1.04h

0.5

0.0 .5

0 I

0 to
t

20 30 40

FIG. 6. Nonequilibrium relaxation functions plotted
versus time for h= l.03h* (a), and h= 1.Dlh* (b). For
further explanations, cf. Fig. 5.
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10

(69) is independent of the special choice Eq. (67)
for W. Expanding

10

J(k)= E 8'" 'J(r)= J(0) (1— ),r
(70)

10

one derives in the same way as Eq. (69) an equation
for the inhomogeneous case

10

10

10

-42 I I I

0 5 /0 l5 t
FIG. 7. Wave-vector-dependent nonequilibrium relaxa-

tion function plotted versus time. Parameter of the
curves: wave vector O'. The arrows indicate the posi-
tion of the maximum.

posed to be a rather realistic description of aniso-
tropic magnets, liquid-gas systems, and alloys at
constant chemical potential, as far as the general
properties of the second-order phase transition are
concerned, it seems worthwhile deriving the TDGL
equations from a long-range kinetic Ising model. ' ~

Following Ref. 26, the transition probability W in
Eqs. (8) and (10) is chosen as

1 1
W(p( —p()= 1 —py tanh H(+ Z

eT(gpss

2 T(9 k~T
(67)

to derive the kinetic equation for (p, (t)) [Eq. (9)]

r. „—(p, ( ))=)(vi(()) ~ tanh„Zz„g,( )+ ()))('dt gT

(68)
If the exchange J&~ is long ranged, the fluctuations
of g&Z, & p&(t) may be neglected and g& J,&i)&(t) can
be replaced by its average value. Near T, the
tanh can be expanded, and one obtains for the homo-
geneous magnetization [putting J(0)= ksT, ]

—v, —(p(t)) = — 1- ) (p(t))+ s (p(t))—'dt T, / k~T, '

(69)
which has precisely the form of Eq. (35). Since it
has been shown that arbitrary other choices of the
single-spin-flip transition probability, which are
consistent with the detailed balance condition [Eq.
(10)], lead to a renormalization of the time scale
7, only in this mean-field limit, the result Eq.

x (p) (~))—,(71)a,(t)
c

which is again equivalent to Eq. (36).
An experimental example for an Ising system

with long-range interactions may be provided by
hydrogen in metals, for example, H in Nb. If an
interstitial lattice site (j) is occupied by an H atom,
one has p,

&
= —1, while otherwise p.&

=+ 1. Because
of the elastic distortions produced by the H atom
in its environment in the Nb lattice the effective
interaction between different H atoms is an elastic
dipole-dipole interaction. Indeed in these sys-
tems the critical exponents of the Landau theory'
are found to high precision, and also well-defined
metastable states are easily observed, investi-
gating the properties of the Nb-H system after
changes of the chemical potential (which plays
there the role of the magnetic field~'~). If it turns
out feasible to measure the Q,"' (k', t) functions,
an immediate field of application for the present
theory would be provided.

So far we tacitly supposed the validity of Eqs.
(67) and (71) near the equilibrium state implies
also a validity far from equilibrium. This seems
a fair approximation, since the local property ~,
(a single-spin-flip rate) should not depend in any
critical manner on T/T, or h/h*. Thus one may
take it as essentially constant.

Having established the validity of the treatment
for the limit R» it is also interesting to ask for
the validity, whether R is large but strictly finite.
This question has been considered in detail with
respect to the second-order transition (the so-
called Ginzburg and Brout criteria ' ' ).

In order to develop a similar criterion for the
metastability it is useful to repeat the argument
for T- T,. In zero field above T„Ginzburg-Lan-
dau theory predicts the energy to be exactly zero,
while it varies as go(T, 0) for T & T,. For finite R
this result is qualitatively incorrect of course, the
energy above T, will be nonzero. Due to fluctua-
tions there will be a nonzero magnetization inside
the interaction volume R of a d-dimensional sys-
tem also above T,. From fluctuation theory' one
thus estimates the (relative) energy e(T)
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ji e(T)
R -d Tcconst. ( ) .{q )fo

o)

Again it can be argued that the TDGL theory is es-
sentially correct as long as this expression is very
small, i.e. , using Eq. (46) it follows

~

» c,'(R/re) ". (75)

0

Tc lT

'r
MS —(—) (m

R d

ro
const. e

b)

&0

I'IG. 8. Validity criterion of mean-field theory (a),
and its extension to metastability (b). In (a) the reduced
energy e(T) is plotted versus the inverse temperature;
in (b) the inverse lifetime of the metastable state vMs is
plotted versus the field. The dashed-dotted curves indi-
cate the behavior for systems with large but finite range
of interaction R, the cross-hatched areas denote the lo-
cation of the "critical regions. " According to the flatness
criterion (Sec. III) states are "metastable" if, say, zMs
=10 r6„5„(dashedstraight line), where rs„s„f~$~~(=0,

t) dt. While the limit of metastability in the long-range
case (indicated by the solid circles) exceeds h* slightly,
it will be smaller than h* in a finite-range case (indi-
cated by the solid squares).

r ~ = exp[- (R/re) (m —m )cs] . (74)

where we denote constant factors of magnitude one
here and in the following equations by c» cz, c3,
. . . , respectively, and where &0 is the lattice spac-
ing, and d is the dimensionality of the system. Now

it is argued that the Ginzburg-Landau theory is
essentially correct as long as this expression is
very small, i. e. ,

~1 —r, /T ~»c, (R/re) 4. -

This behavior is illustrated in Fig. 8(a.); the cross-
hatched region where the Ginzburg-Landau theory
breaks down can be made arbitrarily small, if R
is only made large enough. A more refined dis-
cussion than the one reproduced here yields even
an improved regime of validity.

Now we study the inverse lifetime v~= 0 for
h & h* but rMs ~ (h/h* —1) ~ for h & h". For finite
R this result is qualitatively incorrect, of course;
the inverse lifetime below h* is nonzero. As will
be discussed below, this lifetime is estimated to
be

0» R'»r', In(Q/r', ). (76)

Letting in this way 0-~ and R- ~ together, one
obtains metastable states as described by the van
der Waals equation and with an inverse lifetime of
about e '" "0 '3. Note that if one takes Q- ~ first
and keeps R finite during this limit process, no
metastable states at all are obtained from a pre-
cise evaluation of the partition function. " (This
result is also valid for the Ising model. ) If one
takes the limit R-~ first and then Q-~, one ob-
tains metastable states with an inverse lifetime
of e '"~+'s; this case is physically less inter-
esting, however. The important point of Ref. 10
is, that well-defined and long-living metastable

This behavior is illustrated in Fig. 8(b); the cross-
hatched region where TDGL theory breaks down can
be made arbitrarily small if R is only made large
enough. Note that the relaxation processes con-
sidered in Sec. IV for h h* and R = ~ will cor-
respond to relaxation processes at h- h* for finite
R t In this case v'„'s will get large at h* already,
while v„'sis still small for fields exceeding h*
slightly for R= ~.

This property is due to the absence of nucleation
in the long-range model. We can understand the
nonexistence of nucleation treating briefly the der-
ivation of the critical cluster size l* ' ' 3; con-
sider the change in energy brought about by the
formation of a cluster with l reversed spins. This
formation is favorable due to a gain of "bulk ener-
gy,

" the interaction with the magnetic field pro-
portional to [- (2H/ksT) l], but unfavorable due to
a loss of "surface energy, " i.e. , the spin-spin ex-
change interactions. If the interactions are short
ranged, only spins near the surface of the cluster
contribute to this energy change, and one takes
this contribution proportional to E' with cr & 1. If l
is increased there exists a value l = l* where the
additional loss of "surface energy" is compensated
by the gain of Zeeman energy. If the interactions
are long ranged, however, all spins of the cluster
contribute to the change of interaction energy; thus
this change is not of "surface-energy" type, but
increases also proportional to l, and the matching
of the two contributions does not yield a finite value
for l*.

We have now to justify Eq. (74). This equation
is a tentative generalization of a rigorous result
obtained by Penrose and Lebowitz' in their dis-
cussion of the van der Waals gas. Their result
applies to a system whose volume 0 is large but
finite, too, satisfying the inequality
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states can occur also for quite microscopic inter-
action volumes R", for example, for R/ra= 4-5 the
metastable volume 0 and the lifetime ~~ become
macroscopic. Our extrapolation of this result to
the stochastic Ising case is only a conjecture, how-

ever, since the rigorous proof was based on a
classical mechanics study of dynamic fluctuations
in the van der Waals gas, while the dynamics of
the spin systems considered here are rather differ-
ent. Furthermore, we have extrapolated the re-
sult of Ref. 10 to both T- T, and h- h*, not treated
in the exact calculation. Amore rigorous justifica-
tion of Eqs. (75) and (74) seems therefore highly de-
sirable, but is beyond the scope of the present pa-
per.

VI. CONCLUSION

We conclude by summarizing the main results of
this investigation, and briefly discuss further ap-
plications to models with short-range forces.

(i) The first-principles description of nonequi-
librium relaxation phenomena in many-body systems
was briefly treated, and an appropriate relaxation
function introduced (Sec. II). This function was
shown to be a generalization of the well-known
time-dependent pair correlation function. It was
pointed out that this description remains valid near
the first-order phase transitions of the model sys-
tems, which we wanted to consider, for example,
the kinetic Ising model with long-range forces.

(ii) Since the main subject of this paper was a
contribution to the theoretical understanding of
metastability associated with first-order phase
transitions, we suggested a dynamic definition of
metastable states in terms of a "flatness" proper-
ty of the relaxation curve (Sec. III). This defini-
tion is intuitively obvious, and its precise form
[Eqs. (22)-(28)] allows a construction of the prop-
erties of the metastable states once the nonequilib-
rium relaxation function introduced in Sec. II is
given. A brief comparison with previous treat-
ments suggests that our definition does not con-
tradict the other characterizations of metastability.

(iii) We show that the nonequilibrium relaxation
functions can be calculated in the case of the time-
dependent Ginzburg-Landau theory (Sec. IV). The
TDGX equations are formulated for the case of
small spatial inhomogeneities, and the properties
of their stationary solutions reviewed. "Meta-
stable" states with infinite lifetimes occur for
fields h & h*, while for fields h slightly exceeding
h* relaxation functions are found exhibiting the
flatness property postulated in Sec. III. In Sec. V
it is pointed out that these functions will in fact
be a realistic description for h- h* and not h ~ h*
in the case of systems with finite range of inter-
action. Furthermore it is shown that the inverse
lifetimes of the metastable states are proportional

to the imaginary part of the order parameter, as
long as the imaginary part is small.

(iv) The decay of spatial fluctuations during the
course of the relaxation process is also investi-
gated. In the region where the order parameter
changes its sign, spatial fluctuations larger than
a critical value (k') ' become enhanced, reach a
maximum, and decrease again. The smaller k'
the later occurs the maximum in the course of the
process. Thus, the decomposition process has
some (superficial) analogy to the growth of clusters
larger than a critical cluster during a nucleation
process. True nucleation phenomena are not ex-
pected to occur in a model with long-range forces
(Sec. V). We believe that this is the reason why
the metastable states for h &h* have infinite life-
time, since conventional nucleation is the only
mechanism capable to bring the system from the
stable to the metastable phase in the case h &h*.

(v) Discussing the validity of the TDGL treat-
ment (Sec. V) it is shown that these TDGL equa-
tions (36) and (35) are easily derived from a long-
range kinetic Ising model. Since a description in
terms of a master equation (8) is known to be a
rather general description of various kinds of
dissipative systems in a certain limit, "this re-
lation between Eqs. (8), (35), and (36) suggests an
applicability of our treatment to various kinds of
dissipative systems with long-range forces. A
validity criterion for h =h* similar to the Ginzburg
criterion for T= T, is also conjectured.

(vi) In the case of models with short-range
forces, our treatment of Secs. IV and V is clearly
inconclusive. Kinetic equations for the single-
particle function (p, (t)) can still be formulated
[Eqs. (7) and (68)], but cannot be solved explicitly
without making an unreliable factorization approxi-
mation for the higher-order correlations involved
in these equations. Thus it seems questionable
whether the program carried out here is applicable
in any other case even within some reasonable ap-
proximation. Therefore we want to mention two
approaches, where the nonequilibrium relaxation
function [Eq. (13)] turns out to be a quite natural
and immediate result of the calculation: (a) Nu-
cleation theory: Applying the "magnetic language"
one has to describe the growth and decay of clus-
ters with / spins; usually it is assumed that their
concentration n, (t) obeys a first-order differential
equation

(77)

Now the time dependence of the order parameter
(p(t)) and thus the nonequilibrium relaxation func-
tion P(t) [Eq. (19)] are simply determined by the
first moment of the cluster distribution
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(tz(t))=1-2Z tnz(t).
l~1

(78)

(b) Computer simulations: The Monte Carlo
method is known to be an explicit realization of
the master equation (8). 'ee This approach is
readily compatible with (a) since "clusters" are
immediately seen among the "raw-data" configura-
tions of such a computer experiment, and the con-
nection between the observed cluster distribution
and theoretical models has been established.

A detailed investigation of the metastability, non-
equilibrium relaxation functions ltz(t) and time-
dependent cluster distributions n, (t) of a two-di-
mensional nearest- neighbor kinetic Ising model
will be the subject of a forthcoming paper.
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APPENDIX: NONEQUILIBRIUM RELAXATION TIMES AND APPROXIMATION FORMULAS

Rewriting Eq. (43)

dm-dt'=
(m —m 1)(m —me) (m —m3)

(Al)

the solution is easily found explicitly for the inverse function t (m). Consider the case h &hP first. Equa-
tion (A1) leads to

rn(t') —me m(t') —ml ™3me ml 2 m(t') —me ™3™Zi ~Z m2 -(Sme-Z)t ~

0 8 - mo mi mQ m2
(A2)

for me &me, while for mp &me Eq. (53) results. A "large-time approximation" is derived from Eqs. (A2)
~nd (53) by replacing m(t') by ml or ms on the right-hand side of these equations,

for mQ&m» and

@(tt) 1 2 1 S e-(Stttl-1) t'(m —m ~1 ~3 ~ 2™S m m ™1~2'i&~2-~3'- 2

(m 0 —m2 mQ-ms
(A3)

f(tt) - 3 '1 3 2 -ZSme 1&tt
(mS-m2) /(m1-fft2 m m (ms-ftt1 /(m1-m2)-,

ts ~ mQ- m1 m0 m2

for me&me. A "short-time approximation" results using Eq. (43) to derive

m(t )= mp+ t,mp- ms+ms —mp) zt +(1-3mp) (me ms+ms —mp)+ et-((1—3mp) (mp —ms+ms —mp)
3 3 1 p2 2 281)S 2 2 3 . 3

( A4)

—6(mp-m, +m, —mp) mp]+ ~ ~ ~ . (A5)3 3 2

Equation (A5) is valid if I m(t') —mp I «mp, while Eq. (A3) holds for Im(t') —m, I «m„and Eq. (A4) for
I m(t') —ms I «ms, The results for the nonequilibrium relaxation time rzz[Eq. (20)] are

1 1 m1 m2 m0 m 1 m1- ms mo ms+, 1+ ' ln + 3 1+ ln3m1-1 3m2-1 m1-mQ m1 —m2 3ms-1 m1-mQ m1™3]
(A6)

for m 0 & m2 y
while for m 0 ( m2 we have

1 1 ms- m2 mQ- m2'I, 1,1' ms m1 mQ- m7'z= 2 + 2 1+ ln ~+ ~ i
1+ ln3ms-1 3m2-1 ms-mo ms-m2) 3ms-1 ( ms-mo m3 m1

(A7)

z.
lz reduces to the appropriate equilibrium relaxation time [the first term in Eq. (A7) or (A6), respectively],

if we proceed to the limit mQ-m, or mQ-ms, respectively.
Consider next the case h=hP, where nz, =me. Integration of Eq. (Al) yields for mp&m,

and for m0(m,

m(t') —mz,
( ) (

mp-ml m(t') —ms me-rnl
mp ml m, —ms mp —ms m(t') —ml

(A8)

(t ) —m, (t')-m, '„(t')—,—,
)4l t') =— = exp —t'(ml —me

mQ ms mQ- m1 m(t') —mz mp-ml
(A9)
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The large-time approximations yield for Eq. (A8)

P(t') — [t'(me-m, ) (m, -m, )] ',
and for Eq. (A9)

(Alo)

P(t') =
' exp[- t'(m, —m2) ] exp„mo-m~ mo- mg ] (All)

(A12)

In the case h &h* one finds from Eq. (56) the large-time approximation

The short-time approximation is still given by Eq. (A5). Note that for m2&m1 we have an exceptional case
of "slow" relaxation, z'zz [Eq. (20)] does not exist. For m 2& m „zzz is given by

m&-m3 m~-mo ~

2 2 1/2
Q(t') =, , exp ' arctan 2 —arctan '

~
exp[- t' (3m, —1)] .

(mo y) +z z z z ]
In the regime of long-living intermediate states y, the short-time approximation of Eq. (A5) is rather
poor, of course, and better replaced by some exponential relaxation towards the metastable state

(A13)

&(t, )
y-m2, m2-y, -z12.2-11 (A14)
mo-m3 mo-me

which is also easily derived from Eq. (56) for t (3m2 —1) 1. Integrating Eq. (56) from m2 to m2 yields the
relaxation tin. e

1 p —m3
2

y —ms mo-y
VB 2 z arctan ' + arctar. + ' arctar. ' + arctan . (A15)

3ms —1 mo-me z z z
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