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We report the numerical study using Wilson's g = 0 approximate renorinalization-group recursion
formula, of a continuous-spin gener~b~~tion of the three-component Potts model. Previous numerical
studies, based on series expansions of the partition function, have indicated strongly that the model has
a phase transition of second order. This is in conflict with Landau theory which predicts that the
transition be of first order. We find, in agreement with Landau theory, that our model exhibits a
6rstwrder phase transition having finite zero-field spontaneous magnetization at the transition point.

INTRODUCTION

We report the numerical study, using Wilson's
g = 0 approximate renormalization-group recursion
formula, ' of a continuous-spin generalization of the
Potts three-component generalized Ising model. '
The problem is of interest in that previous numeri-
cal studies of the model, based on high- and low-
temperature series expansions of the partition func-
tion, indicate that the model most probably has a
phase transition of second order. This is in con-
flict with the Landau theory, which requires that
it be of first order. We find, in agreement with
Landau theory, that our model exhibits a first-or-
der phase transition having finite zero-field spon-
taneous magnetization at the transition point

The model, as first proposed by Potts, is one of
a general class of lattice models in which each lat-
tice site can be occupied by any one of q different
atoms having nearest- neighbor interaction energy
fp between like atoms and energy Qi & fo between un-
like atoms. The three-component Potts model is
equivalent to a lattice spin system in which the spin
at each lattice site is a two-dimensional vector
which can point in three symmetrically placed di-
rections, as in Fig. 1. The nearest-neighbor inter-
action energy between sites i and j can then be writ-
ten
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For the two-dimensional square lattice, Potts was
able to derive a dual transformation ' relating the
partition function at high and low temperatures and
consequently determine a unique value for the crit
ical temperature, should one exist. This class of
multicomponent models was also proposed indepA.'n-
dently by Kihara, Midzuno, and Shizume, ' who
studied the nature of the critical point by means of
a low-temperature series expansion of the partition
function. Their study indicated that the transition
was probably second order, although their analysis
did not allow them to reach a definite conclusion.
The three-component Potts model was studied more

To apply Wilson's recursion formula' we gener-
alize this model to continuous spin at each lattice
site by replacing the discrete spin distribution by
the threefold symmetric continuous probability dis-
tribution e ~~ ~, where

P[s]=a(s, +s~)+b(s, +s~) +c(s, —3s,sz) . (2)

For a&0, b &0, and ca0, we see that this distribu-
tion has three symmetrically placed maxima which
break the two-dimensional rotational symmetry
so as to emphasize the spin-direction choices of
the discrete Potts model. Different values of the
coefficient e allow one to interpolate smoothly be-
tween the symmetric XY model and the discrete
Potts model in the same manner as Wilson's con-
tinuous spin interpolation between the Gaussian
and Ising models. ' By rewriting the interaction
term E,&

as ——,'J[s, + s& —(q- sj) ], which introduces
the square of a (discrete) gradient, we can write
the partition function for our model as a functional
integral over the continuous spin variable s(x):

Z= $ exp j- f P'[s(x)]- ,'Ef [Vs(x)] 3—,(3)
)f(f) }

where
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FIG. 1. The three pos-
sible spin orientations of
the three-component Potts
model.

recently in two dimensions by Straley and Fisher,
extending the analysis of Kihara et al. to include
interaction with nonzero external fields. Their
study, although not conclusive, also indicated
strongly that the phase transition was of second or-
der; hence the impetus to study the model using
renorm alization- group techniques.

THEORY AND CALCULATIONS
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relate the Hamiltonian for a system on a lattice
with spacing L to a physically equivalent Hamilto-
nian for lattice spacing 21.. For calculational con-
venience the recursion formulas are written for a
"reduced" Hamiltonian rescaled to a lattice with
unit lattice spacing and written in terms of a scaled
spin variable representable, qualitatively speak-
ing, by its values on a lattice with unit spacing.
The recursion formula is

Q&, &(y) = —2 [lnf&(2 ~y) —lnf&(0)],

FIG. 2. Free energy F(T, M~) vs magnetization M~ for
values of A(T) &A*, A(T) =A~, and A(T) &A*.

P'[s (x)]=o'(T)[s,(x)+ sz(x)]+ b[s, (x)+s, (x)]

+c [s',(x)- 3s, (x}sz'(x}], (4)

and a'(T)=a-Zd, K= J/ksT, and fr means f dx.
The interaction is now in a form where we can use
Wilson's recursion formula to study the critical be-
havior.

Before doing so it is instructive to study our
model in the context of the Landau theory of phase
transitions. ~ We assume that we can expand the
free energy F as a power series in the magnetiza-
tion M which exhibits the same symmetry as our
original spin probability distribution. Thus

F(T,M ) = A (T)(M, + M2) + B(M, + M ~
~}

+ C(Mi —3M'~) . (5)

We see immediately that, according to Landau's
theory, the presence of the nonzero third-order
term implies that the transition must be first order.
This is because variation of the temperature param-
eter A(T) can produce only a discontinuous break-
ing of the symmetry from the disordered. to the
ordered phase. This is illustrated in Fig. 2, where
we have plotted F(T,M, ) vs M, for different values
of A(T) for B &0, C& 0. We see that for a certain
value A(T) =A* the spontaneous magnetization,
which is determined by minimizing the free energy,
changes discontinuously from zero to a finite value,
MI)', due to the presence of the CM', term in the free
energy. Hence Landau's theory leads us to expect
our model to have a first-order transition, in con-
trast to our expectations based on the numerical
studies of the discrete Potts model described above.

For our model the renormalization group pro-
vides a definite answer. We recall that the recur-
sion formulas, as derived and discussed in Ref. 1,

where Q„,(y) is the dimensionless rescaled form
of P...[s], and

&&(z)=J dyexp[-y'- 2Ql(y+z)- 2 Ql(- y+z)] .
(7)

Were we to start with our original Hamiltonian de-
fined on a lattice with unit spacing, after l iterations
of the recursion formulas the effective distribution
function P, would be defined on a lattice with spac-
ing 2'. From Ref. 1 we see that it is related to our
scaled distribution function, Q, by the relation

P, [s]=2 "(oQ,[(Kpg2~}"'2'"""s]
where the scale factors pp and & are defined in
Ref. 1, and the variable s is not allowed to have
fluctuations over a domain of size less than 2'.
We will find this relation useful when we analyze
our numerical results.

The equations were solved numerically for d =3
for the initial function

QO(y} ro(y1+y2)+ 0(yi+y2) + 0(y1 3 132) ( )

To preserve the symmetry of the model the calcula-
tions were performed on a two-dimensional mesh
of equilateral triangles. The mesh spacing was
0.4. The function Q, (y) was calculated on a hexag-
onally shaped domain (see Fig. 3) whose size was
varied to follow the non-fixed-point behavior of the
function. The domain was chosen so as to include
all y for which Q, (y)&250. The y integration was
calculated over a hexagonal domain of radius 4. 8.
The integrals were calculated by means of the hex-
agonal seven-point integration formulae described
in the Appendix. The values of Q„,(y) between the
mesh points were calculated by linear interpolation
among the values of Q„,(y} at the three vertices of
the surrounding equilateral triangle. All calcula-
tions were performed using double-precision arith-
metic.

Starting from the initial function of Eq. {9}with
up set at 0. 1 and wp set at —0. 1, the parameter rp
was varied in an attempt to locate a fixed point of
the recursion formulas. No fixed point was found.
Instead we observed the transition illustrated in
Figs. 4(a), 4(b), and 4(c), where we show two suc-
cessive iterations of Q, (y, ) vs y, for values of ro
greater than, less than, and equal to the transition
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FIG. 3. Hexagonal do-
main of Qz(y) used in the
numerical analysis.

Qf'(yo)e 0 reflect the presence of transient terms
which enter through higher-order corrections to the
saddle-point integral; they become negligible as l
becomes large.

The evaluation of the spontaneous magnetization
now becomes trivial, for in the absence of fluctua-
tions we can use Landau theory on P, [s], and the
magnetization is then simply the most probable spin

point r*. The values of Q, (y) for y not in one of the
three symmetry-breaking directions became, in
general, large and positive for large l for all ro,
increasing in value with each iteration. The value
of r~ was found to be approximately —0.484188.
For values of ro &r~ the function Q, (y) for large l
tended to become Gaussian, as expected for the
high-temperature disordered phase. '

At the transition point ro=r*, the transition
function Qf'(y) exhibits three symmetrically placed
minima which compete with the minimum at the ori-
gin in determining the most probable spin orienta-
tion. With successive iterations, for large l, the
positions of the minima move further away from
the origin while the function itself rises increasing-
ly sharply about the minima. The narrowing of the
minima reduces the fluctuations in the spin variable,
as they are then governed by the widths of the mini-
ma of the function Q, (+y+z) in Kq. ("I) rather than
by the -y term, which originated from the nearest-
neighbor interactions. We have thus iterated the
initial Hamiltonian to a lattice with spacing exceeding
the correlation length. The recursion formulas can
now be solved for the behavior of Q, (y) vs l in the
neighborhood of a minimum by the method of saddle-
point integration. ' We get
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TABLE I. Position and magnitude of the symmetry-
breaking minimum of Q)(y) vs E compared with the posi-
tion of the minimum on the unscaled lattice.

yo

2. 0
2.4
2. 8
2. 8
4. 0
5.6
8. 0

11.2

—1.34
—l.49
—1.56
—1.05
-0.625
—0. 895
—0.247
—0. 120

2-zbt2-i)
yo

1.4
1.2
1.1
0. 70
0. 71
0.70
0.71
0.70

Ql+l(y) =2'Qi(yo)+ 2C'(yo) (y - 2'" 'y, )', (lO)

where yo is the position of the minimum of Q, (y).
Comparing the above equation with Eq. (8) we see
that the position of the minimum remains stationary
when evaluated for the unscaled distribution function
P, [~]. This is indeed the case for our calculated
function Qf'(y), as is shown in Table I. The values

(b)
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FIG. 4. (a) Two successive iterations of Qz(yf) vs yf
for ro&r*. (b) Two successive iterations of Qz(yf) vs yf
for ro=r~. (c) Two successive iterations of Qz(yf) vs yf
for ro&r*.
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TABLE II. Scaled magnetization M*(wo)/(Kpo/2~)
for three values of the symmetry-breaking parameter coo.

TABLE III. Integration weights gg; for the domain
points (g&, y~) of the seven-point integration formula.

ZOp

0.01
0. 05
0.10

JIP'(duo)/(Kpo/2 &v)i

0. 019
0.48
0. 70

(0, 0)
(+)a, +gaA)

(+a, 0)

kg

21/36
5/72
5/72

value scaled back to the original system size. By
adding a small external magnetic field to break the
symmetry of the system, we can make any one of
the three symmetric minima the most probable.
The magnitude of the spontaneous magnetization can
be read off from Table I as M~ = 0. VO(Kpo/2&@)'~z.

The magnetization of the low'-temperature phase
can be analyzed in the same manner, the only change
from the above being that Q, (y, ) & 0 rather than = 0
in Eq. (10). The spontaneous magnetization is ob-
served to increase with decreasing temperature as
expected. It mill not be discussed further here.

The spontaneous magnetization at the transition
point was also calculated for two other values of the
symmetry-breaking parameter, zoo= —0.05 and
—0.01. The results, as summarized ip Table II,
allow us to infer that the spontaneous magnetization
varies continuously from zero as a function of the
symmetry-breaking parameter:

i(f *(w,) o-. (wc)' (11)

where 6~ is approximately 0.56. Thus the phase
transition appears to be of first order for all zoox0.

Although we have demonstrated that the phase
transition of our model is first order, one may still
wish to question whether it is physically equivalent
to the Potts model. We have also examined contin-
uous spin distributions with the alternate nonanalyt-
ic form

P'Is]= (A- Bcos3())(szt+szz)+ C(sz, +szz)z, (12)

8 being the angle of s with respect to the s& axis,
which allows one to continucwsly break the symme-
try away from the origin by variation of A. A dis-

continuous first-order transition was still obtained
from the recursion formulas, indicating that the
nature of the transition is a general feature of sys-
tems with threefold symmetry. We also examined
our original model for d = 4 using Wilson's recur-
sion formula, and for d = 2 using the recursion for-
mula of Baker' with his parameter g arbitrarily
set equal to —,'. ' In both cases the transition proved
to be of first order, indicating its generality with
respect to dimensionality. Thus the Potts-model
transition, within the context of the approximate
g = 0 renormalization- group recursion formulas,
is found generally to be of first order. Whether
this conclusion will be changed by an exact renor-
malization-group analysis is an open question. '3
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APPENDIX

Formula for the seven-point integration over a
hexagonal domain H of radius h:

1
f(x,y)dx dy = g wg(x&, y&)+R,

H iwi

where the weights w, are given for the points (x„
y, ) in Table III, and R = O(lf').
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