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This paper presents an extension of %'ilson s renormalization-group calculation of Ising-model critical
exponents to include calculation of the critical exponent q. New recursion formulas are derived using the
simplest set of consistent approximations which allow a nonzero q. They are intended to demonstrate,

qualitatively, how nonzero values for q are consistent with the renormalization-group approach; they do not
represent systematic, quantitative improvements to Wilson s earlier calculation of the exponents v and y.
The equations are solved both by e expansion about four dimensions and by numerical integration in three
dimensions. To order e~ we obtain q = 0.05c2. Numerical results in three dimension are q = 0.058,
v = 0.588, and y = 1.14. The relation y = (2—q) pis confirmed.

I. INTRODUCTION

In a recent series of papers~'~ %ilson has devel-
oped the x'enormalization-group approach as a pow-
erful tool for understanding critical phenomena. In
particular he has derived and solved recursion for-
mulas' which represent the qualitative behavior of
the renormalization-group transformation on a gen-
eralization of the Ising-model ferromagnet. The
model Hamiltonian used has the Landau-Ginsberg
form

K=- f P(s(x))- ,'E f [vs(x)]', — (1.1)

where Jr means f d'x, K is a constant, and P(s(x))
is a function of the continuous spin variable s(x).
Using the recursion formulas, Wilson calculates
the critical exyonents v and y in impressive agree-
ment with numerical calculations based on high-
tempex'ature sex'les expansions. However y

ap-
yroximations involved in his derivation of the re-
cursion formulas restxict the value of the exponent

g to be zero, presenting the interesting question of
whether q would be different than zero in a more
accux'ate derivation of the recursion formulas.

In this paper I extend Vfilson's renormalization-
group calculation of Ising- model critical exponents
to include calculation of the critical exponent g.
New recursion formulas are derived using the sim-
plest consistent set of approximations which allow
for a nonzero g. They are intended to demonstrate,
qualitatively, how nonzero values for g are consis-
tent with the x'enormalization-group approach; they
do not repx esent systematic quantitative improve-
ments to Vfilson's earlier calculations of the expo-
nents v and y.

The value for q determined by these formulas in
three dimensions is q = 0.058, which is in quite
good agreement with the numerical result g= 0.0565
determined from conventional high-temperature-
expansion methods. The exponent relation y = (2 - q) v

is also verified, and the exponents v and y are

computed» g1v1ng 1Q three d1nlens1ons P = 0, 588'
y= 1.14, which disagree with the high-temperature-
expansion results~ (v=0. 643, y= 1.25) but are con-
sistent with the qualitative natux'e of the equations.

The equations are derived as a correction to
Wilson's eaxlier recursion formula which restxict-
ed the value of q to be zero because of approxima-
tions made in i.ts derivation. The approximations
arose in the course of functionally integrating out
from the partition function for Eg. (1.1) the high-
momentum components of the spin variable s(x) so
as to define an equivalent effective interaction in
terms of the low-momentum components alone.
We shall see laters that the approximation that re-
stricted the value of q to be zero was the replace-
ment within a phase-space cell of the slowly vary-
ing, low-momenta spin variable [s'(x/2) in Wilson's
scaled notation] by its value at the center of the
cell, s'(xo/2). Instead, we make a Taylor-series
expansion of s'(x/2) about xo/2,

s '(x/2) = s '(xo/2) + vs '(x0/2) ~ (x —xo)

+-'v v s'(xo/2)(R-xo) (x-xa) + ~ ~ ~, (1.2)

and expand P(s'(x/2)) about s'(xa/2) to order [Vs'
x (xe/2)]3 or [V~s '(xo/2)]. This expansion generates
new terms in the recursion formulas contributing
to the [Vs(x)] part of the Hamiltonian. It is these
terms which produce a nonzero value for q.

A consistent treatment of the new terms requires
a larger space of Hamiltonians of the form

X= —f.P(s(x))- -,'K f.R(s (x))[Vs(x)]~,

where B(s(x)) is an arbitrary function of s(x). Then
the new recursion formulas can be written in the
following form. Let

1,(s) = f „" dZ p[e-xy'W, ( ) s,'q, (y+z—) ——,'q, (-y+s)]—
(1.4)

and define the "expectation value"
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{P",(z))-=[I,(z)] ' f "
„dy[-,'P, (y+z)

+ 'Fr—( y+-z)]" exp[' ' '] (1 5)

where [ ~ ~ ] represents the expression in brackets
in the previous equation, and Q, (y) and W, (y) are
dimensionless forms of the functions Pr(s(x)) and

R, (s(x)) written in terms of a scaled spin variable.
Then

Q. ..(y) = —2 [lnlr(2 ~r~nry) -lnI, (0)], (1.6)

( ) s(, (((dQr(s)) d(), (z)) ')

—~c('r(Wr(z)} r

z= 2 Q)p (1.8)

to order [vs'(xo/2)]z, where C~ is a constant (de-
pending on dimension), and nr is determined by
normalizing Wr, r(0) = 1. Since the fluctuation term
(((dQ, (z)/dz) -dQr(z)/dz)$ is zero for z =0, ' the
normalization condition determining n& can be writ-
ten

Wr. &(0)=-.'n'r( Wr(0)} = .
The critical point is then determined by finding the
fixed point Q, (y), W, (y), and &&(, of the recursion
formulas. The exponent g is related to the fixed-
point value n, according to the formula n, = 2 '
Hence r» will be greater than zero if (W,(0)}& 1.

These formulas will be derived and discussed in
subsequent sections of this paper. However, we
remark at this time that the above equations will
reduce to Wilson's recursion formulas if one ne-
glects the contribution from fluctuations in the de-
rivative of the probability distribution

dQ) z dQ) z

II. ANALYSIS OF THE PARTITION FUNCTION

A. Derivation of the Recursion Formulas

We wish to evaluate the partition function

Z= I exp{ —f P(s(x)) ——,'K f.R(s(x))[vs(x)]',
(s(x) l

2. 1
where j' », &,-&» stands for functional integration over
the functional variable s(x). Consider the term f
P(s(x)). Using the phase-space-cell analysis of
Wilson we write

f-z (2. 2)
x &box m

and decompose the spin variable in the standard
separation of high- and low-frequency components

(2. 3)s(x) =Z()-, (x)s-, +2 " '&rs'(x/2) .
m

Then using the expansion described in Sec. I, we
can approximate the P integral as

lt is these fluctuations, to order [Vs'(xo/2)], that
drive g &0.

In Sec. II I present my derivation of the new re-
cursion formulas and discuss how the exponents
are determined. I verify the relation y= (2-r»)v in

the context of the equations. In Sec. III I study the
equations using two approaches. Using analytic c
expansion about dimensionality four 1 show the ex-
istence of a nontrivial fixed point at which g = 0.05
E, to order a . The recursion formulas are also
solved by numerical integration in three dimen-
sions, the results being stated at the beginning of
this introduction. Section IV is the concluding dis-
cussion.

r P(s(x)) = ,'rrr'[P(u)'r s"0+—u-)+P(-u) s-0+u-)]
x box m

+2'-'-'&rz n V'"—(e'"s-,+u-}+ l'-d—(-~'"s.-o+u-) [v's'(F2)l

dP dP+2 &&&
V'

z (u)' s~o+u~)+ l'
d z ( -u)'"s~&)+u ) [»'(xo/2)]',

ds ds
(2 4)

where u- = 2 ~r3 ns'(xo/2), 8 and g"o(x) is approxi-
mated as in Fig. 1, taking the value se over half
the box and —so ~ over the other half, the box hav-
ing volume sy . The terms V' correspond to the
volume integrals of the expansion variable (x -xo)zr
taken over the regions where |»-0 (x) = a rrr . They
will be evaluated later. The expansion term linear
in Vs'(Xz/2} ~ (x -xo}vanishes upon integration over
the box, and hence is absent from Eq. (2. 4}.

The R(s(x)) integral can be expanded in the same
way to generate higher-order corrections. How-
ever, inasmuch as we assume departure of R(s(x))
from 1 will be small [already of order [vs'(xo/2}]
relative to P(s(x)) terms], we choose to ignore
these corrections. We may then write the gradi-
ent term as

R(s(x)) [vs(x)]'~ Z(p, R(u-)sg, ,+ 2~ ' (x'u) '
15
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1/2x [R(w "s-e+u-)+R(-w'jzsae+u-}]'

where

x [vs'(ifJ2))'), (2. 5)

p, = f.[vs) v(x)]',

independent of m.
Following Wilson' s analysis, coupling terms

from different boxes (proportional to s-()s;e with
m 22n) have been neglected. We have also assumed,
as in Fig. 1, that contributions of Vgp(x) to various
integrands is appreciably nonzero only when

Q(y) =w P((2w/Kp ) y)

W(y) = R((2w/Kp, )'I'y),
our integration becomes

(2. 7)

(2.6)

)I) c(x)= 0. () Thus we can approximate [V It) c(x )] by

the 6 function ps6'+ (x —x'), where +e(x') = 0; hence
the term psR(u-). There are no cross terms pro-
portional to Vs'(xz/2) V[}) e(x )s-c as these have van-
ished through the x integration.

We can now do the functional integration s-o.
Making the substitutions

y- = (Kp, /2)'I 's-(), z- = (Kp, /2w)'/ u-, (2. 6)

40

M(z) =] dy exp -y W(z) ——,Q(y+z) ——,'Q(-y+z) —2' ' a(Kpsw) V' —Q(y+z)+ V —Q(-y+z) [V s'(~/2)]
dy dy

d d2—2 ~ s gsKps V' sQ(y+z)+ V s Q(-y+z) [Vs (~/2)]
dy2 dy

—K pKw [W(S+9)+W(-ssz)]['irs(x/2)]I . (2. 9)

Then the partition function is
) se

=II ii
II 9,;, II (2/, l (,-.)I (2 o)

m 1 =1 .' m

We consider all terms in [Vss'(x /2)] or [Vs'(x /2)]s
small and expand the exponential to that order in
those terms. Then using Eqs. (1.4) and (1.5) we

can w rite

SS(z)=l(z)I1 —2' ' p(Kp w) 9

x [v's '(Q/2)]
dz

2 s-t~sK PKV d Q(z)
2 dz

where V = V '+ V, and we have used the fact that

Q(y) and W(y) are even functions.
Following Wilson we define a new interaction

such that
o

ZocII II dss, e"' .
m lwo

(2. 12)

(2. 18)
Then

X, =2 In[M(z-)/I(0)]

making the standard separation of I(0). We want

K& to be of the same form as /K) so we expand the
logarithm to order [Vas'(x /2)] or [Vs'(x/2)]s in
those terms, and convert the Q back to J;. We
show in Appendix A that, to order Vss(x), we may
replace

+ w' ( W(z)) [xs'(Ks/2)]9 I, (2. 11) Zf(s(x-/2))- 24wff(s(x)} .
m

x
(2. 14)

m o
( x )

!O

'/2 !
I

I

!

Center of
Box

FIG. 1. Approximation of the position-space wave

packet Qmp(x) within the position-space box m.

+2"9'll 9', sw'(W(z)) [xs'(x)]sI,

)

(2. 15)

z = (Kp, /2&v) 2 ] us'(x) . (2. 16

Integrating the [V s'(x)] term by parts [see Ap-
pendix A, Eq. (A8}], we see that we can now write

Thus, substituting —', V",/s s'(x/2) for Vs'(xe/2) we

can write

~= 2'w [lnI(z) —ln I(0)]
x

tO

ZQ(s))[xs ()]
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Xq= - f.Pq[s'(x)] —zK f„R&(s'(x))[Vs'(x)]z,

(2. IV)where

Pg (s '(x)}= -2 go[in I(z) —Inf(0)],

~ i* (q~=-"c ((("~(*') "~(*')')

(2. 18)

——,'o. '(W(z)&, (2. 19)

W, (y) = ft, ((2s/Kp, )'~'y) (2. 22)

and allow independent scale factors a, for each E, to
be fixed by the requirement W„,(0) =1. Then we
obtain the recursion formulas, Eqs. (l.4)-(l. 8),
stated in the Introduction. The quantity C~, which
is dimensionless, is evaluated in Appendix B.

B. Exponent Relations

To determine the critical exponents we look at
the spin-spin correlation function. Its Fourier
transform g(k) has the approximate form"

4

g(k) = oo. ~ ~ n, ~(Kp~/2) G&(0) (2. 23)

for k lying in the lth momentum shell, i. e. , l kl - 2 '.
G, (z) is defined as

G, (z)=[M, (z)]-' f"dyy'exp j "), (2. 24)

where the argument of the exponential can be read
from Eq. (2. 9}defining M, (z).

By appropriate choice of Qo(y) and Wo(y) we ex-
pect to see critical behavior manifest in a fixed
point of the recursion formulas:

Q&(y)- Q.(y) %(y)- W.(y),
after decay of the initial transients corresponding
to the "irrelevant variables. "~~ Therefore, at the
critical temperature g(k) will have the form

g(k) = nzo~ ~ ~ o.,'(n,')' ' '(Kp, /2) 'G, (0), (2. 25)

where n~~ ~ ~ ~ n, represents the initial transient de-
cay tothefixedpoint. Inthe limit of large l, small 0,
we can neglect the departure of the transient terms
from N, and write

lim g(k)~ o.~ (Kp, /2) 'G, (0) . (2. 28)
FT~ 0

The critical exponent g is defined by the relation

lim g(k)i~ „„~ (2. 2V)
0~0

This in turn implies a, =2

(2. 20)

We now have ~ in the same form as & and can set
up recursion formulas to carry out the integrations
for each momentum shell. Letting 3C=Ko we define

Q, {y)= cu 'Pg ((2so/Kp, }'~ y ), (2. 21)

%,~ (y) = ho', (%(2 o', y)& = ao-'r (3 1)

determines the trivial fixed point W,(y}=1, n, =2.
The recursion formula for Q, (y) now has Wilson's
form and determines the trivial fixed point Q, (y)
= 0, as discussed in detail in Wilson's paper.

More interesting are small departures from the
Gaussian model. It can be shown that functions of
the form

Q( (y) = rgy + X)y, A.g
&& rg

W, (y)=1+s,y, s, -O(X~z)

(3 2)

(3.3)

are preserved by the recursion formulas, provided
one calculates only to order A, Using the method
of z expansion about dimension four, ~ d= 4 —e, we
can write the recursion formulas, to order c, as

r...=4[r, -. 3x, —3x, r, + as, —Ws],8 (3 4)

If we are above the critical temperature, Q, (y)
will diverge away from Q, (y) as we integrate out
momenta smaller than the inverse correlation
length $ . Then g(k) will have the form

g(»=~a" o~(~.')'z''~f .i "of i(Kp./2)'G, (0)
(2. 28)

The o, for l& l„reflect the di-
vergence of Q, (y) away from the fixed point. Since
Q, (y) becomes Gaussian for large I, T& T„u, ap-
proaches its Gaussian value 2 required by the norm-
alization condition. Consequently, for large l,
G, (0) behaves like 2z"" ".Thus, for small l kl,

g(k)~ nz'z = (z " . (2. 28)

As we approach the critical temperature g diverges
as (K K,}",-so

g(y& (K-K,)-"-""„fk/ g-' . (2. 30)

Since the magnetic susceptibility y is the correla-
tion function g(k) evaluated at k = 0, we have

q- (K —K,)-"-"'"

The divergence of X at the critical temperature is
usually written y- (K-K,) ", so we have the expo-
nent relation y=(2 —q)v. ~

The exponent v is determined from the linearized
recursion formulas as discussed by Wilson. It
will not be discussed here.

III. SOLUTION OF THE RECURSION FORMULAS

A. e Expansion

We now look at solutions to the recursion formu-
las. For the Gaussian model, Qo(y) = r&pz, Wo(y)
= 1, we see immediately that the fluctuation term

d@0 z dgo z

is zero, and hence the relation
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"i~i = (1+eln2)X~ —9"»
j. 2

s)~g = gs) + 9C4A)

l 21 4Ql+~Sl ~

(3.5)

(3.6)

(3.7)

r, =-f e ln 2+O(f ),
g=~z ln 2+O(~'),

s, =~C, e ln 2+O(E ),
q = pz- C4 tz ln 2+0 (&3) .

(3.8)

(3.9)

(3.10)

(3.11)

We also have the trivial Gaussian fixed point:

where the last equation represents the normaliza-
tion requirement W„&(0)= 1.

From Eqs. (3.4)-(3. V) we see that, to order e,
the behavior of s, is controlled by the behavior of

Starting from the arbitrary (small) so, s, will
approach the fixed point s, determined by the
asymptotic behavior ~, X,. We see from Eq. (3. 6)
that in the absence of the driving term the variable
s, will decrease to zero with successive iterations
of the recursion formulas. Hence so is an "irrele-
vant variable" with respect to the Gaussian fixed
point in the sense of Kadanoff. ' Therefore once
Q& 0 and s() are arbitrarily specified, we need only
fix ro at its critical value ro= ro(XO, so) in order to
reach the nontrivial fixed point as l- . So, in
zero magnetic field, we still need specify only one
external condition (the temperature) in order to see
critical behavior.

The normalization condition implies g acquires
a nonzero value first in order &2. Writing 0.2, = 22 "&

=4(1 -q, ln2) we can then solve the recursion for-
mulas to determine the nontrivial fixed point:

vestigation of the asymptotic behavior of the recur-
sion formulas

p, din 2
Q! ) y l (ld1 2 1 )

—2(ln 2 —ln a&)
W, (z)-z", m, = (,„), (3. 14)

(3.15)

though the extrapolated values were of little impor-
tance as they typically involved values Q, (z) & 100,
The y integration was calculated neglecting the re-
gion lyl&5. 0. The integrals were calculated by
means of Simpson's rule'~ and the new Q„,(y) and
W„,(y) were determined using quadratic interpola-
tion between the mesh points. All calculations
were performed using double-precision arithmetic.

The initial functions were chosen

Qo(y) =roy + Roy

Wo(y) = 1

(3.16)

(3.1V)

c = 0.45321 (3.18)

'
Q(y)

with Xo fixed at 0.1, and r 0 varied to locate the crit-
ical point. The critical value r, was easily located
by observing different critical behavior of Q, (y)
for large l whether xo was above or below rc. This
behavior is illustrated in Fig. 2 where the two
types of noncritical behavior are compared with
Q, (y). The value r, was determined by specifying
ro with increasing precision as the number of iter-
ations increased so as to keep Q~(y) from diverging
from Q, (y) via the noncritical behavior previously
mentioned. The value for ~c was found to be

c=b=s, =g=0 (3.12)
ro = rc

Substituting for numerical factors we find, to order
g2

g=0. 050 f' (3.13)

Here we have qualitative agreement with exact re-
sults to order s which give q = $z . ' 6 More than
qualitative agreement cannot be expected. The oth-
er exponents, v and y, are unchanged, to order E,
from the results of Wilson and Fisher's analysis
of the p= 0 recursion formulas. They will not be
discussed further here.

I
/

/

I
I

I
I

ro( rc

B. Numerical Results

In three dimensions the non-Gaussian critical be-
havior was also calculated numerically from the re-
cursion formulas. The functions Q&(z) and Wq(z)
were calculated on a uniformly spaced mesh of
points with spacing 0. 1 from z = 0 to z = 5. Outside
of this range the functions were approximated witn
the simple power behavior derived by analytic in-

I"IG. 2. Qualitative large-L behavior of the function
Q&(y) vs y for values of ro& rc, ro=rc, and ro &rc.
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w (y)

—w, (y)

I I I I I

I 2 3 4 5

FIG. 3. Critical functions Qc(y) and W~(y) vs y com-
paredwith thefunctions Q~(y) and 8'~ (y).

The critical functions Q, (y) and W, (y) are plotted
in Fig. 3. The critical value of a~ = a, was found to
be

c= 1 ~ 960 (3.19)

which gives a value of g= 0.058. Numerical calcu-
lations based on high-temperature expansions of the
three-dimensional Ising model predict g = 0.056,
so we have impressive agreement with the calcula-
tions of this paper.

The critical exponent v was determined, as in
Wilson's paper, by observing the exponential
growth of the functions Qq(y) and W, (y) away from
their respective fixed points. The growth of both
Q, (y) and W&(y) could be fit to the same exponent
giving

v=0. 588,

y = (2 —g) v = 1.14

(3.20)

(3.21)
Numerical calculations based again on high-temper-
ature series expansions of the three-dimensional
Ising model predict values v=0. 643, y=1.25.
Wilson's previous calculation using the g= 0 recur-
sion formulas gives values v = 0. 609, y = 1.218. '
We see that our results do not give as good agree-
ment with numerical calculations as Wilson's.
However, they are fully consistent with expecta-
tions based on the qualitative nature of this deriva-
tion of the recursion formulas.

IV. CONCLUDING DISCUSSION

In this section we examine the qualitative fea-
tures of the recursion formulas that act to produce

z = 2~'~'
t (4 2)

which is plotted in Fig. 3, to compare with W, (y).
This provides the approximate bound g-0. 2 which
is reduced through the self-regulation of W&(y) to
the value obtained in the numerical calculation of
Sec. III. We see thus that g &0 is a natural feature
of the non-Gaussian fixed point, and that the renor-
malization-group approach illustrates a simple
mechanism for its occurrence.
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APPENDIX A

We wish to change from g- back to f~. Consider

2 ).f(s(x)) =
) f (s(x/2))

X

f[s(x"/2) + V, (~2) (x —x")
m xGm

t] &0. As the fluctuation term (((dQ, (z)/dz) —dQ, (z)/
dz)') is manifestly greater than zero, for z &0, for
non-Gaussian interactions its contribution to W&(y)
must be compensated by a decrease in a& from its
value of 2 in Ref. 1 in order that the equations have
a fixed point. This can be seen by considering the
normalization condition at the fixed point: W, (0)
= & a, (W, (0)). The contributions of the fluctuation
term serve to increase W, (z) relative to its value
of 1 at the origin. Thus the expectation value
(W, (0)) &1, since it is essentially a weighted aver-
age of W, (z) about its value at the origin. Hence
n, = 2(W, (0)) ~~2 will be less than 2.

The size of the fluctuation term determines the
size of p. Its contribution is regulated by the pres-
ence of W, (z) in the weight function used to deter-
mine the 'expectation value, " Eq. (1.5), and by n~,
which helps set the scale of variation of Q&(y) in the
recursion formulas. The effect of this regulation
is shown in Fig. 3, where we compare the fixed
point Q, (y) of Wilson's g=0 recursion formulas with

Q,(y). We see that the presence of W, (z) &1, g &0,
has acted to smooth the function Q, (y) making the
fluctuation contribution of its derivative smaller.

An approximate upper bound for g from Q, (y)
can be determined by computing

z (((&trt*)) &Q. t*) )')
(4. 1)
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+) pV~V&s(x"/2) (x -x")& (x -x)7))&+ . ], (Al)

+ — ~f (s(x"/2)) [Vs(x"/2)]'
V dzf

(A2)

We see ta Eeroth order

where x" is the center of the box m. As in the ex-
pansion of J& P(s(x)) this becomes

gx
w 'f(s(x"/2))+

2 d
(s(x"/2)) [V s(x/2)]

m

Zf(s(x J2)) =24w ~ f)(s(x))wJ (Ae)

Periodic boundary conditions make the surface term
vanish, and we have

sx =- z sx V+xdf ~ df
(A6)

Therefore, to orders [Vss(x)] or [V s(x)], we
have

Z /(s(x-/2)) = 1xf /(s(x)).

We therefore replace

(s(x-/2)) [Vlias(x"/2)]
m

(As)
APPENDIX B

The constant C„=wp4V is determined from the
following:

(al)

-2'w( —(s(x)}[ V's(x)], (A4)
J» ds

where 04 is the surface area of a unit sphere in d
dimensions:

(s(xJ2)) [V;I,s(xJ2)]'
m

d lgp=V "x-kk
X

(a2)

Consider

dz
—2~w'V „, (s(x})[Vs(x)]' . (A6}

X

(x(x)) IX'x(x)]= — V —(s(x))) ((x(x)d 2

ds ds

d2-2 w p (s(x)) [Vs(x)] (A5)ds

and have, to order V s(x) or [V s(x)]s,

Z f (x (xX/&) ) = 2 xf f (s (x))

zs x

where Q(k) = f; e'"'Q(x) and f„P (k) =1. So p~ is
approximately equal to the average of k over the
momentum shell 1 ~ 1%i~2,

24"'-1( d
2' 1) d+2

(as)

2V=fgesL(x -x()), (a4)

I' 1 dw-''t '4"'14
V= cos 8 r ' drdA=-(t

~d (d+2 04 ]

So
(a6)

Changing to spherical coordinates Ix- xo I =r, we
approximate the position-space region by a sphere
of volume w . Then

(s(x))Vs(x). (Av)
surface

2((x& 1 ds(2 )u a/((

(d+2) 2 -1 0 (2 1,)
(a6)
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