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We consider the Hubbard model for electron correlations in solids in the narrow-band regime where

the intra-atomic Coulomb repulsion is large compared to the bandwidth. A high-temperature pertubation

expansion in the bandwidth is performed to lowest order for the grand partition function. This
procedure is carried out both for oneWmensional systems, of interest for the tetracyanoquinodimethan

(TCNQ) charge-transfer salts, and for a thrce4imensional cubic lattice. Both the specific heat and
magnetic susceptibiTity are computed as functions of temperature and electron density.

INTRODUCTION

The Hubbard model for metallic magnetism and,
in general, for electron correlation in solids, has
been adopted by various authors as a satisfactory
model to describe the behavior of the charge-trans-
fer salts in which experiments indicate that corre-
lation effects may be dominant. In fact, these ma-
terials [e.g. tetracyanoquinodimethan (TCNQ) salts]
often crystallize in the form of linear chains of
closed-shell cations separated by stacks of molec-
ular anions with unparied electrons. The electrons
can transfer along the chains via g overlaps, thus
providing a possible physical realization of the
model described by the one-dimensional Hubbard
Hamiltonian, which can be written in its simplest
form as

H= U P n&,n„—f P (cJ,cg | + c c ) .
tea

Here U is the Coulomb repulsion that operates when
two electrons occupy the same orbital, t is the
electron transfer integral connecting states local-
ized on nearest-neighbor molecules, ct~ and c„
are, respectively, creation and annihilation opera. —

tors for an electron of spin 0 on the ith site, and

n„ is the number of electrons with spin 0 on the
ith site.

However, this model, although simple in form,
is not easy to handle mathematically even for a
linear chain and often one cannot obtain any exact
results but is obliged to resort to approximations.
There do exist a few exact solutions for infinite-
chain problems. Lieb and Wu obtained the ground-
state energy in an analytic form for the half-filled
case (one electron per site) and proved that the
ground state is both antiferromagnetic and insulat-
ing. Takahashi5 and Ovchinnikov calculated (also
for a half-filled band) the magnetic susceptibility

at zero temperature and some elementary excita-
tions, respectively. Their work has been subse-
quently extended to an arbitrarily filled system
by Shiba, ' who gave the ground-state energy and
the zero-temperature magnetic susceptibility,
and by Coll, who calculated some low-lying exci-
tations.

Unfortunately, no exact solution exists for the
finite-temperature properties of the Hubbard mod-
el, either arbitrarily filled or simply half-filled
(except for some special values of the parameters
f and U). ' On the other hand, these thermody-
namic properties have recently been the object of
an increasing interest because it is precisely the
thermal behavior that appears to be most remark-
able in the charge-transfer salts. As an example,
N-methylphenazinium (NMP) (TCNQ) exhibits a
"metal-insulator transition" which has been ob-
served by Epstein et al. and discussed within
the context of the Hubbard model.

Therefore it is quite natural that in an attempt
to interpret the available experimental results and
to make some significant predictions, various ap-
proximate approaches have been proposed. First
of all, it should be mentioned that Hubbard pre-
sented a treatment of the correlation effect in his
paper on the Mott transition. Basically, he applied
a modification of the coherent-potential approxi-
mation~4 8 (CPA) to this case. Although it is well
known' that in one-dimensional systems the CPA
is not a good approximation for the density of
states, Hubbard's work provides a useful frame-
work if only the gross features of the electronic
structure are important. This is certainly true
at high temperatures where Hubbard's approximate
theory can be used for a semiquantitative compari-
son with more accurate descriptions. Subsequently,
Shiba and Pincus'9 studied the half-filled Hubbard
model for linear chains and rings containing two
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to six atoms, by performing exact machine com-
putations. For these finite systems and for sever-
al values of the ratio U/t they calculated exactly
the specific heat, magnetic susceptibility, entropy,
internal energy, and some correlation functions.
The results obtained in this way indicated that
when U/t » 1 it is possible to distinguish two tem-
peratures ranges: a low-temperature region, in
which the short-range antiferromagnetic ordering
is dominant, and a high-temperature region, in
which the gradual formation of local moments
occurs around U/4k s(ks is the Boltzmann constant).
When U/t becomes smaller than 1, the two regions
tend to overlap and the thermal properties of the
model differ only slightly from those of the non-

interacting system. Following this work, Hone
and Pincus concentrated on the strongly correlat-
ed limit (U/t» 1) and studied the high-temperature
behavior, both static ard dynamic, of the half-filled
Hubbard model by carrying out a high-temperature
perturbation expansion in f/U and in t/keT (T is
the temperature). The results are in good agree-
ment with the exact calculations for finite linear
chains and although restricted to high tempera-
tures, they extend far enough to include the metal-
insulator transition.

In the present paper we generalize this analysis
to a system with an arbitrary concentration of
electrons. This generalization is motivated by our
concern with doped charge-transfer salts (CTS)
as well as with CTS which crystallize in chains
occupied with an average of less than one electron
per site (e.g. , one-quarter-filled band) such as
(quinolinium) (TCNQ)z. 3 With the same method we
also investigate the magnetic susceptibility of a
simple cubic lattice. This latter study relates to
the question of the conditions for ferromagnetism
in a simple tight-binding metal.

In Sec. II we review the high-temperature-ex-
pansion method and describe its application to our
problem. In Sec. III we present and discuss the
numerical results for the temperature dependence
of the specific heat and the magnetic susceptibility.
In Sec. IV we calculate the magnetic susceptibility
for a three-dimensional simple cubic lattice and
a brief discussion in Sec. V concludes this work.

II. HIGH-TEMPERATURE EXPANSION

We assume that in the Hamiltonian (1), f/U«1
and we consider the temperature region in which
t/ksT «1. With these restrictions our Hamiltonian
can be thought of as consisting of two terms:

H= Hp+H',

where Hp is the exactly soluble part,

Ha= Ugn(, n(,

and H is to be treated as a perturbation,

H =f Z(et&, c&,t,+c.c. } . (4)
f,e

It is shown in standard works on statistical me-
chanics that the grand partition function of a sys-
tem of interacting particles described by a Hamil-
tonian H=HO+H' is given (under rather general
conditions} by the infinite-order expansion

«) ,B

Z=e ~o 1+ -1" dr~ dy ~ ~ ~

n1 p &0

x I dT (H (Ti)„)( (T) '' ')) (T))), (5)
Jp

where S =1/ks T, f}0 is the thermodynamic poten-
tial for the unperturbed system, and ( )0 represents
an average over the grand canonical ensemble of
the unperturbed system, but using the correct
chemical potential. H (r) is the perturbative part
of the Hamiltonian which in the interaction picture
becomes

H'(v) =e'"OH'e '"o .
We shall now apply (5) to the Hubbard model.

Having made the strong-correlation and high-tem-
perature assumptions, we are allowed to truncate
the expansion for Z to the lowest-order term in w.

Further, by inspection of Eq. (4}, we notice that
the lowest-order nonvanishing term in t involves
the transfer of an electron from one site to a
nearest neighbor and then its return, i.e. , it is of
order t . Thus the grand partition function of our
system is reduced to

Z= e "0 (1 + f Ckt f Cra (H'(r, )H'(v(, ))o) . (7)

It is now easy to evaluate Z by considering all
possible electron occupancies of a pair of adjacent
sites and we obtain

PA=-lnZ=-~ lnzp+ - e "+e ' " coshPh
2(Pf) ' (), ev.s()~-

Pc '
e',

where 0 is the thermodynamic potential, N„ is the
number of sites in the chain, p, is the chemical
potential, zp is the site partition function

zp=1+2e "coshPh+e

and h = p.~B is the product of the Bohr magneton
and an external constant magnetic field B.

The next step is to evaluate p, . For the half-
filled band we have simply p, = —,'U, by particle-hole
symmetry. But for an arbitrarily filled band, p,

must be calculated as a function of the electron
density and temperature from the thermodynamic
relation
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80N= ——
JS,V, h

(10) where N is the number of electrons in the chain.
From (8) and (10) we obtain the equation

—[(P )~(l 3 ) 4(1- ) (Pt /U) ]- "+ [(Pt) ( + ) -2(1 — )(Pt /U) J
Zo Zo

(11)

2

cv =ks~ InZ
8

and the static magnetic susceptibility

2 80g=lim -N&p, ~
h»Q 8h

(12)

(13)

For particular values of the electron density p,
i.e. , for an almost empty band and for a quasi-
half-filled band, we have also derived approximate
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FIG. 1. Temperature dependence of specific heat in
the atomic limit (t = 0) for electron densities ranging
from 0. 5 to l.

where x = e~" and p is the electron density (p = N/N„).
We have solved Eq. (11) numerically for p= 0.1,
0.25, 0. 5, O. V5, O. S; and for t/U=O, Q, and

In this way we have obtained the temperature
dependence of the chemical potential p, (and thus
of the thermodynamic potential A) as a function of
the electron density and the correlation strength.
From these results it is straightforward to com-
pute the specific heat

algebraic expressions which comylement our de-
scription of the specific heat and the magnetic
susceptibility.

In Sec. III we present and discuss our results
for the temperature dependence of these thermo-
dynamic properties.

III. SPECIFIC HEAT AND MAGNETIC SUSCEPTIBILITY

Figures 1 —5 show the temperature dependence
of the specific heat for different electron densities,
from a quasiempty band to a half-filled band, and
for different ratios t/U (0, + —,'). We remind
the reader that, at least for large U/t, a peak
is expected in the specific heat at a tempera-
ture corresponding to the onset of aypreciable ther-
mal excitation of doubly occupied sites. For the
limiting case t = 0 this is simply the Schottky anom-
aly associated with the simple electronic spectrum
of two sharp levels separated by an energy U. This
general feature persists as the sharp levels broad-
en into bands for large U/t. In order to separate
the effects of changes in electron density and of
Coulomb correlation, we first consider the modi-
fication of this peak by changes in p for the atomic
limit (t = 0). In Figs. 1 and 4 we observe not only
the obvious decrease in height to be expected with
decreasing density, but also a shift of position
toward higher temperatures. This behavior per-
sists at very small densities (see Fig. 4) and, for
a nearly empty band (p= 0. 1), the peak occurs
roughly at T = U/2k swhile for the half-filled band
it occurs at a temperature slightly lower than
U/4k sThus a decrease in electron density re-
sults in an increase of the thermal energy required
to impose a. significant number of doubly occupied
sites. The effects of Coulomb correlation are
illustrated in Figs. 2, 3, and 5. If the band is
more than one-quarter filled (p= 1, O. S, 0.75)
the peak position changes, but only slightly, with
respect to the corresponding curves for the atomic
limit. An increase in the electron correlation,
however, corresponds to a lower peak in the half-
filled and nearly-half-filled cases, while for all
other cases the peak height increases with U/t.

More drastic is the effect of correlation at low
densities. Even for the quarter-filled band we
notice a progressive disaypearance of the peak
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So, even for low densities, we cannot expect to
see any appearance of the maximum in X. This
maximum corresponds to the low-temperature
peak in the specific heat; in the region where the
second peak of the specific heat was found, there
is only a gradual change of the Curie constant. For
very low electron densities p & 0.1 we again find
an algebraic solution,

0
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which may be related to the behavior of a Heisen-
berg antiferromagnet with exchange of the order
of 2tzp/U. In fact, for rather low temperatures,
i.e. , e~ » 1, this equation takes the form

x ~ P(l-e/T),

with

e = (2t /U)p.
FIG. 8. Magnetic susceptibility for t/U= ~8.

approximation 1-p «1 and is given by

X=N„pz P [1-(1-p) (I-4Pt'/U)-2Pt /UJ .
Although the validity of this expression is further
restricted by the condition (1-p} «ez" it is
apparent from it that we have a Curie-Weiss -type
susceptibility. The Weiss temperature has a value
8 = 2t p/U, which is in accord with a description
of the system in terms of Heisenberg Hamiltonian
with antiferromagnetic exchange constant = 2t p/U.

Next we turn our attention to lower electron
densities. First of all, it is useful to make ref-
erence to one of the few available exact results
concerning the susceptibility of the Hubbard model
at arbitrary density, i.e. , Ref. 7. In Fig. 4 of
Ref. 7 we notice that the zero-temperature mag-
netic susceptibility per spin for a given ratio t/U
increases sharply as the electron density is low-

We may finally remark that the decrease of the
susceptibility with the electron correlation is in
agreement with the calculations for finite chains
and rings.

IV. SIMPLE CUBIC LATTICE

So far we have considered only second-order
terms in t. To this order we take into account
only hopping to nearest neighbors and back so the
crystal structure enters only trivially through the
number of nearest neighbors. If we want to ex-
tend our considerations to a simple cubic lattice
to observe the effects of higher-order dimensional
topologies we must include terms of order t in
the evaluation of the expansion (5). We have no
terms of odd order in t because there are no closed
paths on the lattice with an odd number of near-
neighbor steps. The evaluation of A is rather
lengthy but straightforward As bef.ore we com-
pute the traces in a representation where n&, is
diagonal and obtain

pA/N„= lnzo+ (6/—z,)[(pt} + (pt) ] (x+x e ") cosh ph+ (12/z', ) (pt'/U) x'(1 —e ~)+ (2/z', ) (pt)'

&&(x coshph+4x cosh2ph+x cosh3ph+x'e z~cosh3ph+4x e cosh 2ph+x~e ~ cosh ph). (14)

Next we evaluate the chemical potential p(p, t/U,
P) from Eq. (10), a computation which in gen-
eral must again be done numerically. The mag-
netic susceptibility for arbitrary electron density

p can then be found from A by Eq. (13). The re-
sults for t/U=gand t/U=-', are shown in Figs.
9 and 10, respectively. On the other hand, for
low densitites we can solve Eq. (10) algebra-
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ically, as in the one-dimensional problem, and
we obtain

X= ttsN„pP (I--,'p [e a~+12(Pt'/U) (1 e-sc)

30-

2.7—

There are qualitative changes in the magnetic
properties of the system as the electron density
is varied. In fact, we can see some evidence for
a transition from antiferromagnetic to ferromag-
netic behavior with decreasing p, at sufficiently
low temperatures. This is to be expected from
the work of Nagaoka, who studied the ground
state of the nearly-half-filled band (I 1-pl «1)
Hubbard model for small t/U. In particular, he

found for the simple cubic lattice that the ground
state is ferromagnetic only under the (approximate)
condition

2t/U & 0.49(l-p)-0. 40(l-p) t (1-p «1).
(16)

This upper bound on t/U clearly increases ini-
tially with (1 —p). Nagaoka also gave arguments
to suggest that at lower densities, where these
first terms in an expansion in (1-p) are no longer
adequate, the upper bound on t/U would decrease
again to zero at some p & 0, in agreement with
Kanamori's low-density predictions.

Our high-temperature expansion is, of course,
not useful very near a ferromagnetic phase tran-
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FIG. 10. Temperature dependence of magnetic sus-
ceptibility for a simple cubic lattice (t/U= $).

sition, where g - . However, we do see a change
in the sign of the curvature of l((p) at low tempera-
tures with decreasing p. The upward curvature
for p ~ 0. 5 suggests the development of ferro-
magnetic short-range correlations, whereas the
negative curvature for p ~ 0.75 reflects antiferro-
magnetic behavior. If we take for example the
curves for t/U= '„where the-transition between
ferromagnetic and antiferromagnetic behavior
is more apparent, we may estimate roughly that
it occurs at p = 0.6. For t/U = $ the critical
value of p appears to be somewhat higher. If
we continue to apply Eq. (16) for this relatively
large value of t/U we find p & O. V5 for a ferro-
magnetic ground state, in excellent agreement
with our interpretation of Fig. 9. Extension
of Nagaoka's results to t/U = —,

' is less reliable,
of course, but he does imply a decrease in the
value of p required for ferromagnetism.

Furthermore, an approximate analytic solution
of Eq. (10) for tt is possible for e s ~a «(1-p)
«1. After substitution of this value of p. into
Eq. (14) for 0 and subsequent differentiation we
find

l(= N„ ttas p (I- (1 p) [1-12 (pt /U) —s'(pt) ]

0 2 4 8

PU

FIG. 9. Temperature dependence of the magnetic sus-
ceptibility for a simple cubic lattice (t/U =*).

for

~ BU/8«1 p«1
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Unless U/t »1 the restrictions on 1 —p plus our
basic assumption Pt «1 severely limit the tem-
perature domain in which Eq. (17) can be applied.
However, the result does provide a simple approxi-
mate criterion for the onset of ferromagnetic
behavior —that the expression within curly brackets
becomes greater than unity. For 1-p «1 the
condition is

(18)

We are interested in the behavior at as large a
value of P as possible. For Pt=1, which is the
lowest temperature for which one might claim
any validity for the theory, the condition (18) be-
comes

(19)

which is essentially identical to the criterion (16)
obtained by Nagaoka for a ferromagnetic ground
state. This extraordinary agreement must be
viewed as fortuitous, but our qualitative interpre-
tation is apparently correct.

Let us now consider the almost empty band.
According to Kanamori's theory, the ground
state of a simple cubic lattice is not ferromagnetic
for densities below a certain small value. Thus
we may suspect that even for finite temperatures
the onset of ferromagnetic behavior takes place
for some value of p different from zero. How-
ever, Eq. (15) seems to contradict this statement
as the magnetic susceptibility is still of ferromag-
netic type at very low densities. However, this
applies to the high-temperature region and there-
fore the question remains open as to whether or
not the system has a ferromagnetic ground state
for densities below p= 0.1.

Finally we turn our attention to Fig. 11, where
the inverse magnetic susceptibility is plotted ver-
sus the temperature in the extreme-correlation
(U= ~) case. Here we expect, and actually find,
a ferromagnetic behavior over the entire range of
electron densities. By extrapolating to zero tem-
perature we may infer also that the Curie temper-
ature has a maximum roughly at p=-,' and decreases
somewhat symmetrically as p approaches its ex-
treme values. However, the inserted graph of the
Curie temperature versus electron density should
be regarded only as qualitative.

V. CONCLUSION

In the previous sections we have performed a
high-temperature expansion of the chemical po-
tential and the thermodynamic potential in order
to make some definite statements about the basic
thermal properties of the Hubbard model. Both
the effects of the carrier concentration and of the
electron correlation have been taken into account
and the following picture has emerged. For one-
dimensional uniform systems the magnetic sus-
ceptibility is not qualitatively affected, in the high-
temperature region, either by a change in electron
density or in t/U The sus.ceptibility is progres-
sively reduced with p and slightly reduced with
the electron correlation. This last statement is
in agreement with finite-chain calculations. '
More interesting is the behavior of the specific
heat. In fact for low electron densities the high-
temperature peak is shifted towards T= / Uk 2anad

tends to decrease in height. The low-temperature
maximum begins its formation at higher tempera-
tures and for a quaslempty band completely deter-
mines the shape of C/Nzka . While a low electron
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correlation tends to reduce the high-temperature
peak if the band is half-filled or quasi-half-filled,
it has the opposite effect for intermediate densi-
ties. Quite different is the picture obtained for
the magnetism in a simple cubic lattice. The
ferromagnetic-antiferromagnetic transition, in-
duced by electron density change at zero tempera-
ture and studied by Nagaoka, has been found to take
place at finite temperature also. Another transi-
tion st very low carrier concentration, although
improbable, is not excluded and the problem re-

mains open.
Finally we mention that the high-temperature

thermodynamic properties of the Hubbard model
are being studied independently by Bulaevskii and
Khomskii o
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