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The exact renormalization-group approach is used to study the critical behavior for T & T„H = 0
of a uniaxial ferromagnetic (or ferroelectric) system in d dimensions, with exchange and dipolar
interactions between the (single~mponent) spins. Normal Ising-like behavior is retained for
t = T/T, —1~j = (gp.~)'/Ja", where J is the exchange parameter, g p,~ is the magnetic moment

per spin, and a is the lattice spacing. Crossover to a characteristic dipolar behavior occurs when

t ~-g, where $ = 1+ «/6 (to first order in e = 4 —d). For t a g, the leading temperature

singularity in the Fourier transform of the spin-spin correlation function I (q) becomes P
X [1+($q) -ho()q') +go(q'/q) j ', where ho and go are of order g, and $(t) varies as t '~ for
d & 3, as t ')' [lnt[')' for d = 3, and as t" with 1/2v = 1 —(3 —d)/6+ 0((3—d) ) for d & 3. The susceptibility

displays the expected demagnetization effects, namely, (X
' -go@cr $ . The experimental situation is men-

tioned briefly.

I. INTRODUCTION

In recent work, ' the behavior of magnets with
both exchange and dipole-dipole interactions has
been investigated using the technique of renormaliza-
tion-group recursion relations. 4 d-dimensional
systems with either isotropic d-component spins or
with a dominant m-component isotropy were studied,
with1&m «d. It was found that the dipolar inter-
actions both increase the critical exponents (com-
pared to pure exchange forces) and change the an-
gular dependence of the correlation function.

It was discovered in the previous work, that the
case m = 1 is special in that the propagator for the
Feynman-graph expansion goes to zero in the di-
polar limit, so that the nontrivial fixed point, which,
in general, yields the above results, now apparent-
lydisappears. Theproblem of m = 1, namely, of the

uniaxial ferromagnetic (ferroeiectric) phase transi-
tions, has been treated in pioneering work by I ar-
kin and Khmel'nitskii, using Feynman-graph expan-
sions for d= 3. Their resultis, that all the thermo-
dynarnic quantities behave classically, except for
logarithmic corrections.

The method of renormalization-group recursion
relations has several advantages over direct Feyn-
man-graph expansions. The main advantage is the
ability to deduce from the recursion relations the
regions of temperature and of other parameters in
which the system is close to a given fixed point,
and thence to estimate crossovers between dif-
ferent types of behavior. As was illustrated in Pa-
pers I and in IV, the introduction of the dipolar
forces indeed increases the number of fixed points,
and leads to a complicated evolution of the system
as the renormalization process proceeds. In this
paper the problem of the unaxial ferromagnets is
discussed using the renormalization-group ap-

where sm is a one-component classical spin vector
of unit length, pointing in the direction of the axis
of spatial anisotropy (the s axis), and located at the
site R of a d-dimensional lattice of cubic symmetry
and coordination number c. The vectors 5 of length
a run over the c nearest-neighbor sites of the origin
site. In what follows we shall take a= 1. As usual,
J denotes the exchange energy, while G = —,'(gee)
measures the strength of the dipole-dipole inter-
action.

The partition function is written

z=f e", (2)

with

X 1 2Zs 14Zsar 2-B R 8
(3)

proach, thereby completing the previous studies.
In Sec. II we recall the definitions of the Hamil-

tonian and the partition function, and discuss the
Gaussian model, which already gives some feeling
for the critical behavior of the system. Section III
includes a derivation of the recursion relations,
while Sec. IV elucidates their fixed points and the
crossovers between them. Typical dipolar behavior
is found; this is further discussed in Secs. V and
VI for d~3, and in Sec. VII for d&3. Section VIII
discusses the results and refers briefly to the ex-
perimental situation.

II. GAUSSIAN MODEL

As discussed in Appendix D of I, we start with the
Hamiltonian
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where the last two terms come from the weighting
factor, which is introduced on passing to the contin-
uous-spin s model.

The Fourier transform of the dipolar part of the
Hamiltonian has been discussed throughly in I. For
the uniaxial ferromagnetic case, with the axis of
spatial anisotropy along the z axis, the result near
q=O is

2
e&i'R(

~

R R~
2-4

ez R220

to those obtained in Papers I and in IV for m & 1.
When q'= 0, the remaining parts in the correlation
function have the usual Ornstein-Zernike form,
and again p = 1, v = &, g = 0.

For q—= 0, the form (12) does not apply„and one
must use the shape-dependent value of U2(0), as
discussed in I. This gives

G(0) = [ro+goe] '

with

g 2

=a|~ -ao(& ) -ao-a4(aq)r~ ~2 2

iq

8= d —(d —2) 4/a, ,

where 4 is the shape-dependent sum

(14)

U', (q) = ro+q' ho(q-')'+go(q'/q)'

ro= k(T To)/dw

(6)

(7)

+O((~)', (~')') (4)

Values of the a,'s are given in Appendix A of I.
[Here ao replaces ao —ao of Eq. (9) in I.]

Using this form, X may be written

Z= 2 f Uo (q) gt(7g

"f-Sfa, fs. o;o;,.;,a
where Jo means (2w) times the integral over 0
& Iq I &1, while

4= —5~ Ruo(1-d cos e);) (15)

(e,&
is the angle between R,z and the z axis), which

does not depend on i for an elliysoidally shaped
sample with an axis aligned parallel to the z axis.

III. RECURSION RELATIONS

We are now ready to generalize the Gaussian
model by letting uoxO, and expanding (2) in powers
of up.

Following the usual renormalization procedure,
we can thus construct the recursion formulas. For
Uo(q) we find

kT p= cJ+ 2asGa

J=-,' cd ' J- 2a&Ga ",

ho 2az G/&a', go = 2ag G/da'w

u, =u( he/) 2'w'.

(8)

(&)

(10)

(11)

Uo"(q)=I', b r, +b q +(g, -b h, q )

c 2

x —+ 12ui G(qg)

G(q) = [ro+ q —ho(q ') +go(q'/q) ] '. (12)

Thus, G(q) exhibits the "classical" form of the
"dipolar " spin-spin correlation function. For
small kp and gp G clearly reduces to the usual Is-
ing-like (zero-order) propagator (ro+q ) '. Re-
membering that ro~ (T —To) [see Eq. (7)] shows
that y = 1, v = —,', q = 0. As gp increases, the di-
vergence of G as Iq I approaches zero for rp=O,
becomes dependent on the direction from which

q = 0 is apyroached. In the limit gp- ~, the cor-
relation function diverges only if the point q= 0 is
approached in a direction perpendicular to the z
axis, namely, with q'=-0. Thus, the "soft modes"
of this model are only those syin waves with the wave
vectors perpendicular to the axis of spatial anisot-
ropy, namely, the z axis. This result is similar

Note that q in Eq. (6) is measured in units of a '.
We actually take a = 1, and the factors a " in Eqs.
(8)-(10) have been inserted for clarity. Finally,
the g& are the Fourier transforms of the spins sy,
rescaled by the factor Z(/kTw )'~ .

In the Gaussian model one has up= 0, so that the
spin-spin correlation function is simply the inverse
of U2(q), namely, for qcO,

—86u', G(q&) G(qo)
Ig "q2

xG(q, +qo+b 'q)+O(uo) (16)

where f& denotes integration over b '& )q ( & 1.
As usual, we arrange to keep the coefficient of

q constant and equal to unity. (However, see re-
marks in Sec. VIII. ) We therefore choose the spin
renormalization factor according to

gz bo+2 og ~ G( 2)

The q dependence of the graphical integrals[e. g. ,
the second integral in Eq. (16)] enters only through
combinations such as q&+q2+b 'q. Since Iq, I

&b ', Iq2I &b ' and since Ib 'q I «b ', all these in-
tegrals are analytic in q, and therefore they will
not regenerate terms of the form (q'/q) . There-
fore, the recursion relation for g, is2

gl+1 b gl (18)

Consequently, the initial condition gp 40 will lead
tog, =b' ""go-~ (where q is an appropriate aver-
age over g, ).

The recursion relations for rl and h, now be-
come
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"i[rr+12u, J; G(q,}+0(u,)] (19)

h...=b "i[h, —Pr(g» hr)uailnb], (20)

where P, (g, , h, ) is a complicated function, result-
ing from the second integral in Eq. (16).

In a similar manner we can obtain the recursion
formula for u„which reads

„=b [,-36u, j [G(q )] +0(,)]. (21)

In what follows, we shall see that it is much more
convenient to consider the differential form of the
recursion relations. Letting b = e", with I«1,
we find, for small x, ,

The x dependence of A and B in this limit is inde-
pendent of d, since only the values of 8 near —,'w are
important in the integrals (24) and (25).

From (28), (22), and (23}one sees that if g is
large, the parameter u will always be multiplied by

g '~, so that the natural expansion parameter now

becomes ug ', instead of u. This is the crucial
point, which enables one to study the critical be-
havior even for large values of u and of g.

IV. FIXED POINTS AND CROSSOVER EXPONENTS

s mentioned above, when go= ho = 0 we recover
the usual Ising-model recursion relations, which
yield two fixed points, namely, for d &4 the Gauss-
ian fixed point

'r

dl
= (2-nr)rr+IS rA(gr-hr)

- 12u, B(g, —h, ) r+0(u, , ur ri) (22)

u*=ye=g~=h~=0

with classical exponents, and for d & 4 the non-
trivial Ising-like fixed point,

g*=h*=0, r*= —+&, K u*=+E,6 y d 36

(30)

(31)
= (4 d) u r

——36u, B(g, —h, ) +0(u r, u r rr ),

where, from Eqs. (19) and (21),

K~.r
t

sin a8d8
2n „o 1+xcos 8 '

(23)

(24)

Eg r ~' sin 8d8
2n „'0 (1+xcos 8)

(25)

h-r-2~-r n«ai (r d) (26)

The difference g —h appears in Eqs. (22) and (23)
since we are integrating over (r+q -hq cos 8

+g cos 8) ' over e "~ Iq ~

~ 1, and then letting 5L

-1. Note that in our units a=1, and therefore h

and g have the same dimensions.
A simple calculation gives

A(x) = K~ [1—x/d +0(x )],

B(x)= K„[1—2x/d +0(xa)]
(27)

for small x. For g, h- 0, Eqs. (22) and (23) thus
reduce to the usual Ising-model recursion formulas. 4

If go, horr 0, it is clear from Eqs. (18) and (20) that
after a few steps g, » h, , and therefore we need not
study the detailed form of P,(g„h,) in (20), since
the only combination which enters in (22) and in

(23) is g —h. However, h may become important
wheng0=0, e. g. , for an antiferromagnet or for
a spatially anisotropic system.

For x» 1 one easily finds

where E = 4-d. Clearly, for our expansion in u
to be justified, u* must be small, and therefore
c must be small and the expressions in (31) for rr
and for u* must be considered as the first terms
in an expansion in E. However, experience with
recursion relations and with e expansions suggests,
that even for E = 2, namely, for d = 2, the results
to order & are reasonable approximations (note
in this connection the factor of ~38 in the expression
for K&u*, which is the natural expansion parame-
ter).

As discussed in I, w e expect that for small devia-
tions of all the parameters from their fixed-point
values (30) or (31), the correlation length will be-
have as

~(T,g) = f-"x(g/f') =g-""x(g/f'), (32)

12u*K, (gr -gr)
d y (33)

dT(g
- r}g=(2-&)(g - r)g

The trial forms

where v is the exponent related to the temperature
instability of the fixed point, and vo = v/rtr is the
exponent for the dipolar instability of the fixed
point. (P is the relevant crossover exponent. )

Linearizing (22) and (18) with u=u~ and h=hr'=0
yields

d„—(r, - r*) = (2- r) —12u*Z,}(r,- r')

A(x)= 2b~E~x +0(x },

B(x)=b Z x ' +0(x )

with

(28) rg -r~=Ae"' g -g*=Be"'

yield two solutions: the first is related to the tem-
perature instability, having A =1, B=0 and

4g, b4- 1. (29) v= 1/&r=-,' [I+pe+0(c')]. (34)



3366 AMNON AHARONY

(f) = v/vz= v(2-q) ='Y=1+o e+O(e ).
Similarly, $ = 1 for the Gaussian fixed point.

Thus, when

(36)

(37)

the effects of dipole-dipole interactions become
important.

V. DIPOLAR BEHAVIOR FOR d &3

When gp does not vanish, g, will become large
after a few interations, and one must solve the full
recursion formulas (18), (22), and (23). The solu-
tion of (18) is simply

21g, =g e

where we have taken g=0, assuming g,g, ' to be
small [see Eq. (17)]. As noted after (29), u, g, '~o

is the actual expansion parameter (see below).
Substituting (38) in (23), and neglecting h, gives

(38)

dl
' = (4-d) u(-36BM(g eo') (39)

for small u and r. This equation can be integrated
to yield

, =e" (—+36 ( Bfgee ')e" 6('). (60)
I, up

As long as g goe ' is very small, so that [see
Eq. (27)]

B(goe ')=B(0)=Kg) (41)

solulion (40) reduces to

u, = a/[36K, + (e/uo —36Ko) e "]. (42)

Hence u& approaches the nontrivial Ising-like fixed
point (31) for e & 0, but the Gaussian fixed point (30)
for a & 0. At e = 0 (d = 4) solution (42) must be re-
placed by

u) = uo /(1 + 36Kguol) (43)

which leads to logarithmic corrections. ~

As I grows larger, the approximation (41) be-
comes unjustified. Assuming that up is close to
e/36K„66, will first remain close to this fixed
point, butwillgraduallydeviate from u*, as B(goe ')
becomes smaller. [Note that B(g) is a monotonic
decreasing function of g. ] Linearizing (39) near the
fixed point (31) leads to

—(g( - u*) =e 1 — B(g o(0 ) (u( —u*), (44)
d

The second is associated with the dipolar instabili-
ty, having A = —1/d, B= 1 [note that a, =a, /d in Eq.
(4) (see Ref. 2)], with

(35)

Thus the crossover exponent from the Ising-like
fixed point is

which, for c & 0, yields

( 2e
u, —u =(uo —u )exp ef —— B(g,e )df2)l I

Kd P

(45)
For small g, this shows that (u, -uo) varies as
e ", butasB becomes smaller, u, gradually crosses
over to the divergent behavior e", and leaves the
linear region.

If go is large, so that we can use (28) for B, we
find

(( 366 Zg ' (e" "' —())
~I, up & —1

for a 6-'1 (46)

or
s/a ~ il ~

Eo gp
36boKo(l +I) ' 36boKouo

for s =1. (47)

Thus, for E &0 u, will eventually leave the neighbor-
hood of the fixed points (30) and (31), and start
growing. Thecase&=0 (d=4)isaborderline, where
86 approaches the value uo /( 1 + 36b4 K4go' ~

uo) . For
d = 3, u, has the special form (47), which leads to
logarithmic terms (see below).

Since u, is increasing with l, the validity of our
expansions in u, [e.g. , in Eq. (16)] has to be care-
fully examined. Of course, we can always expand
2, in powers of u, , but a priori it is not clear that
we are justified in truncating the series after u, or
u&. To justify this truncation, we follow Larkin
and Khmel'nitskii in noting that the true small
parameter for the expansion is not u„but rather
u, g",' . This follows directly from our remark at
the end of Sec. III. Thus, if g,g, ' is small, we
may neglect higher orders in u, g, '~o (even though

u, itself may be large, so that an expansion of the
partition function Z may not be truncated). As we
shall see in Sec. VI, a similar argument allows us
to truncate the series for the correlation function
and for the susceptibility. '

We can now proceed with the recursion relation
for r [Eq. (22)]. If we choose

—6uoA(go —ho)
ro =

@ „=—6uoA(go —ho) (48)

' = 2r, +12b,K„u,g, ' e ' (2 —r, )+O(u'(g, '). (49)

then, initially, r, will change very slowly with l.
If goe '« I, and if uo=u* [as given by Eq. (31)],
then r, will also approach its fixed-point value (31).
As l increases, u, starts to increase, according to
(46) or (47), and g(i and B start to decrease In the.
limit of large g, (22) becomes
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For « I (d & 3), one finds, from (46) and (38),

.&ya & -2» g'o 365,K~(e' "' —1)ug, =e +
Qo e —1

(50)
and hence the recursion relation (49) reduces to
the "classical" form

(51)

(ug '~~)" approaches zero.
If (53) is not satisfied, then we are not at the

critical point, and the solution to (52) becomes

roe22 (I/I + I)-2/s

up to corrections of order In(l +l ).

(55)

VI. CRITICAL BEHAVIOR OF SUSCEPTIBILITY AND OF
CORRELATION FUNCTION FOR d & 3

"' = 2. .'(2-' .O(a).
dl

(52)

In order to find an approach to a fixed point, we re-
turn to condition (48). For large values of go this
ref,ds

ro = —12upbmEBgo = —I/3f (53)

[see Eq. (4'7)]. For small uogo '~, l is very large
and )ro) is very small. The resulting evolution is
now

r, = —1/3(l + l ), (54)

so that r, approaches the "Gaussian"-fixed-point
value r*= 0. However, this is not to be identified
with the "true" Gaussian fixed point (30), since
both u* andg* now are infinite, and only the ratio

leading to the usual classical behavior. Thus, the
borderline between classical and nonclassical be-
havior is moved from d =4 (for pure exchange Ising
modeLs) to d = 3 (for exchange plus dipolar inter-
actions).

For c = 1 (d = 3), the second term on the right-
hand side of (49) is slowly decreasing, and, using
(47), we have

k(r& u) g&) = (56)

where t=T/T, —1. As shown in Sec. VII of I, the
correlation function I'(q), defined by

(&r o , )=-—-o-o-, e"'=5(q+q') I'(q),
Z „ca' (57)

may be calculated using 3C, instead of 3CO, accord-
ing to

e)&2-s})I (e& q) (58)

provided )q) &e '. If pq&1, we may thus repeat
the renormalization iterations until $(r&, u, ,g, ) is
of order unity (equal to the lattice spacing a), and
at the same time r, becomes of order one.

For d & 3, r, varies as roe ', and therefore a
simultaneous solution of r, = 1 and $ (r&, u, ,g, ) = 1
gives

$ =e '=rj)'qr (T —T())
' (59)

Hence the critical exponent p is equal to —,', and the
correlation function is

At each step of renormalization the effective cor-
relation length decreases by a factor b '= e ', so
that

P

r(q)=2'"r((i()=2'-"(G ((r() —(2G', ((q), J G (q) ~ 32G'((T(} ', G tq )G (q)G(q, +i( +2}+O(s ))
01 c2

s 2- 1

G(T Ts) )((3)s 3 (22 )s ((.s
& O((T Ts} (l ((ql 3,((qq S( (-3'/3} }-')I, (33)

s

for e &1 and q) & 1, where C is a constant. As in I,
the order (u,g, '~2) terms exactly cancel terms
which come from the deviation of r, from unity in

G,()q). The order ua term in (60) becomes of or-
der u, g, ' after performing the integral. Using Eqs.
(50) and (59),

2 1~ 2(6 1)i t2(6 1)~ gn

this shows the origin of the last term in (60). As
a approaches 1 this correction clearly becomes
more and more important. However, the leading
singularity is represented by the first term in (60),
and exhibits all the properties we described follow-
ing (12), in relation to the Gaussian model.

In a similar way, the susceptibility will have the

form

)&(3-e' ""I', (0)GG [C '(T —To)+gou] '

+o((T —To) '[C (T —T )+g I)] ), (61)

for e & 1, with B defined in (14). The constant of
proportionality is related to the spin rescaling, in-
troduced in (5).

To complete the discussion of the case d & 3, con-
sider the critical correlations, when fq & 1. In
this case we can continue the renormalization steps
only until )q] equals e ', and therefore, using Eq.
(58),

I'c(q) =
~q~ '"I'2(~)
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where we have neglected r, compared to 1, and
where q=q/Iq I. Note that go and ho are dimension-
less in our units, witha=1.

We now turn to the &=1, or d=3, case. For
T T„r, is now given by (55), and therefore a
solution of r, = 1 and $(r, , u, ,g,)=1 yields

t' =e"~ r 'll-nr,
l

"'~(T —T())-'lln(T —T,)1"'.
(63)

When $q «1 this in turn gives

I ln(T —To) I'~

(T —To) [1+(kq)' —I o(&q')'+go(q'/q)']

Iln(T —To) I

(T —T }[(+((q) —3 ((q')'+g (6'/3) ] ) '

(64)
where again the order u,g, ' terms cancel and the
last term comes from the contribution of order
u, g, 'oK (l +l ) O(K (In&)"

For & = 1, the susceptibility becomes

X~ [$ +go~] '+0($ (in)) (( +go&) ) (65)

while the critical correlation function is

I'c(q) =
1 ql ([I+(g —ao)(q') ] '+o(llnq

1

')f.
(66)

VII. DIPOLAR BEHAVIOR FOR 2.99 DIMENSIONS

For d & 3, or e & 1, the relation (50) no longer
holds. Instead, we have, from Eqs. (47) and (38),

1/2v = -,' I) = 1 - +o (e —I) +0((& —1) ), a & 1

~ & 1. (72)

This is to be contrasted with the pure short-range
exchange result

1/2v=1 —
o E+Pz& E +0(f ) (a &0). (73)

y= (2-rI) v=1+—', (e —I)+0((e —1)').

Similarly, the susceptibility becomes

X~ [C '(T Tg}"+go&] '+0((e —I)'),
while the critical correlation function is

(75)

(76)

T.(q) =
I ql "([I+(g, - a,)(q'}']-'+ 0 ((e - I}')},

(77)where

)i=0((a —1)o}. (78}

Even though o —1 (and a) should both be smail, it
is instructive to put d= 2. Then, (73) gives v= 1.16,
in close agreement with the exact result v = 1,
whereas (72) gives v=0. 6, close to the classical
value v=0. 5.

We can now proceed as in Sec. VII, and write ex-
pressions for the correlation function and for the
susceptibility. For $q & 1, we now find

I'(q) = C(T —T ) "i[I+(tq) —ho(&q')'

+go(q'/q)o] '+0((e —1) ) ), e & 1, (74)

with

-1/ 2 (6-1)+ter
g' 363 K (e"'"—(})

up &-1 VIII. DISCUSSION AND SUMMARV

e —1

36bq E~
(67)

and therefore our expansion in powers of u&g&'

may be truncated only for small values of E —1,
e. g. , d=2. 99.

For large values of I, we may approximate
u, g, '~o using (67), and (49) thus becomes

' =2r, +-', (a —1)(2-r,)+0(r', , (c —1) ), (68)

which leads to a new fixed point

rg'= —-', (e —1)+0((z —1)'}. (69)

If we choose ro according to (48}, r, will ap-
proach (69), and we shall be on the critical locus.
If (48) is not satisfied, then eventually r, will in-
crease, according to

(r, r*)~ (T ——T,) e"',

with

X= 2 —-', (c —1)+0((e —1)').

(70)

(71)

As usual, the critical exponent v will therefore be
given by

In a recent paper, Lines" investigated the prob-
lem of ferroelectric phase transitions using a "cor-
related-effective-field theory' in three dimensions.
He obtained a susceptibility which behave as ln(T
—To)/(T —To). This is clearly different than Eq.
(65), the difference being due to the approximate
nature of Lines's approach. Lines also presents
an interesting discussion of the meaning of the cor-
relation length $ in the presence of the dipolar in-
teractions. If one takes a correlation function of
the form (64), and Fourier transforms it to real
space, one finds

I'(R)~ R ' (79)

as R-~ in a general direction (with T 33T,). The
absence of the exponential decay factor e "~', which
characterizes correlations in systems with short-
range interactions, reflects, of course, the long-
range character of the dipolar interactions. How-

ever, one need not, in general, define the correla-
tion length $ in terms of the exponential decay;
various moments of the correlation function will
suffice as well. Thus, from the momentum space
correlation function I'(q) = I'(q*, q", q') one can de-
fine the correlation length by, say,
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~sr(q", q', 0)
I'(0) Ii (q")' (8o)

finite parameters. The fixed point Hamiltonian
will thus be

yd2 d (81)

in place of (17), and then keeping the coefficient of
(q'/q) constant, instead of the coefficient of qa. i~

If we write
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the choice (81) leads to the recursion relations
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Clearly, h, is an irrelevant parameter, as be-
fore. On the other hand, although it follows from
(83) that j, is decreasing with I, it may not be ig-
nored since the reciprocal j,' appears in (&4) and
in (85). For large values of j,', the solution to
(85) becomes
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Now u, decreases with l, approaching zero; but

although it is thus irrelevant, it should not be ig-
nored t As may be seen, for example, from the
last term in (84), the combination that enters into
physcial quantities is now
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which is precisely the analog of gu,
' ~ini(50).

We can thus proceed as before, and all the results
will be the same, except that now we have no in-

Since scattering experiments observe I'(q), this
definition is, in fact, more directly applicable than
one in terms of R-space behavior. '

A question that should be raised concerns the
fixed-point Hamiltonian. Since both u, and g, di-
verge to infinity at the fixed point, it looks as if
(-Ri') is infinite for all nonzero spin values; this
is certainly unsatisfactory. To discuss the true
situation we may start by choosing

q»

c
(90)

and the irrelevant variables j and u will have to be
taken into account in studying the critical behavior
as X approaches R*. '

Unfortunately, there are as yet no long high-tern-
perature series expansions which include dipolar
interactions, and therefore we are unable to com-
pare our results with such data. Unfortunately,
even if such series existed, our predictions at d
= 3 would be difficult to test, due to the logarithmic
dependence and to the effectively long-range cor-
relations. However, the predictions for d = 2 are
clear, and series expansions for d = 2 may not be
too hard to calculate. [Ford=2, 1R-R'I~ in Eq.
(1) must be replaced by ln i

R- R' l.] We hope that
the present paper will encourage such series cal-
culations to be performed.

The experimental situation is not much better.
As discussed in Ref. 1, one needs magnetic ma-
terials with a low transition temperature for the
dipolar effects to dominate and for crossover (37)
to occur. An Ising ferromagnet with a low transi-
tion temperature is" Tb (OH)~, which has Ta
= (3.72+0.01) 'K. In fact, the susceptibility of this
material does exhibit behavior similar to the clas-
sical Curie law. Specifically, a plot of X vs 7' ap-
pears to approach a straight line only a short dis-
tance above T~, with a slope almost equal to that
of the high-temperature Curie-law asymptote. Log-
arithmic corrections, such as predicted by (65),
could be hidden in the experimental errors.

Another group of experiments deals with uniaxial
ferroelectrics. The dynamical measurements' on
BaTi03 and on triglycine sulfate' are consistent
with the form (64), without the logarithmic cor-
reactions. It would certainly be interesting to test
if such corrections could yield a better description
of the experimental data.

The author is not aware of any two-dimensional
uniaxial ferromagnetic or ferroelectric materials.
Note that "two dimensional" here means that both
the lattice geometry and the dipole-dipole interac-
tion are two dimensional. Although the former may
exist, the latter is certainly difficult to visualize
(a system of parallel infinitely long magnetic
rods?). If one considers a two-dimensional lattice
with a thr ee-dimensional dipole-dipole interaction,
our results may change. For example, if the axis
of spatial anisotropy is perpendicular to the plane
of the lattice, the dipolar interaction is the same
as an exchange interaction with JccR, for which
Fisher, Ma, and Nickel predict logarithmic cor-
rections to "classical" behavior; for 0 =-,'d =1 they
find that both $ and X vary at t ' )lnt)' . On the
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other hand, if the axis of spatial anisotropy is in
the lattice plane, then we must repeat the calcula-
tion, with a modified form of the dipolar terms
[which will now include )q), (q'} /(q(, etc.].

In conclusion, we have been able to reproduce
Larkin and Khmel'nitskii's results for d = 3, and to
extend them to d & 3 and d & 3, finding different be-
havior in these two regions. For the experimental-
ly interesting case, d = 3, a crossover is predicted
from the usual Ising short-range behavior to a typi-
cal dipolar behavior, which is much closer to clas-
sical behavior, although it still differs from it in
several important details. The case d = 2 may be
of theoretical interest, through comparisons with

series calculations. The behavior of the Ising-like
model is significantly different from the Heisen-
berg-like model or of systems with m-isotropic in-
teractions with m & 1.
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