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Renormalization-group recursion formulas for magnets with dipolar interactions, derived in previous

papers, are generalized to include the case of anisotropic exchange and dipolar forces. For a
ferromagnet with a domixuuit m isotropy (the original spins having n = d = 4 —c & m ) 1

components), the critical exponent v is 2v = 1 + (1/2)(m + 2)'c/(m ' + 10m + 12) + 0 (e~) t to be

compared with 2v = 1+ (1/2)(m + 2)c/(m + 8) + 0(c ) for the pure-exchange case]. For
antiferrotmgnets, the pureexchange exponents apply.

I. INTRODUCTION

In recent work, ' ' the behavior of magnets with
both exchange forces and dipole-dipole interactions
bebveen d-component spins in d =4 —a dimensions
was investigated for small c. In this analysis, only
isotropic interactions were considered, both for
the exchange and the dipolar terms. In another
study, Fisher and Pfeuty' and Wegner showed how

anisotropic exchange forces can be treated in the
framework of renormalization-group recursion
relations, ' the crossover from isotropic behavior- to
anisotropic behavior was investigated for pure
exchange forces. The purpose of the present work
is to generalize the former results to interactions
which are anisotropic in spin space.

We shall follow closely the notation of I, and
emphasize only the changes due to the anisotropy.
The Hamiltonian to be discussed is

3C = —— Z J (R —R')SIiSI.
2 o, gf, 5&

—G Z ~ () (iR —R'i )SISgvv (I)
,g, l, e ~R ~R'

where the J', (Ii- 1t) are the anisotropic exchange
coefficients (assumed to be of sufficiently short
range) and G = a(gps) (g is the gyromagnetic ratio
and i(,sis the Bohr magneton). The case of aniso-
tropic g factors, when g is to be replaced by g g~
inside the sum over components, will be discussed
in Sec. V.

After translating to a continuous-spin model, with
the weight factor,

vxp ——Z pp — E (pp)' —v Z (pl)'),25 R Ra

3C= -- U20" 8
q GCIVSC — uOA+5. 8VO
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v& &v (Iv ~ . (4)

qlt

The momentum variables are now restricted by
0&I q I &1. The pair spin interaction is

&3'"(a)=(r'. +q'+f0(e )'1~.&+(go ke')(e-q'/q'),
(6)

with parameters

r'. =[kT-(cZ. +2Ga,)]/Z. w',

I =u(k&)V '/&, J~,

v =n(kT/J ) m

=(c/2d) J' —2Ga4, G= Ga

(6)

In Eqs. (6) and (7) we have, for convenience, as-
sumed Z to be nonzero only for the c nearest
neighbors although this restriction is easily lifted.
All the other quantities remain as defined in I; in
particular, g0, ko, and fo are proportional to a„
a2, and a„where the a& are the coefficients of
various terms in the Fourier transform of the di-
polar part in the Hamiltonian (I).

In Sec. II, the recursion relations derived in I
are generalized to include the anisotropie exchange
forces. Section III includes a discussion of the
various possible types of critical behavior and of
the crossovers between them. The critical expo-
nent p is eve. luated for each case. In Sec. IV the
discussion is extended to include anisotropic g
factors, while in Sec. V the results are applied to
antiferromagnets and to ferromagnets with aniso-
tropic lattices.

Fourier transforming the spin variables and re-
normalizing them, we obtain the partition function

2 — e (&)

with the reduced Hamiltonian

II. RECURSION RELATIONS

By a simple generalization of the results of I,
the propagator for the E expansion now becomes,
for q&Q,
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ro +q'+ f,(q')'

q +(go —hoq')Q' r()+q +f0(q )'&~'

(8)
with

(q")'

As in I, we shall ignore, from now on, thedipolar
anisotropic terms involving fo. Thus, we may also
drop v in (4). The justification for this has been
discussed thoroughly in Sec. IX of I. In short, the
parameter v' becomes of order u'z only for very
large l, and therefore its effects are expected to
be felt only at temperatures so close to T„as to
be beyond present experimental resolution.

The recursion formula for UP ~(q) then becomes

a g

G""r(q)=55 (o' 5 4 )5 4( 4 5 4 4 ) 4 5 oE ' G (4 )+2u'4 G (q))
~1

r&
—32Z u' 6u~ J~ [G ~(q, )G"G(q2)G"G(q, +qz+ b 'q) + 2G~(q, )G~(q), )G~6(q, +qm+ b 'q )] + ~ ~ ~, (10)

where J)i denotes integration over b & lq, l&1. In addition, f, is the spin rescaling factor, which is chosen
to be

g
2 yd+2~'tl g

with ri, =O((u', ~) ), so that the coefficient of q will remain fixed equal to unity as the recursion relation is
iterated.

For the fourth-order spin interactions we similarly find, to second order in u z,

Z;4) oboboboo;;, 4, =5'5 u Zu,' f J J rrrob bio';.5, 5, —4 Z u,',u'

G"'(q )G"'(q, ) ofof.o$„'- -, 4..+4 G"'(q )G"'(q ) J~
'

I of+eoe' -e-O'-I"

+4
J

G ~(q, )G"'(q, ) J~ J~ JI o~o(i.og"o'4 4..g" . (12)
ft ftl

The recursion relation for the dominant dipolar
parameter g, remains as in the isotropic case,
namely,

2~VI fgl+1 b gl ' (13)

Hence, if go& 0, we see that g, goes rapidly to in-
finity. After a few steps of renormalization, g,
will become large enough, so that the propagator
(8) may be well approximated by

Simple symmetry arguments can now be used,
to show that f&G'~(q) vanishes for o(qbP. The re-
cursion formula for r' therefore simplifies to

r" =b "2 r~+4 E uG„G~(q, )
r ~1

x2&&. t-.. q, +" . &5
01

Assuming u'z to be of order &, it is clear, exact-
ly as for the pure exchange forces, ' that we cannot
have all the r approach a fixed point. Indeed, un-
less we choose the temperature T in (6) in such a

t

way that, for some value of e, the r~ change slow-
ly with I, all the r will diverge rapidly [owing to
the factor b2 "' in Eq. (15)]. This conclusion is in-
dependent of the explicit form of the integrals in

(15), since they are regular functions of the r,
which become of order I/r for large r .

Accordingly, let us consider' a dominant m isot-
ropy, namely, Jo = Zo for e ~ m & d, and J & Jo for
o( & m. (The assumption that Jo be the largest J',
is required owing to the fact that the corresponding
critical temperature, to be defined shortly, will
be the first one to be encountered whenlowering the
te'mperature. ) We can now choose T so tha. t r for
e —m, will obey

(5 —1) =4 (2 f G tq, )
Oy

~Z f J
G""(,)). (15'I

With this choice, r' = r' for o ~ m will change s)ow-
ly with l, while r~ for P &m, will grow exponential-
ly. After a few iterations, we can thus neglect
terms of order 1jr~2 with P &m. The sum Q of (9)
then becomes
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r +~ r&~
(17)

III. FIXED POINTS AND EXPONENTS

while the propagator (14) takes the form

G (i]=„, (((.s —e e' & (e"]') (( —~, ((— ],

otherwise. (18)

This propagator is very similar to the dipolar
propagator discussed in I: After suppressing long-
range correlations between spin components which
interact via the subdominant exchange couplings, it
also suppresses long-range correlations between
"longitudinal" components of the remaining effec-
tive m-dimensional spins. The angular integrals
are thus to be performed in an m-dimensional
space, whereas the final q integration is in the
original d-dimensional space. Explicitly, for
d=4 —E and small &, we find, by the previous
methods, the results

G;I(q]=((g-, (1 —b ') r, lnb o-(H, a)](1——)(,~,

(19)

First we note that all the fixed points which were
discussed in I are still fixed points of the present
problem. However, they all are unstable with re-
spect to the rz for p&m. In particular, for g0=0
we retain the Heisenberg-like fixed point and the
Fisher-Pfeuty anisotropic fixed points. ' For gp& 0
and anisotropic exchange, the Heisenberg fixed
point becomes unstable with respect to both gp and

rI, for P &m. If the anisotropy is very small,
namely,

rg r ((gp
0 0 (24)

then we can expect that the system will first cross-
over from the Heisenberg fixed point to the dipolar
fixed point described in I, and then —much closer
to T,—crossover again, owing to the instability
with respect to r~ to a new fixed point. If condition
(24) is reversed, the system will first crossover
from the Heisenberg isotropic behavior to the
Fisher-Pfeuty anisotropic behavior, and only then
crossover to the new dipolar fixed point.

In any case we can write the correlation length
near the Heisenberg fixed point in the form

G& ~(q)G~&~(q) =K4[- lnb+ O(r&, c )]

2 1.] 6.5+
( 2)(6.] 6.6+ b.aba + 6-6]5}m " mjm+2

(20)

with

K-'= 2'-'H~'I (-,' d) . (21)

The factor (1 —m ') in Eq. (19) comes from the
angular integral of the propagator (18). It reflects
the suppression of the "longitudinal" components
of the effective m-dimensional spins. Note that
for m = 1 the propagator (18) exactly vanishes, and
one has to go to higher-order terms.

The recursion relations for r' and for u' = uoz
for o., P~m, now become

r'+~ = b2 "'fr'+ 4(m+ 2)(1 —m )K4 u'

x[g(1 —b ~} r' lnb+O(r—)]+O((u'} )]j (22}

and

u" =b' u' —4K4(u') lnb m+7 ——+ . (28)
m m(m+ 2)

For P &m we find rz+'=b "f~r~ ~ as l-~. Simi-
larly, when either n or P exceeds m we have u"
=b'u,'~-~. (Note that the latter fact need not worry
us, since u

& always appears together with an inte-
gral involving G ~, which behaves as does 5,~/r
or 1/r rz, and hence goes to zero as b(' a". )

—a(m+2) e
+O(e

m +10m+12 (26)

u* = c 4K4 m + 7 ——+
12 12

+O(e )m m(m+ 2)

m(m+ 2}e
4K4(m —1)(m +10m+12) (27)

We note that h~ = O(1), hut we do not have to con-
sider h', since g*=

The eigenvalue of the linearized r equation is
easily found to be

A=b =b 1 — m+2 Elnb +0 &
~

m +10m+12 (28)

so that the critical exponent for the correlation
length is

lnb 1 1 (m+2) e
O a &

(29)

As discussed in I, we feel that the equivalent of
the Heisenberg model with dipolar interactions is

( ro ro rp ro
~(f} f-PKI ~(g m~1 ms+2

C

(25}
where (t)~ is the dipolar crossover exponent found
in I, and where P is the anisotropy crossover ex-
ponent found by Fisher and Pfeuty' and by Wegner.

To find the new fixed point, we solve E(ls. (22)
and (28). The solutions are

r = —2(m+2)(1-m }e m+7- —+
1 V 12

+O(e )
2

m m(m+ 2)



CRITICAL BEHAVIOR OF MAGNETS WITH. . .IV. . . 3361

obtained with m = n =d = 4 —e. (In fact this gives
better agreement with the pure-exchange high-
temperature-series exponents too! ) For this case,
(29) correctly reproduces the previous' ' isotropic
di polar result

v=ga. 1+ ~Be+0(e')) (m=4 —e). (30)

There are now two ways to obtain the case of
Planus i,sotwoPy: We could either put m = d —1 = 3 —c,
or put m=2. The two should coincide for d=3.
Since m enters only in the order e term in (29),
the former is equivalent to m = 3, unless we know

the a terms. This reflects on the precision we can
get after truncating the a expansion. Of course,
we expect that the two approaches will give the
same limit if the a-expansion converges and if we
shall have enough terms. To be consistent with I,
we choose to describe the planar-isotropic case
by m=d —1=3—&, and similarly we shall describe
the "biplanar-anisotropic " case by m = d —2 = 2 —a.
In each case, we have to compare the resulting ex-
ponent with the dominant m-isotropic pure-exchange
results, which are'

IV. ANISOTROPIC g FACTORS

2GIB= g gfggBt

[This is not, of course, to be confused with the
propagator G'~(q). ) Then, ignoring the fo terms,
Eq. (5) becomes

(35)

U,'"(q) = (r~ +q')5„+ (g', [[
—h~ q')(q'q'/q'), (36)

while r, in Eq. (6) must be replaced by

r~ = [kT —(cJ~+ psgoa»a~)]/ J v,
with

Z, =(c/2d)J —peag a "a,.

(3'I)

(38)

Physically, anisotropy normally enters through
the gyromagnetic ratios (g ). For many materials,
the gyromagnetic ratios for the various spin com-
ponents are different; this, in turn, is the main
reason for the differences in the exchange coeffi-
cients J . We can thus bring the coefficient G in

Eq. {1)inside the summation and generalize it to
the form

v„= a (1+[(m+2)/2(m+ 8)] e+O(f )] .
We thus find

v=-. [I+Ao ~+O(~')]

„=,[1+ac~ o(a')] [

v= ~ [1+v-e+O(e')]

v „=z[1+gge+O{c )]

(32)

(33)

fg B

where the (B ~(q}) are the solutions of the linear
equations

(39)

g, [[
—ho[[q'=(r +q )B ~(q}

l' 2

+2 (go„—h', „q')B"~(q) — (40)

Similarly, the propagator (8} should be replaced by

We see that the dipolar exponents are always
larger than the pure-exchange ones, the difference
being

(m+2)e
(m+ 8)(m'+ 10m+ 22)

(34)

The case m=1 deserves special treatment. As
we noted after (21), the propagator (18) vanishes
identically for m=1, so that we no longer have the
nontrivial dipolar fixed point. Therefore, we do
not expect (29) to give a physically correct expo-
nent for m = 1, although mathematically one could
analytically continue (29) to approach m = 1, and
find v=1+~4[[a, or use (33) for d=3. The function
v(m) has therefore different limits on approaching
m = 1 from different directions. The point there-
fore clearly deserves special treatment. A pre-
liminary treatment of this case was given in Ap-
pendix D of I, and further treatment will be given
elsewhere.

For m=2 or m=d —1 we get, for &=1, v=0. 611
or &=0.622, so we may state that v=0. 617+0, 005,
and the ambiguity mentioned above is not crucial.

Formally, we can now repeat all the previous
steps. The recursion formula for g'B remains as
in (13); hence we have g'[[-~. For large values
of l, we may therefore consider only the dominant
terms in (40). Suppose, again, that g [[=g for a,
p»m, and g, [[&g for a and/or p&m. After sev-
eral iteration steps, this difference will grow
larger, and finally we shall be able to approximate
(40) by

pBg(q )
+tj

for P —m

=o(1/g') f» P'm. (41)

Thus, a possible solution is, for large l, BB"=0
for P or y & m, and

(q) =(r'+q') E (q')'=r for p, y» m, (42)62 1
Q

with Q given by (17}. Hence the formulation re-
duces to the former case, and we may proceed as
we did following Eq. (18).

It therefore seems, that even if both the exchange
and the dipolar coefficients are anisotropic, there
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is a nontrivial fixed point for small a. However,
the case m = 1 still needs special treatment.

V. ANTIFERROMAGNETS AND LATTICE ANISOTROPY

The extension of the present analysis to the anti-
ferromagnetic case, treated in Ref. 4, is straight-
forward T.he propagator (8} is now replaced by

For dominant m isotropy, this reduces to

0 ~(q)=, II z —, ~ o(h&)) fora, P—

~ 0 for a or P &m,

(44)
and we can proceed as in Ref. 4, replacing d by m
in all angular integrals and in all 0. summations.
The final result is that the anisotropic antiferro-
magnet still exhibits only the standard pure short-
range exchange fixed point. ' However, there are
also small corrections to the correlation functions,
of a form similar to Eq. (44).

So far, nothing specific has been said about lat-
tice anisotropy. This is represented by the pa-
rameters fo in (5) and v in (4). Such anisotropy
will be felt, if at all, only very close indeed to T,.
It is thus felt that its effects are beyond present
experimental reach. However, we may note that
since the actual summations over diagrams are
now made for m components, with m& d, the v-
instability catastrophe discussed in I and in Ref. 4
may actually be avoided. The eigenvalue of v near
the nonisotropic nondipolar exchange fixed point,
for m(d=4- g, is now

m —4, 5m + 14m + 1
m+ 8 (m+ 8)'

(ThisfollowsfromtheAppendixof Ref. 4.) Hence%„
is of order &~form=2, (at&=1), andvery small(though

positive( ) for m = 3. Thus, one should still worry
about this instability for m= 3, very close to T,.

VI. SUMMARY

In conclusion, we have been able to derive the
critical exponent v and the form of the two-spin
correlation function [which will be given by the
usual pure exchange form, with the new exponents
and with the angular part of Eq. (18)] for anisot-
ropically exchange coupled magnets with dipolar
interactions. Even in the anisotropic case the ef-
fect of the dipolar interactions is evidently to
change the critical exponents (truncated at order e}
away from their classical values. However, the
present analysis gives more insight into the mean-
ing of this truncation, and suggests that the high-
er-order terms in a might reverse this direction,
and bring the dipolar critical exponents closer to
the classical values.

The susceptibility X for a ~ m will also have
the usual form, with demagnetization corrections,
and with an exponent y = 2v (to order e, q = 0), but
will be much smaller for a )m.
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