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Critical Behavior of Magnets with Dipolar Interactions. I&&. Antiferrotstagnets
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Exact renorrrg»lotion group recursion formulas, derived in Paper I for c = 4-d small, are applied
to antiferromagnets. It is shown, that in contrast to the ferromagnetic case, the m~i~ parameters
characterizing the dipolar interactions become irrelevant for antiferromagnets, so that the critical
exponents mfgi~tain their short-range values. However, the relative decay of the dipolar parameters is
slow {the appropriate exponents being of order c2), and thus the possibility of observing their existence

experimentally is discussed briefly. In addition, the dipolar anisotropies, deriving from the lattice
structure, produce weak instabilities which are even harder to detect than in the ferromagnetic case.
Ferromagnetic short-range anisotropy is considered briy. The Appendix contains a calculation of the

renormaiization group eigenvalues of the operators ~ and g($$)'. The latter is shown to be
relevant.

I. INTRODUCTION

In two previous papers's [hereafter referred to
as I (Ref. 1) and II (Ref. 2)], the critical behavior
of ferromagnets, with dipolar interactions as well
as isotropic exchange coupling, was analyzed using
r enormalization-group and graphical-expansion
techniques for dimensionality d = 4 —c with e small.
It was shown, that close to the critical temperature
a characteristic isotropic dipolar behavior appears,
with a special angular dependence of the correla-
tion functions, and with new critical exponents.
These results were based on an analysis of the be-
havior of the various terms appearing inthe Fourier
transform of the dipolar interactions.

In a papers summarizing this analysis, we argued
that the dipolar results should be relevant to vari-
ous ferromagnets, such as the europium chalco-
genides, which had previously been considered well
characterized by pure short-range Heisenberg cou-
pling.

Recent heat-capacity experiments on RbMnF3
and Euo indicate, that the critical behavior of anti-
ferromagnets may be significantly different from
that of otherwise comparable ferromagnets. Since
the ferromagnet's behavior is modified by dipolar
forces, it is interesting to investigate the effects of
dipolar interactions on antiferromagnets. This is
the problem treated in the present paper.

In Sec. II we discuss the appropriate Hamilto-
nian, and emphasize the differences between ferro-
magnets and antif erromagnets. The main diff erence
arises simply because in antiferromagnets the im-
portant region of momentum space is not the ori-
gin, but rather the corner of the Brillouin zone,
where the nonanalytic part of the Fourier trans-
form of the dipolar interaction is not present.

Section IG contains a reformulation of the exact
renormalization-group recursion relations, and a
discussion of the irrelevance of the dipolar param-

eters. The fixed points and the critical behavior
of the system are studied in Sec. IV. Section V in-
cludes a discussion of the results, mentioning pos-
sible extensions and briefly reviewing the experi-
mental situation. The Appendix considers the an-
isotropic (lattice) instabilities, which govern the
behavior of the system very close to T, (and beyond
present experimental resolution).

II. HAMILTONIAN

The Hamiltonian of an antiferromagnet with iso-
tropic exchange coupling and dipolar interactions
may be written

82x=-z ZEz(R-R')s-„ fd, -GZZE, .',„„RXR' R4R' oB

1
X ~ 2 $~$~, ,

where J(R) will be negative at nearest-neighbor
positions and significantly smaller in magnitude at
larger distances (see below). All other quantities
are defined as for the ferromagnet (see Paper I):
Sit is a d-component spin; G=-s'(gita), where g is
the gyromagnetic ratio per ion and p, ~ is the Bohr
magneton.

Since we expect the spins to order on two sub-
lattices, with opposite directions, we shall modify
the definition of the Fourier-transformed spin vari-
ables used in I and II. Let ko be a reciprocal-lat-
tice vector, such that e' 0 has opposite signs on
the lattice points of the two sublattices. For a d-
dimensional simple cubic lattice with a lattice
spacing a, ks = tt/a is such a vector. We consider
only bipartite lattices, for which ko can always be
similarly defined. The transformed spin variables
o; are then defined by

&a Q t(j+fp) fi sg
a
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( Sa SS)—f f 8-ifi &R+Rp& (& a&8 )

i% -fo J l% -R PaS( )
a

(4)

where I; denotes (2rr) ~ times the integral over the
first Brillouin zone, and where

r.&(q) = (o a'. &/6(q+ q') . (6)

The factor e ' '"o thus represents the fact that
the two sublattices will order with opposite spin
orientation.

Rewriting (1}in terms of the o „' leads to
e

X = ——Z 3'(ko+ q)a.' o'
2

+ Ga Z A~(ko+q)a„a~„,
o8 w

where the integral is over I q I
& w and

(6)

Z(k) =Be'"' Z(R)

and

w

Since S„ is real, and since e'"o' =~1, itisstraight-
forward to show that

(o f)'=a, . (2)

The correlation function of tmo spins mill be of
the form

ciprocal lattice. Clearly, kp is not such a vector;
hence we may expand A~(k) in a Taylor series in
the vicinity of k=kp. As might be anticipated, the
critical behavior mill be governed by the behavior
of J(ko+q} and of A~(ko+q) for small values of q,
hence we need not worry about the nonanalyticity
of A~ far from ko. The integrals on q run over a
Brillouin zone, namely, Iq I~ rr/a for the simple
cubic case. Only at the corners, ko+q =2w/a or
0, shall we have a nonanalytic contribution. How-
ever, A 8(k) is bounded everywhere, and the con-
tribution of a few points should not affect the values
of the integrals.

In the vicinity of kp we can use simple symme-
try arguments to show that A'~(ko+q) has the form

A"(ko+q)=6, [b,q' —b, (q )']+b,q q'

+ o((q q')', q') (ll)

In the three-dimensional case, the numerical re-
sults of Cohen and Keffer suggest that b~, b4 and

b5 are positive, and that explains our choice of the
signs in (11). The indices were chosen to empha-
size the similarity to (9) of I. Using these expres-
sions, (6) becomes

l

([-cl Jl +Zq —2Ga bi(q ) ]6 z2 e8
tI

+2Ga bmq q + O((q q~), q ))o o~. , (12)

where the integral is over lq l & m and

i&Ri

BR BR'(, 'iR,
'

Ri'-I)
%=0

(8)
The partition function for the continuous-spin s

model is how
[The summation in Eq. (8) is over all lattice points
except R, =O. ]

It is easy to show that if J(R) = —
I Jl for the c

nearest neighbors but is zero elsewhere, then one
has

(9)

Z ex

with (see Paper I) the reduced Hamiltonian

R= ————Zs' —uZ(s')' —vZ Z(s )',kT 2 R

(14)

where for convenience me have taken units in which
a=1. More generally, we may replace cl Jl in this
expression by J(ko), which should still be positive,
and by expanding in powers of q~, replace —,'d '

by
a positive coefficient of similar magnitude.

The Fourier transform of the dipolar forces
A ~(k) has been discussed thoroughly in I. A direct
s'ymmetry argument shows, that for bipartite Bra-
vais lattices

A ~(k,}=O. (lo)

For simplicity, we shall restrict ourselves at
this point to the simple cubic case, postponing con-
sideration of other cubic lattices until Sec. V.

As shown in I, A~(k) is nonanalytic for k=q„,
where q„ is a vector connecting tmo sites in the re-

which may be written

R= ——Z ~ trm'(q)o'a'„-Z(u+6, v)
2 ofe a

with

x irma'o8 a~ „., (16)
'I3 -&-qi-&a

q a~ a3

Um'(q)= i+ q'-2—, (q')' 6,+2,q q',kTg" k Ta'
(IV)

(18)

In Eq. (16) we have ignored terms of order q,
(q~q~)3, since they turn out to be irrelevant.

As in I, we now suppose the exchange forces are
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e e B Bx, a. o.a. O .. . ,
a2 -a-Og-O2

4I ay q2

with the q integration being over Iql &1,

U()' (@=[ro+q -fo(q ) ]b~+hoq q'

ro=rkT/&& =k(T —To)/dv, kT()= cl dl 4

(20)

(21)

(22)

dominant, in particular,

4dl b41 G/cl ~l u" 0~1,

so that J&0. This assumption is, in fact, neces-
sary only if b4& 0 (for d =3, indeed, we have b4& Oo).
Otherwise, we shall see that our results are valid
for any value of the ratio (19), as long as 2Gbo/Ja'
«1. With J & 0 we may rescale all spins by a fac-
tor (kT/Zv '4)o v,oleading to

Ro= ——Z Voo'~((I)0.'v'. -Z(u()+b, vo)
2aB ~„~ ~ aB

and

fp=aGg bo/J, ho=aGa bo/J,

u, =u(kT/J)'v4", v() = v(kT/Z )'v'" . (23)

III. RENORMALIZATION-GROUP RECURSION FORMULAS

First we examine the Gaussian limit up= vp=O.
The modified two-spin correlation function, de-
fined in E(ls. (4) and (5), becomes, in this limit,
the matrix inverse to Uoo(41), namely,

Expression (20) is very similar to the corre-
sponding formula [E(I. (16) of I], except for the ab-
sence of the nonanalytic dipolar term q qo/qoq and
for the change in the signs of fo, ho. In the nota-
tion of I, this means that gp=O. Since it was the
dipolar parameter gp that led to a new fixed point
in I, we do not expect to find such drastically dif-
ferent behavior in the present case.

hpq+qB
G~o((I) =

, ~ q' -q', (q )' " (( ~ bbZAq'3'/(» 4' fb(q')'))(q ~ q'-fO(q')'I) -' (24)

Thus, for any finite value of ro, the limit of G'o((I) for q-0 is 1/ro, and we do not have the angular depen-
dent terms that arose in I for the ferromagnetic case. However, for ro=0 (T= To), or for ro«qo, E(I. (24)
becomes dependent on nonanalytic ratios such as qoqo/qo, with coefficients of order ho or fo. By our as-
sumption (19), ho and fo are small compared to unity. Expanding (24) in powers of ho and fo for ro = 0 gives

o B e 2

G"(q)l,~o= —,b o
—ho a +fo — b o O(+ho f'o hofo)

q2 q
(25)

Thus, the propagator G B has an angular dependence, which suppresses part of the longitudinal fluctuations
(of order ho). Propagator (24) would reduce to the pure "transverse" dipolar propagator discussed in I only
for hp»1 and fp= 0. This represents an isotropic or "liquid antiferromagnet, "with a very strong dipolar
interaction [contrary to assumption (19)]. We shall consider this case separately in Sec. IV. In the mean-
while, we restrict our discussion to small values of ho and fo, and use propagator (25), or the expansion of
(24) in powers of ho and fo (for ro qb 0). As we shall see, the only fixed-point value of h will turn out to be
zero, so that this is the only interesting range of values of hp.

We can now proceed with the Feynman-graph expansion of e~ in powers of up and vp. The propagator
G~((I) of (24) is used, with the previous renormalization procedure: integrating over b & I(l l & 1, rescaling
the spins by f, , and expressing X„, in terms of X, . The details were given in Paper I, and yield

U,"' ()= rr(([rb, b q' —b f(q')']I)„+4 b, q q+4 Eb(, 'bb, „) j
G"(r(r)+4

I(
q (r())

—32K(u, + v, b „)(u, +v,b„) [G (q&)G"'(qo)G"'(94+q, + b '(I)

Og Q2

+2G~)'((I~)Go"((h)G o((I~+qo+b (I)]+O(u, , v', , uqv, , .. . ) . (26)

As before, f' denotes integration over the range
b '& I(I I & 1. ' Comparison with (21) gives the re-
cursion relation

r„,= I4(b 4(r, +4K4[(d+2)u, +3v, ]

xA4(r, , h» fq)+ O(u, , v» u, v, )] b (27)

where the basic integral A" is

A'(q b q)= r

4 q (+ ' +atf' b'qb))( -h)
r+ qo d(r+ qo)

(28)
and where K,' = ao ow4~ I'(—',d).
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The jj~„v~j, jjjvj terms in (26) will contribute to
the coefficients of qm, (q ), and q"q~ in Uz'

By repeating the arguments of I, we see that we
need to calculate these terms only for d = 4, r = 0.
Thus, the relevant propagator is (25): This is pre-
cisely the propagator used in I, except for the fac-
tor bj which multiplies q q~/q3. Basically, the
calculations of I also apply here. However, the
situation is now somewhat simpler, since all the
"angular" terms in propagator (25) are of order h

or f. This enables us to carry these calculations
a little further. Since, by assumption, ho and fo
are small, we may also assume this for all /, de-
rive the recursion formulas to first order in h,

and fj, and check the consistency of the results.
The integrals entering the last term in (26) are of
the form

X~8"~ = f f Ga"((I )G~a((I )

&& [G"((I, +(12+ b '(I) —G' (jlj+(4)]

= f' G "(q,)[P"((Ij+ b 'jl) -I""((I,)], (29)

where we have subtracted the q = 0 contributions
[which give the jj'j, v', , and uj v) terms in (2V)]. To
first order in b, f the integral P'~ is

('"(t))= ( G' (i )G"'(a' t))=»
eO

'I2 'I2

' (q'+ q')(q'+ q')

(qm)'
+f&~e&ea ~ 4.- -.2+f~ye&ea

q a~q2+ q. ~

Qp

(q8 + q(j)R

.. q2%3+~)'
' (3o)

Finally, we expect X~"e to yield terms of the form
q~ lnb/b, q 'q~ lnb/b, etc , sin.ce these will lead
to recursion relations of the form

br+i = b "th»

with

t

2 " sin~8 $8 = min pw .
0 qg+ q2+2qgq2cos8 qg

and

2 " sin~8 d8
jj., (qj+q2+2qjq2cose)

(33)

jij O(lPg) jjjvj j vj) j

On writing J"8(jl) explicitly, it is easy to see that

da+ b=Z J'""((I), a+ b= J' ((I) . (32)

In the second equation of (32) we may choose (I
parallel to the first axis, thus obtaining a simple
integration. All one needs now, to find the coef-
ficients a and b explicitly, are the formulas

and so on. For this purpose, it is convenient to
assume b»1, so that b ~ is negligible compared to
b ~ lnb. ' The factor G "(jj) in (29) is at most of
order q,

~ & b~. Hence logarithmic terms such as
lnb can arise only from the factor P~(qj+ b jq)
—P'~(q, ). Going back to (26), one can see that we
actually need only combinations of the I"e~, such as
Z&I"58, P~~, or g,P'". Clearly, each of these com-
binations has at most two indices, y and P, andhence
may be represented as a linear combination of 5»
and of q"q~/q, with coefficients which may depend
on q . For example, we have

J"'((I)=2 P"((I) = a(q')6„, + b(q')q"q'/q' . (31)

1 . 1 1
min z, —

2 . (34)
~ q2 q1~ q1 q2

'~jq"q'/q'+ 'f«(q")'/q'5, (
-~ (35)

Substituting this and similar results in (26) finally
yields a contribution to Um"j ~((I) given by

&Uz+ ~~ ((I)= —8K&b+Inb(-5 q

&& [Bjjj+6ujvj+3v, + O(u, h» ujvjhj) vjbj)]
——', bjq ™q'[3Ojjmj+28uj vj ]

++gb~jj(q ) [30f,jj, +(48hj —32fI)ujvj

+2'7(fj —bj)vj]]+ O(jj,b„u,bjf,).. . ) .
(36)

The renormalized coefficient of q~ is to be equat-

Next we may form the difference J"~((I,+ b jji)
—J'"~(jlj), and expand to order q~. This reveals that
to obtain the factor lnb in the final integration over
q„only the lnq term in a(q~) and the order unity
term in b(q~) need be retained. The appropriate
expression is thus

J "~((I)= ——,'«b„jj(4 —2h+ 2f) lnq
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ed to unity by choice of the rescaling factor P, . If
we neglect the fg and hg contributions the result is

1 = t2gb 4 2[1 +24K22(2Q2g+2Qgvg+ v'g) inb], (3V)

which yields

2 bd+2-

with exponent

gag
= 24K2(2Q, + 2Q, V, + v, ) .

(38}

(39)

The renormalized coefficients of q q and of
(q')25 2 then become

Igg, g
= b "1[1+ K2('(I Q, +~~Qg v, ) Inb]hg

h

b 'h (40)

with

gig
= K2(2 Qg + 2 QlVg + 24Vl)

and

f„g= b "g ([1+K2&(pQ2g -~2Qgvg + 24v2) Inb] fg

+ K4(~2Qg vg —24v, ) Inb hg)

= b ~~fg + b "gK2(~2Qgvg -24v, ) lnfg egg,

where

&(2 Ql+
gg "1"1)~

(41)

(42)

(43)

Thus, if v, is small compared to u„both g", and

gi~g are positive, and so both f, and hg decrease with
increasing l. Thus, the initial assumption h, f«1
is justified. Moreover, if Iggg, fgg«1, the terms of
order Q2gh„etc. , in (36) are not capable of cancel-
ing the terms considered. Thus, unless v, becomes
large and negative (so that ging becomes negative),
i'l

l and f, will go to zero as I goes to infinity. We
have hence established that f and h are in irrele-
vant variables near any fixed point with v = 0 and
g= 0 (such as the standard Heisenberg fixed point
discussed in I). This increases the plausibility of
our claim, in I, that the same probably holds also
when g- ~.

To obtain recursion formulas for u, and for vf,
we now turn to the Feynman graph (b) in Fig. I, and
follow the discussion that led to the relations (95)
and (96) of I. Again, all the propagators are ex-
panded to first order in h and in f. The final result
is

Q,.g
= fg' (Qg —4K41nfg [(12+ 6hg }Q,

+ (6+3h, )Q, V, ]+4K Inb

xfg [QQg + 3 ]Qg vOg(Q+l Qgllg Qgfg ~ ~ ~ )]'

fg[6QgV g 2 Vl]+ O(Vgg Vgf l g ~ ~ ~ )) g (45)

where the lnb factor arises from an integration of
a product of two propagators with y = h=f =0.

IV. FIXED POINTS AND CRITICAL BEHAVIOR

v" =f"=h"=0, K4Qg'=ps, r"= ——,'e . (46}

Moreover, if v=0, this remains a stable fixed
point, as discussed above. The other nontrivial
fixed point, Q~ = 0 and vg =2ggg e, is unstable with re-
spect to Q, and leads back to (46).

The case v40 has to be given special attention.
It has already been noted in I that v is a,iso a rele-
vant parameter in some cases. Actually, as found

by Wegner, 12 the "exponent" A„= d —~„=I/g „ for v

(egg, in Wegner's notation} is eglual to (n -4)c/(n+ 8)
+ O(2 ) near the Heisenberg fixed point. This van-
ishes to order z for n =d, and it is necessary to
calculate higher-order terms. In the Appendix we
present a second-order calculation, which uses all
the graphs of Fig. 1 and yields the full recursion
relations for u and v near the Heisenberg fixed
point. The result, for n=4 —&, is X„=pe', so that
the Heisenberg fixed point is actually unstable with
respect to V. However, in first order in f and h,
to which we are working, no v terms are produced
during renormalization, since the coefficient of
fgQg in (45) vanishes identically. If v, is generated,
it must be from terms of order f,h, u, . We can now

repeat the arguments of Sec. VIII of I, and show

that, since the crossover exponent for v is only
4g„=~pe', one will have to approach very close in-
deed to T, in order to detect significant deviations
from the Heisenberg critical exponents. These ex-

{o) (b)

Clearly, for v =f= h= 0 the recursion relations
for y and for u reduce simply to those for the nor-
mal d-component Heisenberg antiferromagnet.
Indeed, from Eqs. (40), (42), and (45) we see that
v*=f*=h*=0 a,re solutions, which yield the Heisen-
berg fixed point

and

v...= b'[vg -4K2lnb[(12+ 5hg)Qgvg

+ (9+f Ig 1)v2g]+ 4K2 lnb

(44)

(c)

FIG. 1. Feynman graphs for the recursion relations
for u and for e.
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ponents may, of course, be found simply by using
Wilson's results"' to order a, with n=d=4 —a,
which yield

2v=1+sC+((e +O(f ) .
Combining (46) with (39) gives

"q= Is t+'O(s'),

(4 I)

(48)

'tl =7/ =+psst +O(6 ) (49)

We can now repeat the arguments of Sec. VG of
I to derive the form of the correlation function. As
in the usual case, the order & terms in the expan-
sion of G;s(b'q) cancel, and for $q «1, we finally
find

in agreement with Wilson's result from a Feynman-
graph expansion. " Finally, Eqs. (41) and (43) now

give

effects are absent only from the staggered suscep-
tibility, but can appear i,n the real susceptibility,
given, in our notation, by F~(-ks) (see also Sec.
VII of I).

If fs and hs are not very small, then higher-order
terms may eventually generate v terms, which will
lead away from the Heisenberg fixed point. To esti-
mate this one has to go beyond the linear approxi-
mation in h and in f.

The domain of large f values is rather hard to
handle, owing to the complicated form of the full
propagator (24). However, if f is small, the do-
main of large h can be treated quite generally. In
particular, on assuming f= 0 (a "liquid antiferro-
magnet"), the expression (25) becomes

(ss)

Fns(q) S((s-s&AIMS(qb(}

Ct" hot "q q
l+]2 2 aB 1+(F2

+ 0( ' h' f')) (so)

with

y = Ils/(I + as) (sv}

We can now repeat all the calculations of Sec.
III, finally finding that the recursion relation (40),
with v, =0, becomes

where

f=(T//r, )-1,

y= (2 —q}( = 1+—,'c+Qs + O(e') .

(»)
(s2)

(53)

r- (0)=cf». (ss)

It may be worth stressing, that shape-dependent

We may note that the g" and g~ contributing to the
expression (50) are of order c, and so may actually
be included in the last term. Only for hs(q)),
fs(qp)s «1 will the corrections to the usual Heisen-
berg behavior be negligible.

Since f and h are irrelevant parameters, their
limits as T- T, are zero, hence the asymptotic
correlation function at the critical point (ignoring
a possible generation of v tern. .s) will be unaffected
by these corrections, and we shall have"

F (q)=c'/q'" (q-o), (s4)

with q given by (48). However, it must be empha-
sized that the approach of (50) to (54) is very slow,
and thus less-singular higher-order terms of order

J(;(q q'/q')/q' "

and

f5~(q /q)'/q' "

in (54), may play an important role in practice.
The staggered susceptibility is related to I'~(0},

and hence is not affected by any of the corrections
to (50), since

~(+I 5 l~l + 32+snl($ y( fyl ky(H

At the same time, relation (39) is replaced by

'q( = 32Ksssi(s k'y(+afyr syr) ~

(s8)

(s9)

We now consider briefly the other cubic lattices,
namely, the bcc and fcc lattices. It is difficult to
proceed with explicit forms, such as (9), for both
cases. For the bcc lattice, if we choose the lattice
points as (a/3' )(nq, ns, . . .) and let the even n, de-
termine one sublattice and the odd ones the other,
then the shortest distance between two points on dif-
ferent sublattices is a(—', d)' s, whereas the shortest
distance between two points in the same sublattice
is 2a/3'~s. Thus, for d near 4 the assumptionmade
in deriving (9) is unjustified. The fcc case is even
more tricky, since even in three dimensions there

Substituting (59) in (58) and solving for h* immedi-
ately shows that h*=0 is the only real fixed point
of (58). (There are two other imaginary solutions. )
Hence, for small values of f and of v the Heisen-
berg fixed point describes the critical behavior,
even for a large isotropic dipolar interaction! A

general treatment for nonzero f and v is, of course,
still wanted.

It is interesting to note, that when y = 1 the prop-
agator (56) reduces to the form discussed in I for
a ferromagnet near the dipolar fixed point. Putting
y= 1 in (59) yields ps~ =PKssu~s, in agreement with
the Feynman-graph expansion result derived in
Paper II.2

V. D1SCUSSION
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are no simple antiferromagnets with only nearest-
neighbor exchange interactions.

To generalize, therefore, it is appropriate to
allow more than nearest-neighbor interactions, and
to study the full Fourier transform J(k) as in (V).
If this function has an absolute maximum at some
point k, in q space, which indicates a possible type
of ordering, we can expand J about kq, as in (9),
and then proceed as in the text. In this case, iden-
tity (10) may fail, which could amount to a shift in
the mean field critical temperature T0 of (22).
Otherwise all the expressions remain unchanged,
and the results are hence applicable to any cubic
antif erromagnet.

We thus conclude that the critical behavior of
ferromagnets and antiferromagnets very close to
T, is generally different: the former are strongly
affected by the dipolar forces, while the latter ex-
perience only slight changes due to these interac-
tions. This shows that arguments of "universality"
must be used with due caution t The differences
between otherwise comparable antiferromagnets
and ferromagnets have, in fact, been indicated in
experiments on RbMnF3 and EuO, as discussed in
Ref. 3. The specific-heat exponents for these ma-
terials may be estimated as —0. 14+ 0.05 and —0.04
+0.03, respectively. 3 4 Indeed, the Heisenberg
value of the specific-heat exponent is

not appear [as noted in I, this term is related to
the long-range character and to the shape depen-
dence of A ~(0), which does not exist for a short-
range potential]. Thus, the expansion of A™6(k),
now about k = 0, will have a form similar to (11)
(with k0=0). We conclude that the Heisenberg fixed
point is also appropriate for the description of such
a system, unless the parameter fa [or bs in Eq.
(11)]becomes large. Clearly, this strongly aniso-
tropic case still needs further investigation.
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APPENDIX: INSTABILITY OF THE RECURSION RELATION
FOR 5 NEAR THE HEISENBERG FIXED POINT

In the linear region near the Heisenberg fixed
point, the propagator is simply

4 —d (d+ 2)a(d+ 28)
2(d+ S) 4(d+ S)' (80) G (q) = 6„/(~+q') . (Al)

whereas the dipolar exponent, found in I, is

n= —~f+O(f ) . (81)

To third order in u and in gp, we have to consider
the Feynman graphs shown in Fig. 1. For graphs
(c) and (d) of Fig. 1 we may perform the appropriate
integrals with x=0 and d=4, thus finding

For z =1, these truncated expressions yield —0.13
and —0.03, respectively f Of course, these values
are based on the unjustified neglect of the unknown
O(&~) terms in the dipola. r case, which might well
be large as in (60). However, even though the con-
cordance with the experimental results is probably
coincidental, it is quite suggestive.

More generally, our results indicate that for an-
tiferromagnets with relatively large dipolar inter-
actions, measurements of the correlation functions
and thermodynamic properties may reveal compli-
cated (i. e. , crossover) behavior over quite a wide
range of temperatures near T, .

Another problem to which the present theory may
be applied rather directly concerns anisotropic
ferromagnets, inwhichthe anisotropy has the angu-
lar dependence of (1), except for a replacement of

I R —R I
~ by a short-range function. As pointed

out by Van Vleck, ~ this may represent the spin-
orbit parts of the exchange integral. When onegoes
through the calculation of the Fourier transform
(8), one now discovers that the term q'q~/qa does

f f' G"(q )G"'(,)G'"(q )G™(q)
Qg Qp

= ~.,~„,~,„~«Z', ln'b

for graph (c), and

(A2)

f G '(q)G"'(q) =K,[lnb+ ,'eln'b+0(e-b ')]b,b„,
a (A4)

For eachvertexwehave to multiply by —(u+b ~v),
where 0. and P are the indices of the two pairs of
lines entering the vertex. Finally, we find —for
n-component spins—

f' f' G"(qi) G"'(qi)G'"(q&)G'"(qi+ q&)
&3

= b ~b„,b, „b,„K34[,'lnb+ ,'1nab+ O—(b I)] —(AS)
for graph (d). We shall be interested only in the
logarithmic terms, assuming b»1, since we fin-
ally want to find the appropriate exponents. ' For
graph (b) we need to keep terms of order c, which
leads to
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u = b' "[u —4Kelnb(1+ zelnb)[(n+8)u +fluv]+IGK&ln b[u (n +Gn +20)+ u v(9n +36) +27 uv]

+ 32Kt lnb(1+ lnb) [ue(5n+ 22) + 36uev+ 9uvt]] + ~ (A5)

v = b' e"(v —4K, lnb(1+-', elnb)(12uv+9ve)+ IGKetln b(36utv+ 54uve+2'Ive)

+32Ke41nb(1+Inb)[(3n+42)u v+V2uv +2Vv ]] . (A6)

The q in the exponent of the coefficients of these
equations follows the spin-normalization relation

bd+8-f) (A7)

9m+42
K'u

4( 8) 1+( +8)
a+0 e (AS)

where we have used

ri= [(n+2)/2(n+ 8)'] ~' . (A9)

We can now linearize the recursion relations
near v*=0 and u*, as given by (A8), and find the
eigenvalues. The result for the eigenvalue of e is

n-4
b = 1+ &lnb -2g lnbn+8

+&alnb 6(n +4n+28)
e tl tbnert 4

(A10)

whereas the eigenvalue of u is b '+0(ee), as usual.
Clearly, A„ is of order &I for m=4. Letting n=d
=4-g, we find

(All)

It may be noted that for any n & 4, v is a relevant
variable, which may affect critical exponents. (This
even includes the spherical model limit!)

If ve= 0, and the equation for v is (A6), no v will
be generated by the renormalization procedure, and
the positive exponent of v gives no cause for con-
cern. However, any perturbation which reduces
the rotational symmetry to the cubic symmetry
[e.g. , fe in Eq. (21)] may lead to a nonzero v. This
then results either in a new fixed point, with new

exponents, or in a first-order phase transition (as

Thus, g~ =0 is a fixed point value. Assuming a*+0,
we find

&„=—e+[(Qn+42)/(n+8) ]& +0(& ) . (AI2)

This is equal to Wegner's - d —x~, . It is clear
from (A12), that the order ee terms are very im-
portant, as they change A.„by nearly a factor of 2.
The exponent 4„ for the leading correction'4 to the
scaling laws now becomes

68+ Sn —n= —v ~ A. = —,g-
4(n+ 8)

(A13)

which gives 4„=0. 269 for n=1 and 4„=0.329 for
n =3, and thus makes this correction quite impor-
tant I

I

is the case for the Baxter-like model discussed by
Wilson and Fisherte).

It may be noted that result (AS) for ue can now

be used in the recursion relation for r, to yield
the exponent v to second order in m. The results
are in agreement with those obtained by Wilson's
Feynman-graph expansion to second order. ' It
is also appropriate to note that we have ignored al-
together the irrelevant variables, since their con-
tribution to order g~ does not involve lnb, and there-
fore they do not affect the critical exponents.

It is interesting to note that even for n = 3 and
&=1, A.„=0.0887&0, and hence v is a relevant
variable t For n =2 the order &~ term exactly can-
cels the order e term, and so X„=O(ee). This an-
swers Wegner's' question concerning the pertur-
bation Og, proving that indeed this perturbation is
important and may affect critical exponents for
n &2, although, as was shown, its related cross-
over exponent is small and hence the effects are
expected to be felt only very close to T,. This
problem is further investigated in Ref. 15.

An interesting by-product of the present calcula-
tion is the eigenvalue of the equation for u, which is
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