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Critical Behavior of Magnets with Dipolar Interactions. H. Feyn~n-Graph Expansion for
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The Feynm»-graphwxpansion approach of Wilson is used to study the critical behavior for
0 & t = (T/T, ) —1 & G/J a ~ and H = 0 of an isotropic ferromagnet in d 4 —e(e & 0)
dimensions with exchange and dipolar interactions between d -component spins. /ere G = {gp,~) /2
measures the dipole-dipole interaction strength, J is the short-range exchange parameter, and a is the
lattice spacing. ] The susceptibility and the two-spin correlation functions are calculated to first order in

c, and agree with previous work, based on the renorm»lotion-group approach. In addition the
correlation function for transverse-spin fluctuations at T, is investigated, yielding the critical exponent

g= 20e /867 [whereas for short-range exchange forces one has g —3a'/12']. The limiting angular
dependence of the four-spin correlation function is obtained.

I. INTRODUCTION

The magnetic "classical" interaction between the
dipoles in a ferromagnet becomes important in de-
termining the critical behavior, if t= (T- T,)/T,
«G/Ja~, where G= —, (gp, e) measures the strength
of the dipole-dipole interaction, J is the short-
range exchange parameter, a is the nearest-neigh-
bor lattice constant, and d is the dimensionality.
In Paper I of this series, ' the exact recursion re-
lations of Wilson's renormalization group2 were
applied to derive the critical exponents y, v and q,
to first order in c =4 —d, for a d-dimensional fer-
romagnetic system with dipole-dipole interactions
between its d-component spins. It is apparent
from the formulas in I, that the renormalization-
group-recursion-relation approach becomes very
cumbersome if one wishes to extend the discussion
to order a . This method, in addition, did not give
the correlation functions themselves very explicit-
ly. (They were estimated by taking a finite number
of renormalization steps, until the renormalized
correlation length became of order a, the lattice

spacing. )
The main purpose of the present paper is thus to

investigate explicitly the behavior of the correla-
tion functions near the critical point and, in par-
ticular, to calculate the exponent g to second order
in &. Following Wilson we will employ a direct
Feynman-graph expansion of the partition function.
As we shall see, the critical behavior found in I
for the two-spin correlation function and the sus-
ceptibility will be confirmed. In addition, we are
able to describe the behavior of the four-spin cor-
relation function, and to derive the exponent g to
order E .

The notation will be the same as in I, and we
shall work in the framework of the same continuous-
spin s model. In order to make calculations
easier, we replace the Iq I =1 momentum cutoff of
I (see, e. g. , the beginning of Sec. IV in I) by an
additional q term iri the Hamiltonian. The parti-
tion function thus becomes

z=f e",

with

R= ——Q ([r+q'+q'+f0(q )~]5 ~+(go-hoq~)(q q /q )}ofo g
oS

-uoZ o, o&o&o; + &-v, Q o„o~o-'o;, ; ~--,'(ro-r) Q
~~

o;o~„(2)

where all integrations now run over the whole q
space. All the other definitions are the same as in
I, namely,

ro = k(T —To)/Jo, J= (c/2d) J 2a4Ga-

kTo=cJ+2Ga "as, fo -—2Ga as/J,

go = 2Go a,/Jo, ho = 2G use~ ~~

u, = u(kT/ZPo' ', v, = v(k T/J)'v' ',
where J is the exchange parameter, c is the co-
ordination number of the (cubic) lattice, G = 2(gee)
(g is the gyromagnetic ratio per spin), a is the
nearest-neighbor distance (with units normally
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chosen so that a = 1), and u and v are the coeffi-
cients of the s and s terms in the weighting fac-
tor. Finally, a„ap, ap=a, /d, a4, and a, are the
coefficients in a Taylor expansion of the Fourier
transform of the dipole-dipole interaction

=A (q)=a» —ape q —[up++41 u5(1 ) ]8 e 8 2 I 2

In the language of the renormalization group, the
coefficient of the additional q term in (2) is ir-
relevant. (This is why we ignored all terms of
order q' in I. ) Its only function is to suppress all
contributions to integrals from the high-momentum
(Iql »1) region. We choose here a different cut-
off form than the one used by Wilson in Ref. 3.
As explained by Nickel, this choice may change
the numerical values of various integrals [and,
indeed, allow some to diverge —see Eqs. (20)-
(22) below], but it does not change the values of
the critical exponents. It also should not change
the forms of the asymptotic scaling functions.

The last (mass) term in (2) is introduced so that
r can be related to the inverse susceptibility which
vanishes as T- T,. As discussed in Sec. VII of I,
the susceptibility is expected (for an ellipsoidal
sample) to have the form

where

/(r+g D "), (5)

DIOf d 1 + g 1+os(0) (8)

is a "demagnetization" factor. We therefore de-
fine r by (5), and use the last term in (2) to relate
r to rp and, hence, to the temperature.

The last three terms in (2) will be considered
as perturbations. Thus e will be expanded in
powers of up, vp, and rp —r, and used to calculate
the correlation functions

land

r '(q, r) =(oso-.)/(2v)'5'(q+q')

= Z ' f a' o;. expX/[(2x) 5'(q+ q')] (7)

q1t q2P qsy q4& (2~)~g~(q + q + q + q )
(8)

where the subscript c denotes the cumulant or
"connected part" of the expectation value.

As discussed by Wilson, these correlation func-
tions can be expected to exhibit scaling behavior
only if the parameters Qp vp etc. , are chosen
equal (or very close) to the renormalization group
fixed point values, u*, v*, etc. From now on we

e e 8
Vp5O8(Tq0'p0'qe pU (10)

These entered in I, even with vp = 0, since under
renormalization they are generated by the f terms.
Our starting point is thus the expression (2), with

fp = vp = 0. The range of validity of the results was
discussed at length in Sec. IX of I.

With this introduction we are ready to use the
Feynman-graph expansions, and to discuss the be-
havior of the magnetostatic susceptibility (Sec. Il),
the two-spin, and the four-spin correlation functions
(Secs. III and IV). A comparison of their scaling
properties enables us to choose the appropriate
value of up, and thus obtain the exponents y and g
to lowest order in a (Sec. V). The Appendix in-
cludes the details of the calculations involved in
deriving the two-spin correlation function, and
hence the exponent q, to order E .

II. SUSCEPTIBILITY

As discussed in I, the propagator for the Feynman-
graph expansion is given by the two-spin correla-
tion function of the unperturbed Hamiltonian. For

shall restrict our discussion to the isotropic di-
polar fixed point discussed in I.

As shown in Sec. VII of I, we can calculate
(ego p) in (7) for I q I & 5 ', by using R, instead of X
and I, "op instead of &rf. (We assume up=u', vp= v*
=0, andhenceu, =u*, v, =0, q, =q*=q, g, =&*=& ).
Thesameholdsfor( o;,o; v";,o;, ) in(8). Onlywhenone
of the momenta Iq I is of order b ', do we have to
return to (7) and (8) and perform the integration
over the whole range of q values (instead of the
partial ranges b '& Iq I

& 1 used in I). If this value
of l is large enough, and if we are close enough to
T„we may neglect all irrelevant parameters (as-
suming they are initially small enough). This al-
lows us to ignore hp and I/gp in the following cal-
culations. In any case, for small enough q (to be
defined later), terms involving 1/gp and hp may be
considered as perturbations to our results, pro-
vided we assume

t =(T —T,)/T, «G/Ja «1.
We shall restrict our discussion to this range.

However, the coefficient f„which introduces
cubic anisotropy, does, in fact, lead to new rele-
vant operators. Nevertheless, we demonstrated in
Sec. VIII of I that the effects remain small for a
very large range of l provided fp is small enough.
Moreover, if the system is "fully isotropic, " i.e.
rotationally invariant, then ft) = 0 and may certainly
be ignored; this case was exemplified in I by a
"liquid ferromagnet. " In what follows we want to
investigate the isotropic dipolar fixed point found in
I, and hence we shall set f, =0. Likewise we shall
not have to retain the anisotropic four-spin terms
of the form
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Hamiltonian (2), with uo = vo =fo = 0 and ro = r, this
becomes

G.o(-) &.o —{q q'/q'), q q'/q'
r + q + q' r +g, + (1 —ao}q'+ q' '

(11)
Provided q&0. For 0&q «r«gp, we may approxi-
mate (11) by

(11) will generate terms such as lln(r+go) I

= Ilngpl « llnr I for 1&gp»r. The corrections
may thus be ignored.

As discussed at length in Sec. VII of I, the ex-
pressions (11) or (12) are valid only for qq20. For
q=o, G (q) is the inverse matrix of

U = s5~~+gp4 (13)

where

G.o(- )
5 o

—{q q'/q')
r+ q'+ q4

(12} + 22-2~&o(0} —D005 (14)

It is easy to see that the corrections to this form
are of order 1/go. In the calculation of the critical
exponents g and y, we shall expand various cor-
relation functions to obtain terms proportional to
lnq and to lnx, respectively. One may check easily
that none of the correcting terms will contribute
such logarithms. For example, the last term in

(the last step is justified for a sample with ellip-
soidal boundaries) and hence

G"(O, r) = 5.,/{r+g~"). (15)

We are now ready to calculate the two-spin cor-
relation function using (7). From the same Feynman
graphs employed in I, Fig. 1, we find

+ 2 Q G "(q, r) G o( —q, r)
6 Cg

0'(q, r)=G"(q, r)-4 6E (0"tq, riG"( q, }Z 0"(q„)
5 a

0"tq„r)) —(r, — ) 2 G""(q, )0"t-q, r)
y

+32uo Z G '(q, r)G+( —q, r)
~

G"'(q2, r)G "(q ,or) G"'(q +2q o+q, r)
y5s n "'2

2G"(q, r)G' ( —q, r} 0"tq„)G'"(q„)G'"(6,~ iq+q, r))+0(,'). (16)
'a

The discussion must now be divided into two
parts; (i) q=o, and (ii) qq20. For q=o, we want

to be given by (5). Together with {15)this
means that the sum of all terms in {18)after the
first, should vanish; this leads to

{ro —r)(r+goD ) 5 o= —4uo(r+goD )

X g, 2 G q~, y
6 q

~ 2 0"(q„r)) 0(,') .
(17)

From the angular integrals listed in Appendix B of
I, we find

f G' (q2, r) = 5 o Ko(1 —d 2)I{r), (18)
Og

where

Z', '= 2' 'g "r(,'d), I(r) =
l

q,-", . (Ig)X+q~+ q4

Thus, (17) implies

At T, we want r to vanish and so

ro, = —4uoIf, (d+ 2)(1 —d ')I(0) + O(uoo), (21)

I(o) I(0) =
' q''dq

p q d —2
(22)

and hence

= —4 W, („)(1—-)+0(',). (22)

Returning to (20), we now find

ro —r„=r[1+4uoKo{d+2}(1—d ~)I,(r)],

which by (3) may be used to calculate the correc-
tions to T,. Clearly, I(r} and hence T„depends
on the form of the cutoff. For d~4 our choice
does not actually suffice to make I(0) finite in (21).
However, only the combination [I(r) —I(0)] enters
into the calculations of the critical exponent y (see
below) and this is well defined. To obtain a more
realistic estimate of the shift in T, we may replace
our cutoff by the original cutoff I q I & 1 to obtain

r, -r= —4u+, (d+2)(1-d ')I(r)+O(uo). (2o) where
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r(o) —r(r)
r

dQ

(q'+ q')(r+ q'+ q')

= ——(1 —r '~ )+O(1), (25)

(T —T,) ~ r [1 —9K4uo lnr + O(e ) ] =r (26}

with

I/y = 1 —QK4uo+ O(f ). (27)

We thus confirm, to order e, form (5) of 1
with r~ (T —T,)". The actual value of y still de-
pends on uo; the determination of uo will be dis-
cussed in Sec. IV.

where e=4 —d-0. The left-hand side of (24} is,
by Eq. (3}, equal to k(T —T,)/Jv . Expanding (24)
in powers of a, assuming uo=O(e}, and neglecting
terms of order & now gives

III. TWO-SPIN CORRELATIONS

We turn now to the case of q, WO. Since the in-
tegral (18) appears in Eq. (16) for any value of q,
it is easy to see that our choice of r in Eq. (20),
ensures that the uo and the ro-r terms in Eq. (16)
cancel for any value of q. Therefore, to order E,
we also have

r"(q, r) = (r+ q'+ q'}-'[6.s (q q'/q')]+ O(e')

(28)
with rt-'c(T —T,)". This confirms the conclusions
of I. The uo terms in Eq. (16) will give correc-
tions of order e both to r (namely, to T, and to y)
and to the q dependence of I' . We shall restrict
our attention to the latter, by considering only the
critical-point q dependence of I' (q, 0). Since
uo =0(e), we may calculate all the integrals in the
last term of (16) at d =4 and with r =0. Further-
more, the terms with q =0 in this expression will
contribute only to the susceptibility (i.e. , to
ro r} -It .is sufficient, therefore, to consider the
expression

F'~(q, O) =G (q, o)+32uo Z G"(q, o)G" ( —q, o)
y66 n

x [G"'(q, + qa+q, 0) —G"'(q&+ q2, 0)]+2G" (q,

G"'(q„o)G'"(q o)
'3

0)G' ( —q, 0)
~

G (q„o)G""(q„O)

x(G'"(tt, tt, ~ it, Dt —G'"(tt, t(„0(])~ 0( ,'}. (29)

The integrals which appear here are calculated in detail in the Appendix. The result to order q'lnq is
given in Eqs. (A9) and (Alo). Using this result in Eq. (29}, for 0&q « I [so that we can ignore q in the
denominator of G (q, o), and so that q Ilnql »q ], we finally find

I' (q, 0) = ~ 5„(t —
2 [1+~~K,uolnq+O(uolnq, u02)]= '~

2.„ (30)

with the exponent p given by

q = sat K42u', + O(u,'). (31)

Thus, we obtain the standard q dependence for the transverse correlation function, the only change from
the usual Heisenberg model results coming from the angular-dependent factor 5 z

—(q'q /q ) and from the
value of g.

IV. FOUR-SPIN CORRELATIONS

To complete our calculation of the critical indices we still need the value of uo for which the scaling
forms are valid. Following Wilson, we obtain uo by calculating u„, which, however, now needs to be de-
fined in a somewhat different way. Consider first the four-spin correlation function [Eq. (8)]. Using the
same graphs as in I we now find, for small enough values of Iq, I, iq2l, Iqs I, and Iq4l,

t'""ti„i., tt. ,i...t = — .t.~.*t-'(""t-'(.~ "t-'t- "t-'It"

esto q~ &~k q~ ~q ~ Gt ((q r)G c( q r)
~a &s &4 u& i



3346 AMNON AHARONY

where

z
BB (q4 42 yf2 q4 I

1
Fupxp, sg44 ~q ~q ~q ~q Gag( )G4q(

~
) O( 2)

~ff fn qy q2 qs
(32)

F~S75
qy

Fo,8y5, frf
f

Fa8r5, off, &vf q~ q~
2

q
0

q
t

+[2 permutations, (aPy5)-(nyP5), (o.Py5)- {n5Py)], (33}

q1 qi 5 2q2 5 qsqs 5 q4q4

+ [5 permutations, (apy5)- (42yp5), (c25py), (py425), (t}5oy), (y542p)], (34)

q2q2 qsqs q4q4

+ [11 permutations of (42py5)]. {35}

The limiting behavior of I "' for small values of q& to q4 is evidently governed by the angular functions
F;, defined in Eqs. (33)-(35).

A detailed calculation of the integrals which appear in Eq. (32} for d = 4 (see the formulas of Appendix B
of I) gives

l G (q, r)G" ( —q, r) = [—', 5 85ye+24 (5u 5 8+yp5n 5 y885+a 588y)]K 4 2 4 2

4 K4 ['5 8'5 8+ fp (5 8'5 4 + 5,858„+5,„58,)]lnr + 0(& lnr, 1), (35}

where we have neglected terms of order 1/g, etc.
Using this expression in (32) gives, after simple
algebra,

(q4y q2y %2y &14~ r}

F I q~ ~q ~q q~cc up+ j p

&& [1+17K up lnr+ O(u,'lnr, up) ] (37)

As anticipated, this is in precise accord with the
fixed-point value u* found in I.

V. DISCUSSION

ith the value of up found in (41) we can now ex-
plicitly write the results, (27), (31) and (21), for
the exponents y and g, and for the critical temper-
ature. We find

for q; «r.
We can therefore define the analog to Wilson's

u„by writing

(38)

1/y = 1 —
24 e + 0(8 ),

q=(20/3 172)e +O(e') =0.023' +O(e ),

k(T, —Tp)/Jv2 = -$ e+ O(e2).

(42)

(43)

(44}

where we then must have

us = up[1 + 17K4up lnr + O(up lnr, up)].

We can now reproduce Wilson's scaling argu-
ments for u„. Since all the angular-dependent
functions depend only on q/4f, they remain invariant.
Thus, as is to be expected, the previous result
still holds, that is

Again, the value of y confirms the calculations
in I. Assuming the usual scaling relations we can
repeat the calculations of Sec. X of I, to find the
other standard exponents; these are not changed
much by introducing p explicitly, since the value
is rather small. The present value of g is to be
compared with that for the corresponding (4 —e)-
component Heisenberg model, with short-range
interactions, which is

u ~ ~ " '"' ~ " "' = 1+—,
'

~ ln~+ O(~') (40) yf„= (3/12 )e + O(e ) = 0. 021e + O(B ). (45)

K4up =
24 e + O(e ) . (41)

Comparing these last two expression immediate-
ly yields a unique value of up for which the scaling
relation (40) holds, namely,

We see that the introduction of dipole-dipole
forces increases the value of p, away from the re-
sult of phenomenological theory, namely, g = 0.

As already noted in I, the available experiments
are far from having the precision necessary to
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compare values of q. Nonetheless, it would be
well worthwhile to try and improve experimental
techniques to a point where measurements of the
correlation function at T, could verify the present
predictions.
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APPENDIX: CALCULATION OF SECOND-ORDER TERMS

Consider first the basic integral combination

and to change the variables of integration in order
to eliminate the angular dependence in the denom-
inators. For example, the first integral is

1
qi(1+ qi}(qi+q}'[1+(qi+q}']

q I
~

1

~ 2
1

~
1

~ 2
~ ~

1
I 2

1 1 1

;, d 1 a,'(q, +q)' 1 ~ (q, ~ ql')

1

d& q1+&q 2+& 1 Z q2 2

0

—[1 —n+ (q, + nq)'+ n(1 —n)q']-'

—[a+ (q, + nq)'+ n(1 —n)q'] '

+ [1+(q, + nq)'+ n(1 —a}q'] ') . (A3)

For d =4, after changing variables to q =q1+ nq,
this becomes

1 1 —n
1, =1(, l(

dn —1a[n(1 —n)] ~1, ~ n(1 —n)]"0

0 1
+ln ~+ a(1 —n) —ln ~+a(1 —n)

q q

I '(q) =Z G"(q„0)G~'(q, + q, 0) = —K, lnq + 0(1). (A4)
6 q

(AB) '= f dn[(1 —a)A+nB] i (A2)

1
q~i(1+ q', )(q, +q)'[1+ (q, + q)']

qa.

q', (1+q', ) (q, + q}'[1+(q, + q)']
1

(qi+ qi ' qa)qi (qi+ q}'; qi(1+qi)(qi+q}'Il+ (qi+q)']
'

In the calculation of any of the above integrals it
is efficacious to use the standard identity

~e shall see below that we need I (q) only to
order lnq, and hence the approximation in the last
step of (A4) is sufficiently accurate.

This procedure for calculating integrals is even
more valuable for integrals such as the second
term in (Al), where there is also an angular de-
pendence in the numerator. Such integrals are
very difficult to calculate without the change of
variables; in fact, it was the impossibility of mak-
ing a change of variables with a limited range of
integrations that prevented us from obtaining g to
second order by the methods of I. The second in
tegral in (Al) is

a, (1 ~ a, )(q, q) [1~ (q, q) ] aa .[- ~ dad] 1 a (q q) 1 (q, ~ q) }
(1 —a) '

I dn Ã a', '
dq,

' 'a n'q'q ) [[(1—n) q', (1 —n)uq']'

—[(1—n)a+ n+q', + (1 —a)nq'] ' —[1 —n+q', + (1 —a)nq'] '+ [1+q', + (1 —n)nq'] ']

= —4K4 5 g lnq+0 1 —
2 +0(q )

qa S

q

gsQ

(A5)

Is'(q) = (q', +q, q)qi(qi+q)'
q', (1+q', )(q, +q)'[1+ (q, +q)']

= ——,
'

K45n() lnq+ O(1) (A6)

(in the last step, d=4 was explicitly used}. Sim-
ilarly,

and hence

1

I (q) = ——K45 [][lnq+ O(1)]— z + O(q ).
q

(AV}

We now turn to the calculation of the integral
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z "(q) =5 [I
G"(q„o)c""(q„o)

ref a i

& [G'"(q, + q~+ q, 0) —G'"(q, + q2, 0)]

G"'(q„o)[P'(q, + q) —P'(q, )] . (AS)
Q

This integral may be evaluated by expanding
1n(qz+q) and (q&+ q")(q,'+ q')/(qz+ q) in Taylor
series in 2(q, q) (q~~+q~) ', and keeping only terms
which are of order q'/q& (where q q is counted as

q, etc. ). These are the only terms which will
finally yield results of order q in@. This is also

the reason for our approximations in Eqs. (A4)-
(AS). Finally, for d=4,

(q) =K4q lnq(8 56, +p, q q'/q~)+O(q2). (A9)

The other necessary combination in (29) is similar-
ly obtained:

~'( ) =Z ' G"'(q„o)G'"(q„o)
1

&& [G""(q&+qm+ q, 0) —G""(q~+~, 0) ]

=K4q lnq(2 5~+~q q'/q )+ O(q~). (Alo)
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