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The exact renormalization-group approach of Wilson is used to study the critical behavior for
T & T„. H = 0, and small «& 0, of an isotropic ferromagnetic system in d = 4 —«dimensions,
with exchange and dipolar interactions between d -component spins. Normal isotropic Heisenberg
behavior with 1/y —1/2v —1 —«/4 (to first order in «) is retained for t = (T/T, ) —1 «G/Ja",
where G = (g p,~) /2 measures the strength of the dipole-dipole interactions, J is the short-range

exchange parameter, and a is the lattice spacing. When t ~ —G/J a", where P —1 + e/4, crossover
occurs to a characteristic dipolar behavior described by a new fixed point of the recursion relations.
For t «6/Jc~ one thus finds 1/y —1/2v —1 —9e/34 (and, for spina of ad components,

1/y = 1/2v = 1 —[(6n + 3)/2(6n + 11)]e, which agrees with spherical-model results when a - ao).
In the dipolar regime the spin-correlation function &s qs q ) has a factor f8 z —(q q~/q')], which

suppresses longitudinal spin fluctuations; the susceptibilities g display the expected demagnetization
effects. It is found that dipolar anistropies deriving from the lattice structure produce weak instabilities
which should be hard to detect although their effects are not fully elucidated. Extensions of the results
to nonzero magnetic fields, and to anistropic exchange interactions are indicated; the experimental
situation is mentioned briefly.

I. INTRODUCTION

It has been recognized for some time that suf-
ficiently long-ranged interactions between the
spins in a magnetic spin system should lead to
values for critical exponents differing from those
appropriate to short-range interactions. Even for
short-range interactions, the range of the interac-
tion is correlated with the size of the critical region
outside which the classical Landau or phenomeno-
logical theory for phase transitions applies. ' The
addition of a long-range interaction might thus be
expected to bring the critical behavior of a system
closer to the classical one. In fact, a calculation
of the critical exponents of a system with an inter-
action t'o '(S; ' S&), using renormalization-group
techniques, shows that the classical behavior is
achieved for v& 2d, and gives the deviation of the
critical exponents from the classical values as a
function of (o- —,'d) for o&2.

Since a dipole-dipole coupling between spins
exists in all real magnetic materials, it Inight be
expected that on approach to the critical point, the
behavior of such materials should, owing to the
long range of the dipole interactions, deviate from
that obtained with the short-range interaction. For
the case of uniaxial ferroelectrics with dipolar in-
teractions, Larkin and Khmel'nitskii' have, in-
deed, predicted only logarithmic deviations from
the classical theory.

Dipole-dipole interactions have been investigated
in the past by several approaches. The most com-
monly used procedure has been based on Van
Vleck's moment expansion. Another method used

to obtain the ground state of the system is that of
Luttinger and Tisza. ' These authors find that the
ground state of a pure dipole-dipole system on an
fcc lattice is antiferromagnetic.

One of the difficulties arising with dipole-dipole
interactions is the shape-dependence of some of the

thermodynamic properties. This can be viewed as
a result of the conditional convergence of d-dimen-
sional lattice sums of the type

x x'@|ss Q as d ii U
+ fi X fr+as
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The familiar practical case is, of course, d= 3.
These shape dependences have been investigated by
Levy using diagrammatic techniques. As Levy
notes, the technical difficulties occur only when one
has expressions that contain the difference between
two diverging sums. The shape dependence of the
susceptibility, as found by Levy for the Ising case,
and by Marquard for the general case, is of the
form predicted by macroscopic theory, namely,
the observed susceptibility g is given by

)( i(H, T) =X (H, T) —4,
where d follows from (I), and X(H, T) is "intrin-
sic" to the system, i. e. , shape independent. (In
the general case, X, X, and 4 are tensors and X

'
is the inverse tensor of )(. ) The sum 4 is related
to the demagnetization factor for the shape of the
system (which must be an ellipsoid if simple re-
sults are to apply).

As noted already by Lorentz, the sum 4 van-
ishes for cubic symmetry in spherical samples.
In ze«external field, no shape dependence of the
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free energy is to be expected even below T„pre-
sumably because the system always breaks up into
domains. In the present paper we shall consider
only the case of zero field above T„so that we
shall not have to worry about the shape dependence
(except when discussing the susceptibility).

Another approach to the study of dipole-dipole
interactions was proposed by Lax' who used the
spherical model approximation. The critical be-
havior of the system can be derived from a form
similar to that obtained for the spherical model
with short-range forces. The only way the dipole-
dipole interactions enter is through the eigenvalues
& (p) of a 3&&3 matrixA s(p), which is the Fourier
transform of the dipole-dipole interaction. Lax
does not discuss the explicit momentum dependence
of these eigenvalues, but he suggests that behavior
near the critical point should be similar to that of
the short-range case.

In all the work reviewed above, no direct attempt
has been made to find the critical exponents for a
system which has both isotropic (Heisenberg) fer-
romagnetic exchange forces and dipole-dipole in-
teractions. The recent work of Wilson"'+ on the
renormalization- group approach to critical- point
behavior now makes it possible to attack this im-
portant question, and to investigate the deviations
from the short-range behavior due to the existence
of dipole-dipole forces. In the present paper we
consider this problem for cubic lattices in zero
field, above T„and calculate the critical ex-
ponents for d = 4- E dimensions, to lowest order
in E. These first-order results already serve to
reveal the differences between systems with and
without dipole-dipole interactions. We find that
for a temperature range close enough to T„lla
the critical exponents change.

In Sec. II we discuss the appropriate Hamiltonian
for the system, and show that it is necessary to go
beyond the leading low- momentum representation
of the dipolar interactions. The Gaussian model
for the system is considered in Sec. GI; a modi-
fied spin-spin correlation function results, which
has a complicated angular dependence. In Sec. IV
we introduce the continuous-spin s model, and
obtain and discuss the exact renormalization-group
recursion formulas for the case of a fully isotropic
system in which terms of only cubic symmetry, de-
riving from the lattice structure, are neglected or
are absent. Section V contains a derivation of the
crossover exponent Q, which determines the change
over from the scaling behavior characteristic of
the d-dimensional short- range Heisenberg fixed
point to that of a new fixed point, which is deter-
mined by the isotropic dipole-dipole interactions.
This fixed point is discussed further in Sec. VI,
where the new value of the critical exponent v for
the range of correlation is derived. The suscepti-

bility, its exponent, and the correlation functions
are considered in further detail in Sec. VII. Sec-
tion VIII is devoted to the derivation of the more
complicated recursion relations required to deal
with the complete anisotropic dipolar interactions.
The fixed points of these equations are discussed
in Sec. IX, where an unexpected instability, albeit
rather weak, is discovered with respect to the
anisotropic coupling. Finally, Sec. X includes a
discussion of possible extensions of the model and
a brief reference to the experimental situation.

Appendix A includes an extension of Ewald's
method to the calculation of the d-dimensional
Fourier transform of the general dipole-dipole
potential; Appendix B includes a list of angular
integrals needed in these types of calculations;
and Appendix C includes a separate investigation
of the nd-component model and the spherical model,
which also arises as the limit n -. ' Finally,
in Appendix D an initial discussion of the case of
uniaxial dipolar interactions is presented.

In following papers the Feynman-graph technique
introduced by Wilson, is used to calculate the ex-
ponent g to second order in a, and the effects of
dipolar interactions on the critical behavior of
antiferromagnets and of systems with anisotropic
exchange interactions are studied.

II. HAMII. TONIAN

The simplest Hamiltonian with isotropic Heisen-
berg exchange and dipolar interactions may be writ-
ten

where sa= (sg) is a classical spin vector of unit
length located at the site R of a d-dimensional lat-
tice of cubic symmetry and coordination number c.
The vectors 5 of length a (the lattice spacing) run
over the c nearest-neighbor sites of the origin site.
It will be convenient in most places to measure all
distances in units of a or, equivalently, to set
a = 1. As usual J denotes the exchange energy,
while G = ~(gps) measures the strength of the di-
pole-dipole interactions (in terms of the Bohr mag-
neton p, ~ and the gyromagnetic ratio g; magnetic
monopoles are normalized so that their "Coulomb"
potential is m /r' ). Note that the ratio G/Ja' is
the basic dimensionless parameter. Since the
dipole-dipole interaction, when written out in full,
involves scalar products such as sg (R —R'), the
dimensionality of the spin vectors should equal
that of the space, namely, d.

A natural extension of the model to a system in
which the order parameter will have more com-
ponents, may be constructed by associating n
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"subcomponents" s" (i = 1, 2, . . . , n) with each
principal spin component s' (o.= 1, . . . , d). In the
limit n» ~ such an nd-component model is ex-
pected to yield spherical model results. "' This
model is discussed in Appendix C.

For the short-range terms in (3) we have taken
a fully isotropic d-component (or, more general-
ly, nd-component) ferromagnetic Heisenberg in-
teraction. The extension to anisotropic interac-
tions may be made, '4 but will complicate all the
expressions. It is simpler in the first instance
to consider any explicit anisotropic terms as per-
turbations about our present results.

In order to apply the renormalization group ap-
proach in a straightforward way we extend the
model by allowing continuous spins of unbounded
magnitude"' ' ' which, however, are restricted
by a single-spin weighting factor of the form
exp[ —Q(&lt)], where Q(s) contains quadratic and

quartic powers. Within this framework the parti-
tion function is

Z= -e x

where f; denotes integration over all the spin
variables &-„and where the reduced Hamiltonian
is

3C= — ——Z sfa-uQ (s~) —vga (s-„)4. (5)
B R R

The s-„and the (sl) terms in (5) are the usual iso-
tropic weight factors used previously in the s
model, when rotational invariance exists. The
last term $, (sI) is similar to the one used by
Wilson and Fisher' for two spin components. [In
fact, our v is equivalent to their (uo- —,'go). ] This
term is added here for two purposes; One is simi-
lar to that of Wilson and Fisher, namely, to try
to obtain fixed points with different symmetries
from the model. The other is to allow for those
terms in the Hamiltonian that have only cubic sym-
metry, instead of full rotational symmetry. Such
terms arise directly from dipolar interactions on
a lattice and are propagated by the renormaliza-
tion group recursion relations as will be discussed
in some detail below.

It is convenient to transform the spins to new

variables,

o-=pe 's'*SR x=R/a, (5)

where q is a dimensionless wave vector with, for a
simple cubic lattice, I q I —m.

For a cubic lattice, the Hamiltonian then be-
comes approximately

(1——,'d 'q')Q o o ,"

+Ga A ~go-o'g, 7
eg

where j&isanabbreviationfor(2v) ~fd'q .Thefirst
term in (7) represents the short-range interaction to
order q . (Retention of the q and higher-order terms
should not alter the chars. cter of our results. '5) The
dipole-dipole function A ~(q) is defined by

where the prime denotes omission of the term with

x, = 0. This function is the analog of Lax's' ten-
sor X(q). In contrast to the numerical methods
suggested by Lax, we propose to consider the ex-
act behavior of A'~(q) for small values of ) q l.
Using Ewald's method for the summation of the
first few terms in a Taylor series of (8) in powers
of the q, we find, from Appendix A,

qe 8
A (q)=a& ~

—asq q —[as+a4q —as(q') ]5 z

+ O(q, (0 ), (0 ) (0 ) ), (9)

where the a, are constants. The terms of order
q and (q') were ignored in the work of Larkin and
Khmel'nitzkii and of Vaks, Larkin, and Pikin, '
who have considered some aspects of the dipole-
dipole interactions. As we shall see, this may,
in fact, lead to correct results, but it clearly re-
quires justification. As mentioned above the terms
of order q', (q ), etc. , will, by virtue of the re-
normalization group recursion, correspond to ir-
relevant variables, and hence may be ignored as
regards leading order critical behavior. "

Note that the cubic (as against full-rotational)
syrnrnetry of the system is reflected only through
the coefficient a, in Eq. (9). For "fully isotropic"
systems with complete rotational symmetry, such
as a "liquid ferrornagnet, " and maybe even for
randomly oriented systems, such as crystalline
powders, we expect that this anisotropic term may
be neglected. As we shall see later, however, this
term, when it is present, plays an important role
in determining the critical behavior of the system.

The fact that A ~(q) is defined by a poorly conver-
gent series is reflected through the nonuniqueness
of the limit of A ~(q) as q-0. Precisely at q=0,
the value of A'~(0) should coincide with —@'~ of
Eq. (1), and therefore should be shape dependent.
Noting from Eq. (A17) of Appendix A that a~ = das,
the limit of Ao™(q)as q-0 may assume any value
in the range —a, d to a, (I —d ) depending on the
direction from which q approaches zero. (For the
simple cubic lattice a, = 4m, and the usual range of
values of the demagnetization factor is recovered. )
The limiting behavior of A ~(q) as q- 0, is im-
portant for the case of finite magnetic fields;
this may be seen, e.g. , in the expressions
given by Lax' who extracts the shape dependence
by claiming that the combination [-A ~(0)+ 4vL ~]

is shape independent. Here I is the shape-de-
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pendent depolarization tensor, which is related to
4'o of Eq. (1). However, it is not really clear
how Lax takes the limit q-0 in order to obtain
his A o(0).

Except for the special value of A~o(q) at q = 0,
there are no shape-dependent terms in the Hamil-
tonian '.K, and we may therefore proceed as normal-
ly. Neglecting fourth-order terms in q, the Ham-
iltonian in (5) now becomes

t = (T —T,)/T, «G/Ja, (15)

1
K,=-- Z

2 o8

with

q qg

U ' o(q)a; a; —Z (uo+6 o"o)
Ot8

I 8
Oq Oqio'qZ"-q qt qz (16)

q2

whereas for t » G/Ja the normal d-component
isotropic- Heisenberg- model behavior will be real-
ized. Finally, for J &0, we can rescale the spins
o; so that K becomes

where

g'»» $ 2r
a y 8 8

0'qOq Gq (Tq q q1 2
qi

(10) (q) = [&o+ q +fo(q ) ) 6 o

+go(q q'/q')-koq q', (17)

Uo (q)= r+ q + (q') 5 o

2t"a,

B B2G, q q'
+

k
(ai-aoq ) ~, (11)

B

where

with

rkoT keT —(cJ+ 2a, Ga ') ke(T —To)
J 2cd J- 2a4Ga J

(18)

r= 1 —(cd+ 2aoGa )/koT,

J= -,'cd 'J- 2a4, |"=Qa

(12)

(13)

kBTo = cJ+ 2a3 Ga

and, with J defined as in (13),

(19)

G/Ja' «1. (14)

As we shall see, this will lead to new critical be-
havior for

TABLE I. Coefficients in the Taylor expansion of
A 8(q) for three&imensional cubic lattices.

Clearly, the sign of the interaction parameter
J can have a crucial effect on the behavior of the
system. If the dipole-dipole interaction is much
stronger than the exchange interaction, and if a4
is positive (see Table I) then' will be negative,
and we shall have to be careful in using the Gaus-
sian approximation for the system, since the posi-
tivity of the matrix Uoo(q) may be in question.
(This might be related to the fact that for a pure
dipole-dipole interaction, Luttinger and Tisza
find an antiferromagnetic ground state. ) If Ga '
is much larger than J, the (q ) term becomes the
important one, and as we shaQ see, this will need
special treatment. In the present investigation we
shall assume that

2aoG 2a~G „2aoG
0 o t 80 -o i 0Ja Ja Ja

uo=u - vo= v
(20)

III. GAUSSIAN MODEL

Ot 81 q q
o (q)= o o- oro+ q

1 qq'
ro+ go+ (1 —ho)q q

(22)

In the Gaussian model one ignores the o terms
in (16), i.e. , we set uo=vo=0. The spin-spin cor-
relation function in this case is easily seen to be

(o;o;.)o=Zo f a;a~&. e o=5(q+q')G o(q), (21)

where I, denotes an integral over all spins, Moo is
given by (16) with uo=vo=0, Zo= J, e+o, and G o(q)
is the inverse dxd matrix of Uo' (q). This in-
verse matrix has a simple form when fo=O, and
since, under the assumption (14), we have fo «1,
we shall expand G in a power series in fo. For
fo=O, and q40, we find

Lattice

V~

CEf

C3

CE2

a4

a~

1
4~
4
3'

1.2755
0. 1649
1.7700

bcc

43
3'/'~
3i /2

1.341
—0.247

0.632

fcc

12

2W /2

4~2'»

2. 002
—0.237

1.289

Note that this expression does not apply for q= 0
because of the undefined value of U, ' o(q) at this
point (see Sec. VII). Since by (20) the condition
a, = 0 implies fo= 0, the function Goo(q) represents
the complete classical correlation function for the
fully isotropic case exemplified by the "liquid fer-
romagnet" mentioned after (9). We thus consider
the anisotropic deviations from full rotational
symmetry as perturbations. We shall see in Sec.
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IX, however, that this may not be completely
satisfactory when fo is not small.

If we use the full expression (17), with fp IO,
we find the propagator can be written explicitly as

gag 1
ro+q'+fo(q )'

(go-hpqo)q qo" I»" (»»»-"»»')o)(»» ~ »' f»(»»)'I) '

(23)
0 =~ (q")'/[ro q'+fo(q")'].

C (y") = (y ) 5,o
—[(y ) + (y ) (y ) +(y ) ]y y

~ [(» )' ~ (»')'IZ(»')' E(»")')
r 'r

2
xy y Q(y )' y y . (24c)

r

This expansion is valid only for fo «1. For larger
values, the full propagator (23) must be used, al-
though (14) may then not be valid.

Now for a given wave vector q one can define the
longitudinal spin component as

»» =»», 't»(»(I =K,» /Z(»

Correspondingly, the longitudinal spin fluctuations
are described by the correlation function

(a; a ~o )=Z Z q'qo (af a;)/q
fg B

=~ ~ q q'G "(4)/q'. (25)

It is then straightforward to check that the lead-
ing forms in (24) imply the vanishing of the longi-
tudinal correlation function [up to terms of O(go~)].

Clearly, for fo, ho, go«ro, the correlation
function becomes simply 5 o/(rp+q ) which is
the usual result for the d-component Heisenberg
Gaussian model. Note that the spin fluctuations
are quite isotropic. For nonzerogo, and for tem-
peratures close enough to T„we have ro«go,
and so the second term in (22) can be neglected
for small enough values of )q), explicitly for
q «go. In this range, by expanding (23) in powers
of fp, one finds

foq fl o

ro+q q ro+q )q )

+, op C +O(fo) +O(Ão)»
(ro+ q [(|(

with

»»"(»')=(» )'(».»- ((» )' ~ (»')'-&(»')')»»'
(24b)

This is particularly easy to see in the limit q
«r p/f p where the factor in large square brackets
reduces to 6 o- (q qo/q ). Thus, we find that for
temperatures close to the critical point T, = To
(ro= 0), the longitudinal spin fluctuations of long
wavelength are strongly suppressed. There will,
of course, remain relatively small contributions
from the second term in (22), but these will not
diverge at T, . This in turn may be related to the
fact that appropriate susceptibilities do not diverge
at T, for dipolar materials f

It is clear from (24) that the magnitude of the
remaining, transverse spin fluctuations are still
determined by 1/ro. Quite generally, (24) may
be written asymptotically in the scaled form

((I) »» D 1/2 (ro q « g'o),+g- & g )q) qr 2

q ro '
)q)

(26)

which enables one to recognize ro' as the correla-
tion length $(T). Thus, the critical exponent v for
the Gaussian case is &, as in the normal classical
theory for short-range interactions. At the criti-
cal point itself (T= T,= Tp, ro= 0), the scaling func-
tion becomes merely the critical amplitude

D"(";y") = 5.o yy' fo&-"(y")-
+f'C "(y")+o0'.), (27)

where 8 o(y") and C o(y") were defined in (24). As
indicated above, this amplitude can vanish only for
longitudinal combinations of the form g gz y, yo D'o.
Thus, in general, we have G o(q)-I/qo and so may
conclude that the exponent q vanishes (as expected
for a Gaussian model).

In the following paper' we discuss the detailed
form of the correlations for the full s~ model and
show that in leading orders in &, the form of the
angular dependence is similar, and that only the
values of v and g have to be modified.

IV. RENORMALIZATION-GROUP RECURSION FORMULAS

We now proceed to derive the renormalization-
group recursion formulas. Since, by (17), the in-
teraction Upoo(q) includes the terms qiqo/q,
q qg, etc. , we cannot use Wilson's approximate
recursion relation; ' accordingly we have to
work with the exact approach. As explained in
Ref. 15, we take the (I integrals in (16) to be over
the range (q [ & 1 (instead of the appropriate cell
in the reciprocal lattice Iq [ & p), with the justifica-
tion that only small values of )q ) will play an im-
portant role. (This results in an effective rescal-
ing of all spins by a factor p"" ', of ro and go by
w, and of up and vo by a factor p' 4. )

At each step of renormalization we integrate all
momenta in the range 5 ' & )q ) & 1, change the vari-
ables of integration to q' = bq, and rescale the spin
variables to o;- fo,'g. Starting from the expres-
sion (16) for R„we thus obtain a sequence of re-
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(b) FIG. 1. Set of graphs
needed for calculation to
first and second order in

ul and vl.

(c)

2 -dXl, )= —2&l b

Z J ( ~ b'q' b'f (q )'lb. '
—0g le I & 1

duced Hamiltonians Kl of the same form, with rl,
f, , h, , g, , u» and v, replacing rp fp hp gp up,
and vo. The terms with ul and v, will be con-
sidered as small perturbations, their contributions
being evaluated by a Feynman-graph expansion
using the propagator (23). We thus find

qe 8
+ (g, —b h(q ) p &pro a + graphs, (28)

where, to second order in u, and v, we have to
consider the graphs shown in Fig. 1.

It is evident from (24) that the terms involving

f, will make all the expressions rather complicated;
however, we shall see that they may have a sig-
nificant effect on the results. Accordingly, we
shall divide our treatment of the recursion rela-
tions into two parts, considering first the case of
fp= 0, i. e. , full isotropy. As noted in the dis-
cussion of expression (5), the parameter v in the
four-spin part of the effective Hamiltonian, also
breaks the rotational symmetry; but, as we shall
demonstrate later, it only enters for fpqb 0. At
this point, therefore, we set fp= vp= 0 and restrict
attention to the parameters r, , h, , g, , and u„.
this means that we can take G ~ equal to Go~ as
defined in (22). We shall return to f, and v, in
Sec. VIII.

We first investigate the form of the pair inter-
action potential Up" ' P(q). From the graphs (a)
and (d) of Fig. 1, we find

n g

U,"'
( b)t=(',bb' (q, + b q ) b, q ~ (q, —b b)q', , ~ q, Z G (i)~)q G'b(i), ))

—32u, Z [G P(qz)G"'(qp}G+(qz+qp+b 'q)+2G'"(qz)G'"(qp)G '(qz+qp+b 'q)], (29)
yp5 cg

r)+z = 0 r b '[r, + 4u, Pad '(d+ 2)

x [(d —1)A,p+A p,]+0(u))j b (3o)

where the basic integrals A~=A (r, , g, , h, ) are
defined by

1 " 'd

(r+q )"[r+g+(1—h)q ]
while the numerical coefficient Kd is defined in
(B4).

We now consider the contributions of graph (d}
of Fig. 1. A typical term is

where f4 denotes the integration (2)z) fdaq over the
range 1» )q) &b '. Clearly, the first-order terms,
coming from graph (a) of Fig. 1 will not affect the

q dependence of Up"' P(q} and, hence, will con-
tribute only to r„,. The second-order term, aris-
ing from graph (d) of Fig. 1 contributes to h„, and
also produces a term proportional to q, which will
modify the coefficient of q in U2", this, in turn,
determines the scale factor &, which is always
chosen so that this coefficient remains fixed equal
to unity.

The contributions of the (a) terms of Fig. 1 are
readily computed, using the formulas for the an-
gular integrals discussed in Appendix B. (See
also Ref. 20. ) The result for r„, is

x"P~ (q) =x "&(q) —x "&(0)

f G "(qz)G (qp)

[G"(qz+ qp+ b 'q) —G"(qz+ qp)] ~ (33}

Since we are interested only in the terms involv-
ing (q q /q ) and q, (q'}, or q qp, it is sufficient
to study (33) for very small values of (q i. Now
the ranges of integration are 0&b '& )q, ), )q2) &1;
hence, G' (q, + q, + b 'q) is analytic in q for small
)q ). Thus, we get no contribution to g„,. It
seems clear that this argument extends to higher-
order diagrams. Accordingly, we obtain simply

2 -d
g l+f ~ l b gl ~ (34)

Next we examine a few typical terms in (33).
Since the contribution X ~+ is to be multiplied by
terms of order u', , and since we will assume u,
tobe sma11, namely, of order a=4-d, we shall take

X"~(q)= —f f G-"(-qz) G" (q }
Q2

& G "(qz+ q, + b '
q) .

For q= 0, this will give a contribution of order
u, to (30). We are most interested in the contribu-
tion to the q-dependent parts of Upi™P(q), and there-
fore it is sufficient to look at
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x= 0 and compute the integrals at d =4. The sim-
plest term in (33) is then

X1 = —5B5„56
q

1
)(i '6 4 '4)' (i ~ i )') ' (36)

g, b " [1+PK4u, lnb]q =1', b "lq, (38)

where the exponent g, is defined to second order in
u) by

q) P(gl ) h))K4ui (39)

and where the coefficient P is a function of g,
and h, which enter through the propagator [see (22)
and (23)] via integrals as A„(r, g, h) defined in
(31) (but recall that r has been set equal to zero
in these terms). In order that the coefficient of
q in X, remains equal to unity we choose the scale
factor g, to satisfy

g2 bd+2 1) (4o)

A fuller calculation of the exponent 4} (to be pre-
sented elsewhere ) shows that P(g, , h, ) is positive
in the regions of interest and indeed, approximate-

which occurs also in the standard short-range prob-
lem.

Assuming Iq ) to be small, so that in effect
Iq, + b 'q ) &b ', the q2 integration gives

1 1

(i ~ 4 4 'i)' (i, i)')
1 1 1 2 -1~ 2= BK4

~b ~ —, 4,6 +lnq, —ln(ql+b q)b q, ~q1+ b q~

(36}
and hence to order q we find

X1 = &5 B5 „5 6K4q 6 lnb. (37)

Similar contributions proportional to q come from
other parts of (35). Finally, after performing the
summations on y and 5 the q term in (29) becomes

= —$ K45& (5 Bq —q qB) b lnb, (41)

where the calculation was performed with similar
approximations, and the additional assumption
b» 1, which enables one to ignore b as compared
with b lnb. The expression in (41) will contribute
both to g, through the q term, and to h„„ through
the q qB part. Finally, after summing over all the
contributions of this kind, we obtain, for the q~qB

terms in (29), the result

—g, b q q [hl —P,K4u, lnb],

where P, is again a function of g& and h&. When
(40) is used, we obtain the recursion relation

h „l= b ")[h, —P,K4u, lnb] . (42)

As regards the g& and h& dependence of P1we note
that the full expression for a term as (41) involves,
in place of one factor I/ql, the form

1 1 g —hq21

g+ (1-h)q'l gl[g+ (1-h)ql]

as may be seen from (22). It follows from these
observations (a) that P, (g, h) vanishes wheng=h
= 0, and (b) that Pl is linear ing and h for small g
and h. For large g, which will be relevant later,
P, becomes independent of both g and h, and hence
reduces to a number P, of order unity. Similar
remarks apply to P(g, h).

At this stage we have derived all the recursion
formulas which are related to UB"B(q) for the fully
isotropic case. Next we must obtain the recursion
formula for u, . Graph (b) of Fig. 1 is trivial, and
we go on to consider graph (c) of that figure: its
contribution to (28) is

ly equal to 8(d + 2) = 48 for g = 0, and to 26-', for
gazoo ~

Another typical term in (33) is

2
1

ql; 4, (i, i 4 'i)' (4 '44) }
2

r
G (ql) G (ql) oqoqq (7444 ~ o 4

4)4b-M 2

OBBByB5

rP

+4 G"'(qi)G (qi) . '„
a a

I y B 6 fM B4; 46 4;,.4;;.;..~ 4 G "4(q,)G "(q,) 4;4;, 4;..4;;, ;,.) . (43)
v tTss

1 41 "41' q"

Note that while the q, integrals are restricted by
1~ )q1) &b ', the integrals on q, q', q" run over
the full range Iq I & 1 (since o; is already renormal-
ized by t')).

A typical integral in (43) is (see Appendix B)
l J G(q)'(q )GBB( ) 6 6 d-l

x [(d —2)ABBB + 2ABi&]+ [d (d+ 2)] l

x (b„„b~ + 6 Bb~+ 6 6 b~)

x (AB()- 2All+A()B),
d d d (44}

where A„was defined in (31). On collecting up
terms to leading order in e (so that d = 4), the re-
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cursion formula for u& is found to be

urer= b [ur —2K~u, (17App+ 2Arr+ 5App)+ 0(ur)],
(45)

W'e are now in a position to study the fixed points
of the dipolar Hamiltonian for the fully isotropic
case f, = v, = 0. We start with (34), the recursion
relation for g, . With the choice of (40) for gr, this
recursion relation becomes

2» t)g)4(= b lg (46)

By (39), rtr is of order u, . Since ur will turn out to
approach a fixed-point value of order c, the ex-
ponent r)r is of order p . Accordingly, (46) has only
the two fixed points, g*= 0 and g*=~. Even a
small value of go will thus result in an exponential-
ly fast growth of g& as I increases. For go=0,
which by (20) also implies hp= fp= 0, the propagator
(23) becomes simply 5,p/(rp+q ), and we obtain the
known recursion relations for the isotropic d-com-
ponent Heisenberg model. ' These relations have
two fixed points, namely, the Gaussian fixed point

where we have used (40) for gr.
The formulas (30), (34), (42), and (45) constitute

the complete set of recursion relations for the co-
efficients r» g» h» and u, for p = 4- d small (and
for the fully isotropic case f, =v, = 0).

V. FIXED POINTS AND CROSSOVER EXPONENT

h(T, g)=t "&(g/t')= g ""&{g/t'), (52)

where Q is the crossover exponent' ' ' and, as in
(15), t= (T —T,)/T, .

Since the exponent v is known [by (50) for the
nontrivial fixed point, while v = —,for the Gaussian
point], it is sufficient for calculating rtr to obtain
the exponent vo = v/Q, which describes the in-
stability associated directly' with the dipolar
term g&. We may therefore also replace q, by
its fixed-point value, namely, the true exponent

In addition we observe that

8A io eAo1 4 4=App=App= lnb+ 0(p)

fixing n = 3. This suggests that n = d(= 4 —p) might
generally be a better description for the Heisen-
berg model; indeed, physically, the number of spin
components bears a direct relation to the spatial
dimensionality.

For small deviations of the parameters from the
fixed-point values given above, one may linearize
the recursion relations. Now the parameter g,
is coupled only to r, and u, through the A' (r, g, h)
terms in (30) and (45). Therefore, to study the in-
stability associated with g&, we may ignore the
equation for h, and simply put h, = h* = 0. Near
either of the fixed points mentioned, we expect the
correlation length to behave as

uP=v~=rP =g~=h*=f~= 0 (47) atr=r~=0(e) and g=h=0. (53)

2v= 1+ p+0(& )= 1+ 4e+0(e ),2 1 2 (50)

, e'+0(p')=Pe'+0(&') .2d+8 (51)

In what follows we shall refer to this fixed point as
the "Heisenberg fixed point. " It may be noted
parenthetically, that if one uses n=d=4 —e for the
three-dimensional Heisenberg model, and calcu-
lates to second order in e(= 1), the results are in
better numerical agreement with those found by
series expansions, than are the results obtained by

with classical exponents, and the nontrivial isotrop-
ic fixed point

g*=h*=fp=vp=O u*=e/48K rp= ——'e
t

(48)
up to correction of order a . To obtain the non-
trivial fixed point, we have taken d = 4 in (30) and
used the results

App=Arr=App= lnb& Arp=A01 p(l —b )

for r=g=h=0, (49)

which follow easily from the definition (31). The
corresponding critical exponents are, of course,
the same as may be obtained from Refs. 14 and
15 by putting n = d = 4- E, namely,

Ar = b [1—4K&ur'(d + 2) lnb]+ 0(e ) (56)

and has the eigenvector A= 1, B= 0. It thus cor-
responds to the temperature instability (associated
with rp) and leads to the previously quoted values
of the exponent v. The second eigenvalue is sim-
ply A2=b ", and corresponds to the eigenvector
A = -d '+ 0(e), B = 1, namely to the perturbation
Hamiltonian

(57)

This is recognized just as the long-wave expression
forthedipole-dipole interactions [see the formulas
(7), (9), and (A17)]. From A& we immediately

Finally then, the necessary linearized recursion
relations are, to leading order,

r„r= b "[r,—4 K4(d + 2)u" lnb (r, + d "g,)],
(54)

gt+g —& gi ~

(We could, of course, set d = 4 here since we are
working only to order e. ) If we search for solu-
tions of the forms,

&rr =r, —r*=AA', &gr —-gr -g~=gr=BA', (55)

we immediately find two eigenvalues A. The first
of these is



CRITICAL BEHAVIOR OF MAGNETS WITH. . . I. . . 3331

have

vo = lnb/InA, = $1+~+ O(l) )] (58)

and hence for the nontrivial Heisenberg fixed point,
we find

To obtain the corresponding dipolar exponents we
linearize (30) about this set of fixed point values
[using (53) once more]. To order e it is sufficient
to consider the r, equation alone, with the other
parameters at their fixed point values. This yields

(t) = v/vg = 1+ Ge+ O(t ) . (59) rbr„, =r„,-r*=b [1—,~ elnb+O(e )]abbr, . (65)

For the Gaussian fixed point v~ = v = 2, and so Q = 1.
From this it is clear that when

From the corresponding eigenvalue A, we finally
conclude

(60) 2v= 21nb/InA= 1+~3~ e+ O(e ). ( 66)

the effect of the dipole-dipole interactions cannot
be ignored, and one has to investigate the full non-
linear set of recursion relations.

VI. FULLY ISOTROPIC DIPOLAR BEHAVIOR

As noted above it follows from (34) that any non-
zero initial value of the dipolar amplitude param-
eter go( &0) implies that gl diverges to infinity asl- so that, close to T„a new form of critical
behavior takes over. To study this, consider all
the remaining recursion relations; the parameter
gl enters the equations only through the integrals
A„„(r, , g, , h, ) defined in (31) and through the simi-
lar coefficients P(g, , h, ), P,(g, , h, ). Clearly as
g, -~ all the integrals A'„ involving g, (i.e. , for
m &0}will approach zero and will hence drop out
of the equations. Similarly P(g» h, ), and P,(g»
h, ), approach numbers P and P, . Equivalently,
we may then ignore the second term of order 1/go
in the expression (22) for the propagator. The
consequence is that we obtain a new set of reduced
recursion relations corresponding to g, =g*= ~.
To determine the characteristic dipolar exponents
we examine the fixed point (r*, h*, u*) of these re-
duced equations.

Consider first the relation (42) for h„assuming
u* to be of order e yields

The significance of this value will be discussed
further below, but it is worth remarking that it is
very close to the isotropic result (50) despite the
significant difference in the corresponding values
of u*. This is principally because the integrals
for graphs (a) and (c) both change by nearly the
same factor wheng, goes from 0 to ~.

(67)

where K is now the full expression in (16). If lq [

and ( q'
( are smaller than b ', we can replace &0

in (67) by I(.', and appropriately renormalize the
spins, to show

2l

5(q+q') I' ~(q) =— o,r, o,l;.e"l
l fy

b
l (d 24)) 144(mb (l))b»t Gb (»»4

)

where g is the geometric mean of the f, for j = 1,
2, . . . , l. Hence we find

I" (l(q) —b'(2 G I' l)(b' ) (68)

VII. DIPOLAR BEHAVIOR OF CORRELATION FUNCTION
AND OF SUSCEPTIBILITY

As in (21), the two-spin correlation function
I' ~(q} is defined generally by

l}h*=—PlK4u* +O(e ),
where (7=(7~ is determined by (39). Since l) is
thence of order c this yields

h4'= —(P,/P)+ O(e),

(61)

(62)

where I', ~(q) is the correlation function calculated
with R,. In the present section we will still con-
sider the fully isotropic case, namely, f, =v, =0.
In the definition corresponding to (67) we can now

develop in a Taylor series in u„ thus finding

I"~( )=b" "' G'~(b' )

f lnb f
34K4A2O(r = 0) 34K4

(63)

so that h* is of order unity. However, Ill appears
only in the same propagator factors [g, + r, + (1
—h, ) q ] ' as does g„since these expressions van-
ish in the dipolar limit g, -~ we may also ignore
h, in the sequel.

Taking the limit g —~ in (45) and in (30), and
using (49), leads to a new "dipolar fixed point"

—4 Z G (b'4)G,'"(— ' b)Et)J G,"(4')
y 6

~ 2ZG;"(b't))G", (-b't))J( G4(t)')) G(„',)
(69)

where G, ~ is now given by (22) with r, , g, , and h,
replacing ro, go, and ho. Now if l is large enough,
so thatgl »1, and if q 4 0, we may ignore the terms
in Gl ~(b'q) containing g, and take

and

18K4u"A, o(r=0)
O( 2) p O( 3)

1 —b
(64)

q q'
Kl+q

(70)

At criticality, i. e. , when T=T„ the parameter



3332 A. AHARONY AND M. E. FISHER

r, approaches r* as l-~, and G, B(4|) is always large
for small q. On the other hand, if there is an ini-
tial departure, however small, from criticality, as
in the case T & T„ then r, will eventually start to
deviate rapidly from the fixed point. In the linear
region, where (65) applies, r, will vary according
to

«) =rr -r*- (T- Tc) A'. (Vl)

Ar) =A(T T,)A'+ er) —= r, + er, . (73)

One may proceed with the iteration of (V2) until
r& = 1. At this stage the reduced correlation length

$) = $(r), u, ) will also be of order unity. "' Since
by construction of the renormalization group one
has 4=b '$(rp up) and )p=((rp up) (T T ) ",
the exponent v is determined by the value of A, as
in (66). When rP= 1 the propagator G, B becomes
of order (1+ er,'+q') ', so that the term proportion-
al to u, in (69) indeed gives contributions only of
order E. In fact, if this expression for 6, ~ is ex-
panded in powers of &r,' one finds that the first-
order term exactly cancels the u, terms in (69).
This will be shown more generally in Paper II. '
In order to demonstrate its plausibility, suppose
b» 1. In this case we may assume that &, , is
still in the linear region, namely, r', , = 0, and

hence,

Ar) &=r, & A(T —T,) A —=-A r, = A

The recursion relation (V2) then yields

I+er, =dr, =b "A 1 ——I B, +O(e )
2 „( Qa' 1+6 2

34 b +A

and hence finally

Finally, 4&
&

grows too large and leaves the linear
region. However, the full recursion formulas may
be integrated to yield the functional dependence of
r, on I, on (T —T,), and on the other variables.
The eigenvalue of the linearized recursion relation
for u, is b '= 1+ O(e) so that if up —u*, u, will devi-
ate from the fixed point much less rapidly than r, .
Similar arguments show that we may assume u„
h $ and g, ' to be close to their fixed point values.
With the replacements u ) = u*= 0 (e), h, = b*, and

g&
-—~, the recursion relation for r, becomes

Ar„,= b' "[1—18K4u*lnb] Ar)

+ 9ff4b "u4'r) ln [(1+r, )/(1+ b'r, )]+ O(e ).
(72)

From this we see that r& deviates from the expo-
nential form (T —T,)A', of (71), only by terms of
order &. Thus, we write

&&[1+$4 e(l-In2)(1+q') '+O(e )]. (75)

Returning to (69) we may replace b '
by 4/)p=) '

as explained, and assume (q$) «1, to find

r"(;) b"=* "G-; ();)-'~", () -",')
7')+ q

x [1—r, ln(1+ r, ')]+ O(e')

2 2 5~~- 2 1+Os (76)

where, as before, t= (T/T, ) —1 and

f.(T) = $ p/t",
while

y= (2 —)))v.

(77)

(78)

y=l+~B4 &+ O(e') . (80)

Up to thxs point we have considered only the case
qe 0. For q= Omost of theprevious discussionstill
applies, but (70) is no longer valid [see the note
after Eq. (22)]. Instead, we must now write

The constant C depends on all the irrelevant vari-
ables. The correction terms become important
when ($q) increases to order unity. Indeed when
T- T, and $ -~ these terms must modify the
(I+ $ q )

' behavior to ($ q )
'"~ so that at the

critical point I" ((I) varies as 1/q
Note that in (76) we have used only the first term

in the expression (22) for the propagator G) B. It
is instructive to examine the other part of t"

&
which

involves g& and h&. On assuming u, = u*, g, = q
etc. , and using (46) for g, , the second term in (22)
gives the additional contribution

b l (2-g)

r, +g, +(1—h, )b 'q' q'

Ct" qeq8

I+Ct "gp+(I —h, )$ q q
B B B ~ (V9)

Now h, changes slowly with /, and has a finite fixed-
point value. Hence we may assume h, —b* [see
E(I. (62)]. Clearly, for 0&q $ «1, the expression
in (V9) does not diverge at T, It is impo. rtant,
however, for the calculation of correlations be-
tween the longitudinal spin components. As a re-
sult of these considerations we conclude that (76)
remains valid for the transverse fluctuations when
0&) q «1 even when the effects of theg and h

corrections are taken into account.
The relation (78) confirms the standard scaling

relation' ' and, in combination with (66), gives

r, = 1 —B4e (I —ln2) (74) GnB(0) [U)(0)-1] aB (81)

and

&., -(e e'iv'))
where U,' B(0) is the correct shape-dependent val-
ue of U," B((I) at (1=0, namely [by (17), (9), (A17),
(8), and (1)],
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U' (0) = r J 5 +g, ())

where

(82) dependent of i and is diagonal. Therefore, we have

(84)

]))
4= —5 ]J+

—A 4(0)=—5 4
— CJN4. (83)

1 l, /J
1 (d —2)

1 d a)

We thus return to the question of the shape depen-
dence of the susceptibility. As usual, we shall
assume that the sample has ellipsoidal boundaries.
With this assumption, 4 4, defined in (1), is in-

where + depends ond, 4, and a&, and hence

6, (0) = 5 J][rJ +g J XP ] (85)

When Eq. (46) is used for g, , (74) for r, , and re-
peating the previous arguments, we now find that
the susceptibility tensor has the form

X
5' (0)=5 55" "'5', (0)=5 55' " G, (0) — ~ (1—r, ) (1~, ')] ~ G(5)j

5+g]
5

y &(2~&
eB

1 Qe(1 —ln2) 9e(1 —ln2)
1 ~ 5 J(2 5)Jg Q 34(1 5J \4 (Jg) x0-) 34(1 5 J(8-)JJ 50(x)B + ( ) (86)

so that finally

I/}(
'

GG C t"+go&'+ O(e ) . (87)

I

(2), has been checked here to order e. A dis-
cussion of the a terms will be presented in Paper
II.

The omitted constant of the proportionality arises
through the spin rescaling introduced in (16) and is
equal to

})xsT/(5 cd-1J 2u @44-4) 4/1+4/2

The amplitude C in (87) is the same as in (76). We
shall show in Paper II (Ref. 19}that all the higher-
order terms in e in (8V) are in fact canceled by
a mechanism similar to the one discussed above.

Thus, g will diverge only if XP=0. (This oc-
curs in three dimensions, for example, for a cy-
lindrical sample with n parallel to the cylinder
axis. ) In all other cases, the exponent y describes
only the approach of (}f'"}' togo&" as T -T,. How-

ever, if one corrects the experimental data by
subtracting the demagnetizing field from the ex-
ternal field in the usual way, one obtains only the
(T —T,)"part on the right-hand side of (8V); one
can thus measure y directly, as in the absence of
dipolar interaction. But even so, y is not just
a limit of T 4(q) as q- 0, because the angular de-
pendence of I"4(q} remains singular. The usual
methods of observing I' 4(q) are through neutron
scattering experiments which, for small momen-
tum transfer, measure only spin flucutations
which are transverse to q. In addition, one has
to be careful in interpreting these experiments,
since the relaxation time of the spin fluctuations
are also governed by the dipole-dipole interactions
in the region we are considering. The difficulties
in making a comparison of y with the limit of
I" (q) in materials for which dipole-dipole forces
are important, has been noticed recently by Ar-
rott, Heinrich, and Noakes. ~ We feel that the
present analysis clarifies some of these difficul-
ties.

The validity of the macroscopic expectation '

VIII. RECURSION RELATIONS FOR ANISOTROPIC
DIPOLAR INTERACTIONS

As seen in Appendix A, the value of the coef-
ficient a, of the term 5 4(q') in the dipolar inter-
action matrix (9) is nonzero for the standard cubic
lattices in three dimensions. However, we are
treating the problem near four dimensions and,
without further calculation, it is not clear how a,
depends on the dimensionality. It might, indeed,
be small compared to e. Barring such a possibil-
ity, however, our treatment up to this point ap-
plies only to a fully isotropic or "liquid" ferro-
magnet. For the general case of a cubic lattice
we must consider both the parameters fo and v,
arising in Eqs. (16) and (1V). Consequently, the
full propagator equation (23) must be used and,
since the terms proportional to f0 will induce an
anisotropic four-spin coupling, we must replace
u, at every graphical vertex by u, + 6o~v» where
o.'and P are the indices of the two pairs of lines
entering into that vertex. When the steps of Sec.
IV are repeated, the recursion relation (30) for
r, now becomes

r„4=I,b (r, +4&4d [(d+2)u, +3v, ]

x{(d—l)A&0+AOJ- (d+ 2) f,

x[(d —1)A40 + 3/to'4 ]+O(f,))+ O(u, , u,v„v, )).
(89)

The recursion relation (34) for g, is unaffected by
the inclusion of f, and v, . However, relations (38)
and (42) for I J and )JJ do have to be modified, since
u, will be replaced everywhere by a quadratic form
in u, and v, . Thus, (39) becomes

J}J PK4(uJ + P uJ vJ + P v J ) (90)
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while (42) is replaced by

hlgl= b "l[h, -PlKa(ul +P'lulvl +Pl V l)lnb] (91}

where P', P", P'„and P", are also functions of g
and of h (we take r = 0 here), which will attain defi-
nite limits of order unity wheng and h approach
zero or g-~. Owing to the complexity of the cal-
culations, however, we have not attempted to ob-

tain complete expressions for these coefficients.
We must now also derive the recursion relation

for f, . A simple symmetry argument shows that
if 600, as defined in Ell. (22), is used everywhere
in the calculation of the graph (d) of Fig. 1, instead
of the full propagator G, no (q ) 5 a terms will
be generated except for those already included in
the hq qa term. To first order in f, one therefore
has to consider integrals such as

= —5& a lnb{5 a[q —(q ) ]+-,q q ). (92)
1 1 1 fKa

qa ill+&la+ lI %i+%a

(Note that all the numerical coefficients follow sim-
ply from the angular integration formulas dis-
cussed in Appendix B for d = 4. ) Summing all the
contributions of order fu, we finally fiad that the

(q ) b, a term in (29) yields, to leading order,

flail=

0 l b ' 'fl[1+ PaKa(ul+ Pau, v, +Pa'v', ) Inb]

f, fl —[r1, PaKa—(ul+Paulvl+Pa'v, )llnb), (93)

where we have used (38) and (90) to eliminate g, .
The coefficients P2, P2, and P2' againdepend ongf
and h, but have not been calculated explicitly. Now

if the factor in curly brackets is less than unity,
fl will decay with increasing I so that f0 represents
an irrelevant variable; conversely if the factor
exceeds unity, f, would be unstable under the re-
cursion and would correspond to a relevant vari-
able. Clearly, this point will be determined by
the relative signs and magnitudes of the coefficients
P, P', and P" in (90) and Pa, Pa, and P'a' in (93).
For the particular terms we have studied the form-
er are positive and dominate. We believe this
will remain true when all the terms are included.
In support we first note that the contributions not
calculated explicitly involve products of a larger
number of components q q~q ~ ~ ~; as can be seen
from Appendix B the values of the integrals de-
crease with increasing numbers of components.
Secondly, a full Feynman-graph calculation' '

of the exponent g, which is of a similar character
and includes contributions from the same graphs,
indicates that the sign of P is the same as the sign
of the partial contribution (37), namely, positive.
Although P2 may well remain positive it is reason-
able to expect P &Pa (and similarly for Pa, Pa',
etc. ), since the integrals for Pa involve products of
more components than those for P and hence should
be smaller (as explained). Indeed, a comparison of
(37) and (92) shows that the magnitude of the con-
tribution to Pa is $l of the corresponding contribu-

tion to P. In the vicinity of the Heisenberg fixed
point (48) we have in fact been able to calculate '
P and Pa (by expanding all expressions to first
order in h and in f and taking g = 0). We find that
for this region P(g = 0, h = 0)= 48, Pa(g = 0, h = 0)
= 3, so that P does indeed exceed P2. In sum-
mary, the recursion relation (93) may be written

fl.l=b "'fl+ (ulf l& ulf» ul Vlf l) i (94)

+Ellflul "l+Eoafl" l]+0(flul ul~ ulvl ~
~ ~ ~ )~

(95)
er 2 Iv$ )= 5 Lv& —Fjjujv, —Fmvi+F20f, u/

+Fllfr ul Vl+ FOa flVl]+ O(fl ill, ul i ulVl ~ . . . }~

(96)
where the coefficients E&&, E&&, F&&, and F

&&
are

linear combinations of the integrals A~ for d = 4
and 6 and n, m = 0, 1, 2, 3, and so depend on r, , g, ,
and h, . The explicit formulas for these coefficients
are presented in Table II. The expression for
Eaa(r, , g, , h, ) has already appeared in (45). Note

where q& is a quadratic form in u, and in v, in
which we expect the coefficient of u, to be positive.
As a matter of fact, if this presumption failed we
could, alternatively, choose to normalize g, through
the (q ) term in Ua"a, instead of through the q
term. This would interchange the roles of g and

(a} —a}), and we could then proceed in the same way.
However, this possibility seems unlikely and we
shall not pursue it further. It should also be noted
that since q and q are of order E, our first-order
results will remain valid as far as the equation for
f, is concerned.

We consider next the graph (c) of Fig. 1. The
typical integral (44) now has an additional term,
of order f, and the sums over components in (43)
now contain varying factors (u, + v, b a) (u, + v, b, a)
instead of the constant u, . Finally, we find

er 2 2 I 2u l+ l —b iu l Ea0 u l E l lvullE Qa v l + Eaaf l u!
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TABLE II. Coefficients for the I& and y& recursion
relations.

E20 = 2K4(17A20+ 2Aff + 5A02)

Efi 4K4(~20 Afi + 2A02)

E pp
= SK4()App —Afi + )Ats}

1
E2p =5K4(56A3p —17A2f +39Ai2+36Ap3)

Eff =f pK4(67A3p 37A2f + 24Af2+ 66A03)

j f
E02 =20K4(18430 —9A2f —27Af 2+ 18A03)

Ff f =4K4(7A2p+4Aff +A02)

F02 =K4(21A2p + 12Af f + 3Ap2)

f
F2p =5K4(- 7A3Q —11A2f + 12Af 2+ 6AQ3)

Fff =5'(31A30-19A2f + 78Af2+3QAp3)
f

Fp2 =fQK4(57A30 12A2f + 99Aj2 + 36AQ3)

ent interest is in ferromagnets with dipolar inter-
actions, go 0. Accordingly, the crossover from
these fixed points, discussed in Sec. V, will still
occur; but we have to determine the behavior to
which the system actually crosses over as t be-
comes much less than gas. To do so, we search
for additional fixed points of the recursion rela-
tions. For g =f= h = 0, the addition of the param-
eter v adds one new fixed point, namely,

g*=h*=f*= us=0, v*= s/36K, r = je-,
(97)

which corresponds simply to n=d=4 —a uncoiled
Ising models with appropriate exponents. ' Con-
versely, for gpP 0, the fixed-point condition g = ~
applies, and by Eq. (31) we can ignore all integrals

with m 0. The isotropic dipolar fixed point,
discussed in Sec. VI, is then still a fixed point of
the new recursion formulas, with

the presence in (96) of a term proportional to
f, u„ this serves to generate the anisotropic four-
spin coupling with parameter v&, even if vo= 0.

f III vs 0

b*= -Pi/P, us = e/34K4, r* = prs .—
(98)

IX. BEHA VIOR WITH ANISOTROPIC INTERACTIONS

The complete set or recursion relations for
anisotropic dipolar interactions, involving the
parameters r„g„h„f„u„and v, are (89) (with
d=4), (34), (91), (93), (95), and (96). We will dis-
cuss, as far as we are able, the various fixed
points and their characters. The results are sum-
marized in Table III.

First note that the Gaussian and Heisenberg fixed
points, (47) and (48), are still solutions of the equa-
tions; both are clearly unstable with respect to the
interaction q q /q with parameter g, . Even for
gg 0, the Gaus sian fixed point is unstable with re-
spect to both u, and v, (with eigenvalues A = b') It.
turns out, however, that the Heisenberg fixed
point is also unstable with respect to v, . Our pres-

An additional anisotropic dipolar fixed point can
arise from a simultaneous solution of (93), (95),
and (96). To first order in f, this means that us

and v* must satisfy

i7(u*, v*) =0; (99)

56x+42x +(f/5)(14 —62x —57m )
68+ 40@+3 x' —(f/5)(112+ 67&+ 9&') '

where we have used Table II, set A„=0 for m &0,
and noted that A30=+go when r- 0. This relation

note by (90), (93), and (94) that pi, is a quadratic
form in u, and in v, although the numerical values
of the coefficients are not explicitly known. If (99)
has a solution, with us pP 0 and with the ratio x= v*/
us real, then we can divide (95) by (96) to obtain

TABLE III. Fixed points of the anisotropic-dipolar model.

Operators and corresponding parameters

Fixed
point Two-spin o fo ~ Four-spin afof. ofrros ~

Note
n=d=4-~

q q/q' -q q' (q )'&oo

K4y

Gaussian
Heisenberg
Ising
Isotropic
dipolar
Anisotropic
dipolar
(two
possibilities)

0
f
pE

—~t
9

34

9
34~+ 0(f*)

-Pf/P

—Pf/P+ 0(f~) If~
) «1

O(1) &

0
f

48

0

f
;4~+ 0(y+)

0
0

36

7

f020 &f
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x =
ppp fP + 0(f+ ) . (101)

Hence we also have foal«1 or t'v*l«u*. This ef-
fectively brings us back close to the isotropic di-
polar fixed point (98); the previous values thus ap-
ply with corrections of order f*, specifically,

may be solved for f*, and then one can substitute
v* = n4* into (95) and solve for u*. Of course this
procedure is subject to our original perturbation
assumption that f«1; thus it will be justified only
if it actually yields a solution f*«1. Iff is indeed
much less than unity the only value of x allowed by
(100) is

defining the critical temperature T,. The initial
values gp, fp, and hp are fixed by the dipolar inter-
actions in the original Hamiltonian through (20).

As mentioned, we may choose uo to be of order
e. It is a.iso natural to take vp = 0; but when fp 44 0
the recursion relation (96) leads to v, = O(fp44p)
=O(e') for small /. Furthermore, all the fixed
points discussed above are found to be unstable
with respect to v. Specifically, at the Gaussian
fixed point the eigenvalue is simply A„= b' &1. At
the Heisenberg fixed point an explicit second-order
calculation shows that

A„=b' ~" (Heisenberg n=d=4 —e). (104)

gP oo g)4 2 444f P hP — ~ + O(f P)
P

30

(102)

For the isotropic dipolar fixed point the recursion
relation (96) yields

u+= +0 +, r+= —
3 E'+0

4

The critical exponents derived in Secs. VI and VII
will also have corrections of order f*; but if f~ is
sufficiently small, these may be neglected.

The existence of the fixed point (102) is, of
course, still subject to the existence of an appro-
priate small real root x of the quadratic equation
(99). If, in actuality, there is no such solution
with f*«1, there still may be a, fixed point with a
relatively large value of f*. However, our basic
expansion (24) for the propagator would then be no
longer valid, and the full propagator (23) would
have to be used.

With the information summarized in Table III
before us, we may now discuss the evolution of the
various parameters as l increases. Clearly, g,
will always tend rapidly to infinity. The initial
values of uo and of vo are characteristic of the con-
tinuous-spin model, and we are effectively free to
choose them. If both uo and vo are chosen of order
E, it is clear from the recursion relations that u,
and v, will change relatively slowly with l, specifi-
cally at rates proportional to c. By the same token
the rates of changes of f, and of h, will be only of
order 6

The behavior of r„on the other hand, depends
strongly on the initial value ro. For most initial
values„r, will grow rapidly and indefinitely with
an eigenvalue of order b . The value of ro is, of
course, fixed by the temperature T via (18). From
(89) we see that only for rp in the vicinity of

4 p= —3K4(1 —b ) (vp+2gp)

x [3A &p
+Ap4 —p fp(App +App)]

——3&4(44p+ p4jp)[3 —p fp+ (1 +gp —hp)

—pfp(I+gp —hp) '] (103)

will r, change slowly with /, the changes then being
of order e. Relation (103) may thus be taken as

A'„f, up«1, up=0(e). (106)

Conversely, g& will grow much more rapidly,
namely, as A'=b "". Since A„=l+O(e), it fol-
lows that for rp = r p and fp «1 the renormalized
Hamiltonian will stay close to the isotropic dipolar
fixed point for many iterations before the v insta-
bility becomes effective. As explained in Sec. VII,
when T & T„ the renormalization procedure is to

A„=b'(I -F„u*)= b" ' (isotropic dipolar),
(105)

where we have used (49) and the values listed in
Tables II and III. Finally, if there is an anisotropic
dipolar fixed point with I f*l«1, this last value
applies up to corrections of order fp.

This instability with respect to v is somewhat
unexpected. If the connection between n, the num-
ber of spin components, and the dimensionality d
is relaxed and short-range forces are considered,
it is found that to order E there is no instability
when n& 4. ' Since the physically relevant case is
n = 3 (and d = 3), one might suspect that there is no
such instability in real systems. However, the
only route presently open to decide this point seems
to be the calculation of E and E' corrections in
(105) and (104). Until that is done, we a,re re-
stricted to small e and must face the consequences
of the instability.

Thus, even though v, changes relatively slowly
with / it will eventually grow large. This in turn
may lead either to a new anisotropic dipolar fixed
point with, presumably, f*=O(1), or to a diver-
gence of v, to ~. If the limit is +~, the recursion
relations could yield another fixed point; converse-
ly, if v~ - —~ the system probably exhibits a first-
order transition in place of a true critical point.
This is the situation in the analogous two-com-
ponent "Baxter-like" model of Wilson and Fisher. '

Nevertheless, if we start with v0=0, the effects
of v, = A'„fpup- A'J'pp will remain unfelt in the other
recursion relations provided v, «a or
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be repeated until the (reduced) correlation length

~r = ~(&ri gr~ trr~ fr~ u» "r) becomes of order unity

(i.e. , of order the lattice spacing a); at this stage,
see (73), we also have

As before, we conclude that if t=&T/T, -gr'rt~, with
rtr = 1+ 4 e given by (59), the observed behavior will
be of the normal Heisenberg character; conversely,
for t& go ~ crossover to dipolar behavior takes
place. Now, as observed, until v, becomes of
order c this behavior will remain of the simple
isotropic dipolar character discussed in Secs. VI
and VII. By eliminating I between (106) and (107)
we hence conclude that isotropic dipolar behavior
will be observed provided

A(T —T,) - t » (fouo)r~o ~

where

((r„=lnA„/lnA =fr

(108)

(109)

In evaluating this exponent we have used E(ls. (105),
(65), and (66). Por e ~ 1, we evidently have I/rtr„

11; since, by supposition, go is small, while, by
Table I, f0~ $go, the lower bound on (T —T,)/T,
imposed by (108) is very small indeed. In other
words, we may ultimately expect some crossover
of the form

((T, v) = t "X(fo uo /t O ") (110)

We have calculated the exponents g, v, and y and
checked the scaling relation between them [see E(I.
(78)] for fully isotropic dipolar interactions. The

where the exponent v takes the isotropic dipolar
value (66); but, owing to the small value of P„, it
should be hard to detect the implied change over to
nonisotropic behavior. What deviations do finally
occur, by way of further changes of exponents or
to a first-order transition remain, however, to be
investigated.

X. DISCUSSION

specific-heat exponent 0. can be evaluated by con-
sidering the energy-energy correlation function but
that requires further work. To obtain the expo-
nents P and 6 for the magnetization it is necessary
to repeat the calculations with the presence of a
magnetic field B= [B ], following the lines developed
by Brezin, Wallace, and Wilson. ' This amounts
to the addition of a term g, B rro to the initial
Hamiltonian Xo in (16), followed by a shifting of the
spin variables to pf = o; —M 5(q), where the mag-
netization components M are determined so that
(ppf) —= 0. This procedure yields a new set of inter-
action parameters, namely, the coefficients of

I f a
P J P4iP4~~-qi q.3 &

&1 ~2 1 2

and

c)t e g g

, ~, J;,&artrt, &rtr-ir-a, -r(,

which are then to be renormalized. The main dif-
ficulty then, as in the case of the anisotropic ex-
change interaction, ' is that wo in the equivalent of
(1?), now becomes dependent on the component
label er, and hence the simple expression (22) for
the propagator has to be replaced by a considerably
more complicated one [similar to (23) if the param-
eters r are close to one another].

The low-field low-temperature situation (T«T,)
has been discussed by Holstein and Primakoff, '
using spin-wave theory. They find a complicated
dependence of the magnetization in this region on
the magnetic field, which seems not to have the ex-
pected demagnetization form. Such complications
could still play a role when T is close to but below
T„' the question is still open.

Brezin, Wallace, and Wilson found that all the
two-exponent or hyperscaling-exponent relations, ' '
such as 2 T)=d(5 —1)-/(5+1), held at least to order
E' for short-range interactions. In order to esti-
mate the effects of the dipole-dipole interactions on
the other, uncalculated exponents it is reasonable
to assume that the hyperscaling relations still ap-
ply here. (Nevertheless, it would certainly be

TABLE 1V. Critical exponents for small &.

Exponent

1/2v

V=(2-q) v

0, =2-dv
d+2-g
d-2+g

P = tr(d &+r))r-

Classical
Isotropic short range
(d-component spins)

g2 + O(gs)

1 —g~+ O(~')

X+ ~&+ O(&2)

—$~r 0(er)+

3 + & + &-4&2 + O(&3)
ii

$ - Sr e+ 0(&r)
1
g-4z2+ O(&3)

Isotropic short range
and dipolar interactions

O(~2)

3. —3-4m+ O(e2)

&+~3 &+ O(&2)

—
34m + O(&2)
i

3+ ~+$e2 -2q+O(e3)

~ —i
—Vg+ O(g2)
2

3-4~+ O(e )
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valuable to check this explicitly. ) The results ob-
tained from our values for g and p, using the usual
exponent relations, are summarized in Table IV,
together with the previously known short-range
values. Evidently there are first-order changes in
all the exponents (except for q). The differences
are, however, surprisingly small amounting, for
example, only to +~«a in the susceptibility exponent

Contrary to what might have been expected, in
view of the long-range character of the dipolar
forces, on the basis of the calculations by Fisher,
Ma, and Nickel' for isotropic interaction potentials
of the form I/r '" (0 & c & 2), the values of y and v

are increased away from the classical values y=1
and v= a. However (accepting the hyperscaling
relations), the value of P does change towards the
classical value P = &, but only by ~»st. Of course,
it is by no means clear how large these differences
should be numerically for dipolar interactions in
three-dimensional systems (c = 1). Even so, our
results probably give a valid indication of the quali-
tative changes to be expected.

Also included in Table IV are the values of the
crossover exponent P„which describes the weak
instability of the isotropic behavior, dipolar or
otherwise, to four-spin cubically anisotropic inter-
actions. This instability was examined in Sec. IX
but it remains to elucidate its ultimate effects al-
though we anticipate that these will be very hard to
detect in practice owing to the small value of f„.
For completeness we mention again that the cross-
over from Heisenberg gehavior to isotropic-dipolar
behavior is described by an exponent ~t} = 1+«
+O(e ).

In contrast to the conclusions reached by Larkin
and Khmel'nitskii' for their uniaxial model, we do
not find only logarithmic deviations from classical
behavior. It is conceivable, however, that this
might be the case if the original dipole-dipole
forces are stronger than the isotropic exchange in-
teractions. The uniaxial situation is discussed
briefly along the present lines in Appendix D. It is
shown that, with a spatially isotropic renormaliza-
tion, the dipolar fixed point becomes Gaussian in
character for small e )0 (i. e. , d& 4); logarithmic
factors may then enter but they are not studied. (Note
that Larkin and Khmel'nitskii concluded there would
be logarithmic deviations from classical behavior for
d= 3.) This case is further discussed in Paper P. '~

It is clear from the form of the propagator
graphs involved, that the calculation of the & terms
for the exponents, along the present lines using the
recursion formulas, would be very complicated.
However, following Wilson, a direct Feynman

graph expansion may be used to calculate q to order
This will be presented in Paper II. '

The experimental situation has been discussed in
a preceding paper" (in which the results of the
present work were briefly summarized). It seems
that the theory should be relevant to a fairly large
group of ferromagnets such as the europium chal-
cogenides which have low transition temperatures.
The observed values of the exponent y range be-
tween 1.3 and 1.4, and hence cannot yet help in
judging the effects of dipole-dipole interactions.
[Our predictions from 1/y to order e are y = 1.36
with the dipole-dipole interaction and y = 1.33 for
the isotropic (4 —c)-component Heisenberg model. ]

As already noted at the end of Sec. VII, the
existing experimental measurements of the spin
fluctuations near T, are insufficient to check the
predicted angula, r dependence of I' ~(q). It would
certainly be interesting to have observational data
which could check this feature.

The formulas derived in the present paper are
useful for dealing with several other physical situ-
ations. The closest problem to that discussed
here, concerns the effects of dipolar interactions
on antiferromagnets, and the Van Vleck "dipolar"
model for explaining ferromagnetic anisotropy.
The principal difference between these cases and
the present one lies in the absence of a q q~/q'

term; as a result there are no changes in the stan-
dard critical exponents (see also Ref. 23). These
problems will be discussed in future publications.
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APPENDIX A: EWALD'S METHOD IN d DIMENSIONS

We want to calculate the Fourier transform

2
A' (q, x)= — ~ „s Z Ix, -xl' 'e""'""& (Al)

where the sum runs over all lattice sites except,
as indicated by the prime, the origin site x, =o.
Using the identity'

lx, -x l' '= ~ dp exp(- p'lx, -x l'" "), (A2)
0

we can write

a2 00 8A.8(q )= dp~ Zexpt-p'lx, -xl'" "+iq (x, -x)1 e"'+ ~(lxl''). (A3)
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Now the expression in braces in the first term is a
periodic function of x on the lattice, and hence can
be replaced by a Fourier sum over the reciprocal
lattice, with the coefficients

g(a) = v.' d'xZ exp[- p' Ix, —x I"'"
+ iq (x, -x )]e "))'~, (A4)

where " denotes a unit cell of the lattice containing
the origin, while v, is the volume per lattice site
and q„ is a vector of the reciprocal lattice.

Changing variables to x '=x -x„we obtain a sum
of integrals over the unit cells near x'=x, . This
sum is equivalent to an integral over the whole
space, namely,

g(h) =v.' J d'xexp[- p'Ixl'" "+i(q+q„) x]
= v.'lq+q.

I
'F,(p lq+q, I"'), (A5)

where

F (&) = J, y' 'dyf (y) exp(- e'y"' "),
in which

fg(y) = (2&)
+

y ~((fa g (y)

=4)Tsiny/y for d=3

=8w J,(y)/y for d=4.
Here J„(z) is a Bessel function, resulting from the
angular integral in (A5). Therefore, we obtain

Z exp[- p'Ix, -xl'" "+iq (x, -~ x)]

= v, '& lq+q„l 'F, (p I q+q I' ') . (A8)

The integrals over p in (A3) may now be divided
into two regions: from 0 to 8 and from R to ~
Using (A8) only for the first range, we find

&"(q, x)=v.'~(~ +ef)(e'+el)lq+qal '
h

x Gg(R
I
q+ q„ I ) e(

&' (q)=v, 'lql 'q'q G (R Iql )

+ v.'~ '(q +ff&)(ff'+a~) lq+(b I

'
h

&"(q)=aiq q'/e' a2q e'-
—[a, +a, q' —a, ((I')'] 5„
+0((e )', (0 )'(0')', 0', " ) (A14)

As already noted by Cohen and Keffer, who

present a detailed investigation of A ~(q) for d = 3,
the coefficients in (A14) may easily be expressed
as Ewald series; they clearly depend both on di-
mentionality and on the lattice structure. The
leading coefficient is given simply by

a, =v, 'G~(~) = (2/v, )in) f dxF~(x);

and its only dependence on the lattice structure is
through v, . Now by definition, the value of the
original dipole-dipole interaction vanishes at the
origin. This implies the relation

fA ~(q) d 'q = 0,

(A15)

(A16)

which immediately leads to the coefficient relations

x G~(R
I
q+ q„ I' ') -Z H'"()(x, )e" "~

j
82

('m 8~8~((x('')-)(';,"(x)). (A(3)
x 0

The primes on the summation signs indicate that
the terms with q„= 0 and with x, = 0 are to be
omitted, respectively. The expression (A13) gives
the same result for all values of R, but for applica-
tions a value of R is chosen which ensures that
both series converge rapidly.

It is easy to see that only the first term in (A13)
is nonanalytic in q near the origin. All the other
terms are analytic, and may be expanded in a Tay-
lor series about q=0. For cubic lattices, this
series may be written in the form

where

and

2
G~(z) =~ dxF, (x)

1T 0

2

H '&"(x)=R + H(R lxl ),

82

(A 9)

(A 10)

(A11)

a5=a2+da4, a, =da3. (A17)

Hence, the dependence of a, on the lattice structure
is also only through vp. Table I gives the values
of these coefficients for the three-dimensional
cubic lattices. (The results for fcc and bcc were
extracted from Ref. 30. ) In our units, the distance
between near neighbors is chosen as a= l.

APPENDIX B: SOME ANGULAR INTEGRALS

The integration over q space in d dimensions in-
volves expressions of the form

with

fl(*)= ~ f dye ' (A12)

On letting x- 0 [see Eq. (8)], we finally find

f= JIf(el= 2, ~ Jd'sf(i) (Bl)

In spherical coordinates, f may involve several
angles, so that
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f(a)=f(q, 8, q, 4 "),
and the integral becomes

(B2)
I m+& I n+& m+n+2

Hence we find

where

x( f'sm' '8-d8 f'sins sq -dq" ) ', (B3)

I- (K, f q' 'dq f sm' '8 d8 f sm' 'q dq " f (a) f' sin~ 8d8 =r(-,'(d-1)}I'(-,')/I'(-,'d) . (BV)

Denoting the angular part of the integral I by

sin" 8 d8

K —2 vs+I'(2 d) . (B4)

We specifically want to consider functions which
involve products of Cartesian components of q,
such as

f(~)=g(q)(q /q) (q'/q)". " . (B5)

From symmetry arguments it is clear that I will
vanish unless all exponents in (B5) are even. In
all such cases, the angular integrals may be per-
formed with the aid of the identity

J
m+1 n+1

sin 8 cos 8d8=+
2

' 2

x sin" 'y dp ~ ~ ~

we then find

-1
sin~ ~8d8

0

(B6)

qoql -~.,(t:08 e&- I;.-*e...eve)q2 aB

T

sin 8 d8
0

( = (cos'8& =
d (a = P= y= 5)q' d d+2

= (cos'8 sin'8 cos'q ) = 1
d(d+ 2)

(a=pay=5, a=y~p=5, or a=b~y=p)

=0 otherwise, (B10)

which can be rewritten

(
(q )'(q')'(q") 3c

q' d(d+2)(d+4)(d+6) '

where

(B13)

~soto 35 aas = casa 5 (a ~ p

=
d d 2)

(5 sb.s+5 .5ss+ 5.25.s } .
d d+2

Bll
Similarly, we obtain

((q )Yq"q'
q' d(d+2)(d+4)

"[3(baAs+ba. ss+basbs. }+65 sba. b 2]

(B12)
and, lastly

ri+, ——b [r, +6K4u, (2n+ 1)A,s(r, }+0(e )],

ul+4 b [u) —4K4 uj A20(3n+ 2 ) + O(e )]

Following the previous analysis we hence find

4K4u* = 2e/(6n+ 11),

and thence the r eigenvalue

(C2)

(C3)

(C4)

where G s(q) is still given by (23), and all the sums
of the form P should be replaced by the sums

As in the text, we consider only the
isotropic dipolar fixed point, and therefore we take
f2=vs=0. The only change in the recursion rela-
tions then results from a different counting of the
diagrams. The relations for x and for u, generaliz-
ing (30) and (45), are then

c ss= 3(a 44 P), c s" = 1(a 44 P44y) .
(814} A=b [1—[(6n+3)/(6n+11}]elnb},

which leads to
APPENDIX C: nd-COMPONENT MODEL

As noted in Sec. II, we may suppose the spin
vector has nd components s ', where the indices
a couple to the spatial coordinates as in (3) while 2

denotes another "internal" degree of freedom. We
then have a modified propagator, of the form

(C 1)

2v =1+[(6n+3)/2(6n+ 11)]4+O(e2) . (C6)

In the spherical model limit, ' n-~, and we ap-
proach the usual result

I/2v = 1 - 2 e, (C7)

which is, in fact, exact for 0&& &2. This confirms
Lax's assertion that the critical behavior in the
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spherical model is unchanged by the addition of
dipole -dipole interactions.

However, it must be remarked, that the instabil-
ity of the fixed point with respect to the parameter
v„discussed in Sec. VIII, still exists in the limit
n- ~, so that it is not clear from the present dis-
cussion what happens close enough to T,.

APPENDIX D: UNIAXIAL CASE

The Hamiltonian for the uniaxial case is equiva-
lent to (10), but with the summations over a and P
replaced by the single term with n = P = z. With the
appropriate normalizations we find

g 2

36o= —— ro+q +fo(q') +go — om;

r
—uo om;, o- o ~~ I, (Dl)

a

where ro, fo, go, and uo are defined in analogy to
(16) to (20). [Note that fo here replaces the former
combination (fo —bo). ]

For fo= go = 0 this Hamiltonian yields the usual
Ising model results (see, e. g. , Ref. 12). For go
0 0 we can easily see that (34) still holds, and with
(40) this again implies the recursion relation (46).
Hence, the only fixed point values of g are 0 or .
(However, we must note that this result is based
on a spatially isotroPic renormalization procedure.

Use of a different scaling rate in the z direction
could well change this result and lead to another
fixed point of physical relevance. )

The recursion relations for r and for u are now

r'=b' "[r+12u f G(q)dq],

u ' = b'[u —36u f G(q)G(- q) dq],

(D2)

(D3)

with the propagator

G(q) =[&+q'+f(q')'+ g(q, 'q)'1 ' (D4)

Assuming the arguments in Sec. VI to be valid
here also, we see that G(q) goes to zero for g-~
for all q with q'+0, hence all the integrals which
involve G will vanish in this limit, leading to the
result

that is, to a Gaussian fixed point.
The exact behavior near this fixed point can,

however, be affected by the rate of change of r,
and u, as g, approaches infinity. This may lead to
logarithmic corrections to the Gaussian-point ex-
ponents, such as found by Larkin and Khmel'nit-
skii. Logarithmic corrections of this sort have
been discussed by Wilson, "by Wegner, ' and by
Fisher, Ma, and Nickel. We will return to this
question in a later work.
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