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The time behavior of the spin operator S~(t) in the XY model is studied by a perturbative method.
The zeroth order, which truncates a certain zero-time commutator, is shown to be equivalent to a
molecular-field approximation. An ~»&ytic expression for the dynamic form factor is then obtained

which satisfies basic sum rules. Through the fluctuation-dissipation theorem the dynamic susceptibility

and other related physical quantities are also given. Within this zeroth-order approxir»tion there exists

a high-frequency collective mode at q'~2 J. This mode is undamped and is similar to the plasmon.

I. INTRODUCTION

Present theoretical attempts to understand dy-
namic behavior of lattice models of spin-exchange
systems such as the Heisenberg paramagnet are
largely semiphenomenological. They are more or
less limited to relating the fluctuation spectrum
to the first two moments of the spectral shape
function which can be exactly calculated at T = ~.
Recently, new methods have been proposed by
which these calculations can be extended to finite
temperatures.

Dynamic behavior is usually looked at in low-
and high-frequency regimes. In the low-frequency
regime (or hydrodynamic regime as is often re-
ferred to) the dominant behavior is believed to be
a diffusion process. Central to this notion is that
the total spin is a constant of motion, as it is for
the Heisenberg paramagnet, for example. Most
of current theoretical and experimental works such
as those concerning dynamic scaling laws fall in
this regime. In the high-frequency regime or col-
lisionless regime there seems to be no comparable
progress being made.

We remarked in an earlier paper that the S= &

XY paramagnet serves as an interesting model for
studying dynamic behavior since the total spin
(M" or M") is not a constant of motion. It appears,
therefore, that the dynamics of the XY paramag-
net may prove to be considerably different from
that of the Heisenberg paramagnet. In particular
in the low-frequency regime the dominant process
may not be diffusionlike. Also, since the total
spin is not conserved at long wavelengths, one can
distinguish in the XY paramagnet what is purely
kinematic from what is dynamic.

The principal quantity which we seek to obtain
is the dynamic form factor defined in Sec. III
which is fundamental to all dynamic processes.
The dynamic form factor satisfies certain well-

known basic sum rules. The difficulty in obtain-
ing an analytic expression for the dynamic form
factor is that the time-dependence of the operator
S~gt) cannot easily be reduced to a tractable form.
Thus, this direct approach is normally avoided.

We introduce here in this paper (Sec. IV) a pro-
cedure by which the time dependence of S~gt) can
be obtained approximately. Given in the Heisen-
berg representation, S„(t) can be expanded in terms
of successive zero-time commutators. Our pro-
cedure is to consider the commutator [3CO, 8"] in
a perturbative way such that in zeroth order it
represents a certain truncation of the commutator.
In succeeding orders the truncated portion is then
systematically included.

In this paper we explore in some detail the con-
sequence of the zeroth-order approximation which
is found to be equivalent to a molecular-field ap-
proximation. Within zeroth order we find that an
s,nalytic expression for S„.(t) can be easily given.
The result is then used to obtain the dynamic form
factor and, with aid of the fluctuation-dissipation
theorem, the dynamic susceptibility. Our result
for the dynamic susceptibility is found to be ex-
act in the high-frequency limit. In our second
paper' we shall consider the truncated portion of
the commutator as a correction to zeroth order
and study the physical basis of our truncation pro-
cedure.

II. XY PARAMAGNET

The XY paramagnet is described by the XY
Hamiltonian

Ko= —2Z Z (S",S"„.+S"„S~),
(.rr'&

where S„ is a spin operator (S= 2) at site r with
e=x, y, z, the sum is over nearest-neighbor pairs
(rr'), and/ is the exchange integral. The XF
Hamiltonian is believed to be a useful model for
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liquid helium-4 near the X transition and for cer-
tain ferro- and antiferromagnets. Some of the
static critical properties of this model are al-
ready found.

Since the Hamiltonian does not have spin exchange
in the longitudinal direction, the transverse total
spin M'= —mgs", and the longitudinal spin M'
= —mgs'„have considerably different dynamical
and static behavior. For example, the XY Hamil-
tonian does not commute with M" but it commutes
with M'. Hence, S„(t) has dynamic behavior at all
values of k, whereas S„.(t) ceases to be dynamical
at k= 0. On the other hand, it is the mean-square
fluctuation ((M*) ) which has a divergent behavior
as T- T,+ (with an exponent whose three-dimen-
sional value is about $). The mean-square fluctua-
tion &(M') ) is nondivergent and its most "singu-
lar" part behaves as 4T I". Thus, the order
parameter for the XY model is M and not M'. In
this paper we shall be concerned primarily with
the time-dependent behavior of the transverse spin
component S~f (t).

III. DYNAMIC FORM FACTOR AND SUM RULES

The dynamic form factor or spectral density
function, which is a fundamental quantity in both
theory and experiment, is defined' as

(k~)= J dt e ' ' (kt),

with

&' (kt)= (S-i(0)s~(t))
where in the usual way we have

Y"(k}=&s.„-s „-&- &s™„-)&s;}. (8)

v" (k) = ([S'„-.[X, Ss]]) .
(iii) Compressibility sum rule.

l 00

s '(k~)= x"(k),
CO

(10)

where )t '(k) is the static susceptibility. In an
earlier paper we have described the distinction
between Y '(k) and }t' (k). It follows from (ll}
that the dynamic form factor is required to satisfy
the symmetry relation

(k, —ur)= e ™& (kpo) .
IV. TRUNCATION OF COMMUTATORS AND ZEROTH-

ORDER APPROXIMATION

Since Sf does not commute with Xo at any value
of k, it is not a trivial matter to deduce the time
behavior of S„.(t). We introduce here a procedure
by which an approximate expression for the time
behavior can be obtained. From (4) one can write
Sf (t) in the following expansion form:

Sf (t) Kf + it [Xo& Sf]+ ['Xo& [Xp & Sf]]
(it )p x

+
8} [Ko, [Ro, [3Co Sf]]]+~ ~ ~

The second term of (8) vanishes since we are con-
sidering T &T, only.

(ii) f-sum rule.

f d(o (u 8 (k(u) = o vp" (k),

where

and

Sn(t) e&xot S e-txog
k (4)

p (it)"
nt

(18)

Sf=Be' 'S,".
r

(5)

The importance of the dynamic form factor de-
rives from its relation to the partial differential
cross section

2

=A(kk') Q (1-k,) 8"(k—k', , &o),dgd+ a
(6)

f d~ & (k~)= Y (k),

where

where A(kk') is the neutron scattering form factor.
Our system, which has only exchange coupling,
has no off-diagonal terms in (6). With an appro-
priate choice of the incident momentum (k}, one
can restrict the cross section to transverse corn-
ponents (xx and yy).

We recall here the three well-known sum rules
for the dynamic form factor' which will be found
useful in our consideration.

(i} Static form factor sum rule.

If c, is defined by

[&o, Sf]=yi (14)

by working out the commutator it can be shown that

(15)

where J„~=2J5;;., (} with 6 being the nearest-
neighbor vector. Using the above result, we find
for c2 that

[&o, yi]=(J'Si+ 4f+ ef, (16)

where q is the coordination number and

=QJ„„.J„.„"e"'S„S~S„", (I&)

ef = QJ„~J„t„ee "' S„(S~S„r~ —S„s„e~). (18)

Observe in (16) that apart from the constant
factor qJ the first term of c2 is exactly co. The
second term fp contains essentially the z-spin pair
correlation which in the XY model is weak com-
pared with the x-spin pair correlation. 9 Insofar
as c2 is concerned, one canthus regard gras a
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". (0& a ~
[50o~ yf] = ~oSf~ (19)

where &so= v q J. Then, using (14) and (19) we can
evaluate the successive commutators for S;(f) to
all orders of expansion and directly obtain

[Sf(t)] =S; cos&uot+iy~(sin~ot)/coo

V. DYNAMIC FORM FACTOR

We can now readily obtain an analytic expression
for the zeroth-order dynamic form factor using
(20) in the definition (3);

[5'"(kt)] ' '= F (k) cos~ot+ ivo*(k) (sin&uof)/~o,

where we have used the relation that (21)

kind of perturbation to the first term. If the re-
striction on the lattice sum (rr') is slightly re-
laxed, the third term 8» is identically zero. When
one calculates the dynamic form factor, it enters
into the calculation in the form Tr8$CO which be-
comes very small in the limit n -~.

Now consider the next order c3. The first term
of co reproduces c, exactly. Hence, if (16) is
truncated keeping only the first term qJ 8", it
leads to a simple summable series for the ex-
pansion (16). We shall call this step our zeroth
order approximation. It will be shown later (see
Sec. XIV and Appendix D) that the zeroth-order
approximation is equivalent to a molecular-field
approximation. As to the truncated portion g» and

Hp, [$Co, Hp] produces terms which are all propor-
tional to 8». Thus, as a start it seems reasonable
to neglect the contribution of 8» in all orders of
expansion (13). In contrast, [Zo, gf] generates
nonlinear terms, which evidently make the con-
tribution of g» to the expansion very complex to
handle. Nevertheless, by regarding gp formally
as a perturbation to S», one can in principle make
the expansion (13) summable. ' As we shall see,
the summability is directly related to some inter-
esting dynamical properties of the system. We
shall call this step [i.e. , inclusion of gp in Eg.
(13) and neglecting terms proportional to Hp] our
first order ap-proximation. Finally, the contribu-
tion of 8» is considered as a still-higher-order
correction.

In this paper we shall explore the consequence
of our zeroth-order or molecular-field approxima-
tion in some detail. In a subsequent paper' the
first-order approximation is taken up as a leading
correction to the zeroth-order result. The physi-
cal nature of our approximation will not be fully
apparent until the first-order correction is intro-
duced. In Sec. XIV, a physical basis for the trun-
cation is discussed in a limited way.

In zeroth m'der then we truncate the commutator
(16) and write

(S"Pyf) = —,
'

vo (k), (22)

x [5(u& —&oo)+ 5(&a&+ ufo)] . (25)

The cross section is sharply peaked at ~=+ &&

and it has no central peak. " This is in contrast
to the cross section for the Heisenberg paramag-
net which is commonly taken to be a Lorentzian
about &= 0. The absence of a central peak al-
ready suggests a different kind of low-frequency
dynamical behavior for the XY model.

Using (23) we can obtain expression for a variety
of other physical quantities of interest such as the
relaxation function, spectral shape function and its
moments, dynamic susceptibility, etc. These are
given in Secs. VI-XII.

VI. STATIC SUSCEPTIBILITY

The static susceptibility, which we have already
introduced through the compressibility sum rule,
is given formally by

(26)

which is derived in Appendix A. It should be
pointed out that F""and v~", given, respectively,
by (8) and (10), do not depend on the truncation
and are therefore exact. After a trivial time inte-
gration, we obtain

[5 (k~)]' ' = [-,' F*"(k)+vo" (k)/4&v]

x [5((u —(uo)+ 5((o+ (uo)] . (23)

The zeroth-order dynamic form factor (23) satis-
fies the first two sum rules [(i) and (ii)] trivially.
It also satisfies the compressibility sum rule (iii)
as we shall see. Substituting (23) into (11) we get
for the static susceptibility

XX

[ ""(k)]' ' = F*'(k) (1 o hP ).
(0 2(0

(24)
It will be shown in Sec. VI that the above expres-
sion does indeed correspond to the zeroth-order
static susceptibility, Although it is somewhat less
obvious at this stage, the expression for the dy-
namic form factor (23) also satisfies the symmetry
relation (12). This is proved in Appendix B.

It is perhaps not so surprising that our zeroth-
order dynamic form factor should satisfy the sum
rules. What is to be remembered is that trunca-
tion still leaves a principal portion of the commu-
tator (16) intact. The exact expression for the dy-
namic form factor is thus expected to contain our
zeroth-order result (23) as a leading term.

If we investigate the scattering with an incident
momentum k in the [001] direction, the diffuse
cross section (for T & T,) follows from (6) and (23);
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where the inner product means that

Q, B]=f dX(e x4e oB) —P(A)(B). (27)

From (20) it follows that

[e" oSxge o] =Sf coshvoX+y~f(sinh&ooX}/&oo.

(28)
Using (28) and our earlier result (22), we obtain
after a trivial integration the result previously ob-
tained through the sum rule (iii):

XX

[„xx(k}](o) Ixxx(k) P o "o ( ) (1
o 2co~o

( 29)
In the high-temperature limit (P-0), the suscepti-
bility and the fluctuation become, as is expected,
identically the same:

P '[X**(k)]"'=F*"(k)+O(tl). (30)

We have previously shown that the susceptibility
and fluctuation have the same critical behavior.
That is, both diverge near the critical point with
the same critical exponent y„.

VII. DYNAMIC FORM FACTOR AND RELAXATION
FUNCTION

The relaxation function R (ku) is defined as

00
(d

Re}t (k~) = — d&u' o,o Imx (k~'),
m oe

(40)

where + denotes the principal value of the integral.
Thus, with (39) we obtain

2

R [ xx(k )]
ts 0 Fxx(k) P o

CO —COp COp

VIII. DYNAMIC FORM FACTOR AND DYNAMIC
SUSCEPTIBILITY

The dynamic susceptibility is defined by

}t' (k&u)=lim [-i f dte ' " '" 'X"'(kt)], (36)
0

where the response function }t "(kt) is given by

X"(kt)= o &[S-i(0), Sf(t)]+ [S-~(t), Sf(0)]). (37)

Again, one can obtain the dynamic susceptibility
using our result (20). However, we shall defer
this to Sec. IX and here exploit the fluctuation dis-
sipation theorem"

—xS (k&u) = (1 —e ~) 'Im }t (k&o); (38)

hence,

Im [}t"*(kryo)] = —w(1- e o
) [o F""(k)+vo'(k)/4u]

x [5(&u- &uo)+ 6(&u+ &uo)] . (39)

Now the real and imaginary parts of the dynamic
susceptibility are related by a Kramers-Kronig
relation, '

R "(k&u)= f„dte '"'R' (kt),

where

(31) ~ ~, (1 —cosbPza)) . (41)
vo" (k}
2(op

R" (kt)=(S~x(0), Sxe(t)). (32)

In terms of the relaxation function, the spectral
shape function is given by

From (29) and (41) we see that

Re [y (k&u - 0)]' = }t (k) + O(uP) (42)

F'"(kt) =R"(kt)/}t' (k). (33) Re [}t (k&u -~ )]
'"= — ' ",' '+ O(ur ') . (43)

1-e '"R"(k&o) = 8™"(k~) . (34)

Then, it follows from (23}and (34) that

[R""(kcu)] ' '

P

(1 o o)
& (k) vo (k) 6( )

2(dp 4(op

-(I-e ') — '
~ 6(~+~o)(k) vo (k)

2vo 4~o

The spectral shape function [E""(k&u)] is thus
given by (33) and (34).

(35)

With our result (20) we can obtain an analytic ex-
pression for [R**(kar)] ' from the definition (33) and
hence also for [E (k&u)] . However, it is some-
what more instructive, first, to utilize the relation

The above result is valid for all values of k in-
cluding k= 0. Thus, (42) implies that in the long-
time limit (u&- 0) the zeroth-order dynamic (Kubo
or isolated) susceptibility becomes identical to the
isothermal susceptibility. It is perhaps worth
pointing out that the longitudinal component does
not satisfy this relation. That is, Re}t*'(k&u- 0) = 0
at k= 0, whereas the isothermal susceptibility
}t"(k = 0) 0 0."

From (41) we observe that Re}t (k&o) has two
real poles at &= + &p. When the first-order terms
are introduced, the poles can become complex
whose imaginary part is then related to the width
in the cross section (25}.

IX. DYNAMIC SUSCEPTIBILITY

It follows from the definition (36) that the real
part of the dynamic susceptibility can be expanded
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in the form

ReX' (k(d) = —vo '(k)/(k( —v4 (k)/(d'- ", (44)

where
2 n-i

;„(k(=(- ('"' s;, „, , ss((=o( ),

B= 1, 2, 3, . . . . (45)

Thus, one can calculate the dynamic susceptibility
directly through the zero-time commutators of
(44)'4 or through the response function X (kt)
using (40). We shall follow the latter procedure
here, and in Sec. XI the former procedure (44).

Using (20) in (37), we have the response func-
tion

whose time behavior is of the form f(t) SR, can
never contribute to the above commutator. The
response function obtained through the dynamic
form factor, however, contains precisely this
piece of information which is divergent at T = T,
and at long wavelengths. In first order, S„-(t}will
contain this lost piece in some other form through
which the apparent inconsistency will be repaired.

If we combine (29) and (49), we obtain

[X (k}]" tanhop(oo
t}Y"*(&) RP~o

(51)

Interestingly, the above expression is formally
similar to an exact equation due to Falk and Bruch"

(k)/pY (k) = (tanh z „.)/z (52)

[X'*(kt}]'o'= vo (k) (sin(dot)/(k(o,

hence, from (36) and (46)

(46) where

zf tanhzg= p vo (k)/2Y™'"(k). (53)

Re[X (k(o)l' '= —va (k)/((d - (k'o) (47) X. RELAXATION FUNCTION

and

hn[X"(k~)]'" = 2„[5(~- ~o}+5(~+ ~o)j.

As was pointed out in Sec. VII, the relaxation
function can be directly obtained from the defini-
tions (31) and (32). Using (20) and (28) in (32) we
obtain after a trivial integration

(48}
The real and imaginary parts of the dynamic sus-
ceptibility [(47) and (48)] satisfy the Kramers-
Kronig relations exactly. Observe that in the high-
frequency limit ((o-~) our result (4V} becomes
exact to the order (v o [see (44)]. Now comparing
(4V) with our previous result obtained using the
fluctuation-dissipation theorem [(41}]we see that
if the two results are to be consistent, we must
have

[R*"(kt}]'"=cos(oot Y""(k)

vo (k) . sin&dpt
+ ', (1 —coshP(oo) +t

2(0p (dp

v, k sinhP~p

p

ti"(k) (( —cess(( (},&dp
(54)

(do[X (k)]'" = vo (k) . (49) where

This result (49) follows directly from (47) if we
recall the relation

X '(k) = ReX' (k&u = 0) . (50)

It also follows from (48) and the Kramers-Kronig
relation (40) with (o set at zero,

Rsk (kc)= f S
a os

(40a)

It is worth noting that for low frequencies our
zeroth-order expression (50) appears to be a very
poor approximation for the true dynamic suscepti-
bility, since at T = T, and at long wavelengths
X""(ko&= 0) is expected to be strongly singular where-
as, according to (49), [X*"(k(o=0)] is finite or at
most weakly singular. In fact the two results [(29)
and (49)] for [X (k}] seem to be inconsistent.
This arises from the fact that in obtaining the re-
sponse function through the definition (3V), Sj(t}
enters into the problem only through the commuta-
tor [S (-, (0), Sf (t)]. Thus, that component of Sf (t),

~'"(k}=&y fyk&. - (55}

d 'x x&""(k)=—d— &S fSf (t= o-)).dt

With the aid of (4) we have

A"(k)=(S fS~f}.

(56)

(57)

Hence, using (20) we get within the zeroth-order
approximation

[A'*(k)] '+ = —ufo Y""(k). (58)

Now with (51) and (58) we can easily show that to
zeroth order the imaginary part of (54) vanishes
and with (29)

[R (kt)j' ' = cos(oot [X""(k}]' (59}

The imaginary part of (54) actually vanishes as is
required from physical consideration (also see our
previous result in Sec. XII). This can be seen as
follows: From the definition of y~, we can write
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Observe that the relaxation function (59) satisfies
the required relations'

R" (kt= 0)= X™ot(k} (6o)

—R ™(kt) = —X' (k t) .
eI;

(61)

By calculating A (k) directly from (57) one can
actually obtain a measure of accuracy of the zeroth-
order approximation (58).

XI. SPECTRAL SHAPE FUNCTION

pendix C):
xx (k)](o& o(»-(& xx(k) (68)

with [vo ]' -=vo". This result may be used to check
our previously obtained expressions for I'"" and
X"".

Marshall' has shown that
00 t2

F (k(d)= — dte "' 1 ——Eo'(k)2' . 2

t 4

~ 4, &" (k&- ), (6(»

With the aid of a theorem due to Kubo, ' one can
write the spectral shape function (33) as

where

Fo„(k)= t d(d(d "E"(k(d). (70)

E (kt)= 1+ ««( )
dt'([S f(0), SS(ot')]). (62)

(63)

Hence, using (20) we obtain

vo (k)[E"'(kt)]' = 1 — o „()—cos(dot).
~ox**(k)

We observe that [E**(kt=0)] =0 as is required
In the short-time limit the spectral shape function
(63) can be approximated as

Now it can be easily seen that

E „(k)= v ™„(k)/X (k) . (71)

XII. CORRELATION FUNCTIONS

Substituting (68) and (Vl) into (69) we recover the
previous zeroth-order result (67}. Similarly,
using (68) in (44) we obtain the real part of the dy-
namic susceptibility (47) quite easily.

lim [E""(kt)] o = 1 —(gt) /2+ ~ . =e ""s,
t~o

where

g = [vo*(k)/X*'(k)1'".

(64)

(65)

Thus in the short-time limit we obtain a Gaussian
form for the spectral shape function with the decay
rate g, which according to (49) is [g]'"= (do. From
the definition of the relaxation function, it follows
that

[R (kt)] = X (k) —[vo"(k)/(do] (1—cos(dot). (66)

Now using (63) we obtain

o""(»I'"=((- ( -( (&( &

(doX

'o,„[5((d—(do)+ 5((d+ (do)] .vo (k)
2(do X k

(6V)

Thus, the spectral shape function is a peaked func-
tion, peaked at ~= 0 and ~= + ~o. The central peak
is to zeroth-order spurious, however, since the
coefficient of 5((d) vanishes according to (49). For
the Heisenberg paramagnet it is commonly assumed
that E (k(d) is a Lorentzian function up to some
cutoff frequency ProPortional to [vo '(k)/X'«(k)]'~o
and zero beyond the cutoff. The necessity of the
cutoff arises because all frequency moments of the
spectral shape function must exist.

Using (14) and (19) repeatedly we obtain zeroth-
order frequency moments for all n (derived in Ap-

Within zeroth order it is a simple matter to ob-
tain expressions for various correlation functions,
some of which are shown below.

(a) (S f (0)S;(t)): This correlation, which is the
dynamic form factor 8""(kt), has already been ob-
tained (see Sec. V). If we define the spin cor-
relation function in the coordinate space as

8' (rt)=pe'"' s (kt),
k

(72)

we observe that in zeroth order s (r t) does not
satisfy the spin diffusion equation. It satisfies in-
stead the wave equation. It is well known that for
the spin diffusion equation to be applicable, the
spin correlation function must be a constant of mo-
tion in some physical domain. For the Heisen-
berg paramagnet the spin correlation function be-
comes a constant of motion at long wavelengths in
the hydrodynamic regime. But for the XF para-
magnet, as was pointed out, it is never a constant
of motion.

«X

(b) (S'&., (0)Sf(t)): The spin velocity correlation
v (kt) can be obtained using (20) and an identity
used earlier (5V);

[v («)) = ~o[a "(kt)1 (V3)

It is commonly assumed' for the Heisenberg para-
magnet that the decay of v (kt) is faster than that
of 8 '(kt). For the XY paramagnet in zeroth or-
der a (kt) and v (kt) have on the contrary the
same "decay" rate.

(c) (S"„.(0)S"„-(t)): The spin acceleration cor-
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relation tt "(kt) follows similarly;

[e (kt)]'" = ~', [s (kt)]'" (74)
[D (k~)]'" =

2 '. - [5(~- u'0)+ 5(u + u 0)], (81)

XIII. SPECTRAL REPRESENTATION OF BENNETT AND
MARTIN

where

u)0- ~,[I- v2 (k)/(so X (k)]"'. (82)
Bennett and Martin have constructed an inter-

esting spectral representation valid in the para-
magnet region in the following form: for complex
frequencies co

(75)

where D "(ku&) is an arbitrary analytic function.
Since D '(00) corresponds to the spin diffusion
coefficient, D (k~) is known as the generalized
diffusivity. For Rew= ~', one obtains the spectral
representation

~ f
+ [D"(k~)] . (76)

Since D (k&o) is evidently a better behaved function
than Im)t™l"(ku&), the generalized diffusivity can be
in general more easily approximated. From the
spectral representation one can also obtain a dis-
persion relation from which it is possible to de-
scribe the boundaries of diffusive and propagating
modes.

Now observe that by expanding both sides of (75)
in powers of &, we can relate the generalized dif-
fusivity to the frequency moments E2„(k):

By substituting (81) in (77), (78), and all other
higher-expansion terms, one can readily verify
all the frequency moments previously obtained.
Using (81) in (79), we obtain for the dispersion
relation

vz (k)/X (k) .
-(do (83)

r(k) = Ep (k) (F4 (k) —[Fa ~(k)] p~. (84)

A form for D (k&u) which will just satisfy the first
two frequency moments (V7) and (V8) is

D~~(k(g) = Fg~(k) r(k) G [k,(gr(k)] (85)

thus, [A*'] = 0 when &o=+ &uo. There are no other
real solutions that satisfy the dispersion relation in
zeroth order. This is essentially a restatement of
our earlier result that Imp (k~) is singular at

In zeroth order this propagating mode is
undamped.

Bennett' has already anticipated the possible
existence of a high frequenc-y propagating mode
through the following consideration: Assume that
D' (kyar) vanishes rapidly for &u greater than some
cutoff frequency ~, r', -where r(k) is a character-
istic collision time defined as

E2 (k)= — d~D (k&u),
~ou

(77)
provided that the well-behaved function G(hp) satis-
fies the requirements that

F~ (k) =— d(cr @AD (k&a))+ — d(oD (k(o)
7T

and

dpG kp =1 (86)

such that

A" (k&oz) = 0. (80)

For the XY paramagnet we already have zeroth-
order Immit'"(k~). Hence, we can obtain the zeroth-
order generalized diffusivity and, through this,
look for the roots of the dispersion relation. Using
our zeroth-order result for Imp (ku&) we find from
(76) that

(V8)
and so on. Since all the frequency moments exist,
the generalized diffusivity must vanish rapidly
when ~- . Bennett and Martin pointed out through
the spectral representation (76) that a well-defined
propagating mode exists if there is a real solution
~= (oz, (k) for the dispersion relation A "(ku&):

A (k~) = 1+ — d&a' (79)

dpp~gofk kp = 1. (87)

Then the dispersion relation becomes
40

A'™(ken)=1+Fg (k) r (k) 6 dp
~so

(88)

Now observe that since, by the assumption on
D (k&a&), G "(kp) vanishes rapidly as p-~, for~» 1 there is a high-frequency solution for the
dispersion relation:

A (k(u)= 1 —Fa (k)r (k)/(u r (k). (89)

The validity of the high-frequency solution thus re-
quires that dl"(k) =Ef'(k) r (k)» 1. The boundary
between the regions where propagating and nonprop-
agating modes dominate is thus given by the condi-
tion 6t (k) = 1.

For the XY paramagnet, in zeroth order, we can
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readily determine the characteristic time v and the
boundary function I,"":

[~ '(k)]' = &o [1—~ (k)/~op (k)]"' (ao)

and

[st**(k}] = [e(k)/~'o X (k))

&[I-~. (k)/~ox (k)] '. (a1)

Thus the high-frequency region refers to the region
where either (i) tu» &uo or (ii) v2 (k)/uPD y (k}-1.
Observe that the second condition implies r (k)

That is, the system is firmly in the collision-
less regime. Now recall that the second condition
is exactly the zeroth-order solution of the static
susceptibility (see Sec. IX). Hence, our zeroth
order corresponds to a high-frequency approxima-
tion.

XIV, EQUIVALENT HAMILTONIAN

While the validity of our zeroth-order approxi-
mation cannot be discussed without explicitly con-
sidering the first-order term, ' it is possible to
obtain a limited physical picture of the nature of
our approximation. Since (19) depends only on
commutation relations, one can find an equivalent
Hamiltonian, say 'Ko, for which zeroth order (19}
is exact; that is,

$C=-—ZA (Q Q +Q Q ) ~ (as)

Hence, it follows from (13) that

Qf(t)= Qf cosAft —Qf stnA&f

and

Q~f (~)= Q~f cosAf t + Q'„- sinAf t.

(97a)

(97b)

We observe that (9'7) is formally identical to (20).
Now if we introduce a set of new operators Q~&

and Qp defined as

Qfi= (I/JF&) (Q*;+ iQ";) (98a)

Qf = (I/Q2X) (Qf - iQr), (98b)

these operators satisfy the commutation relations
of Bose particles,

t
[Qr Qr"]=4r (99)

X,=E,-F A;n;,
pT

~OP

where Eo and np are, respectively, the "ground"-
state energy and the number operator;

(100)

In terms of the new operators, the equivalent Ham-
iltonian can be written as

and

[&0, Sr]=yr' (92a)

and

1E = —QA-o 2 p7

(101)

[+0~ Pf] = ~os' ~ (92b)

1Q* Q efr rSr (93a)

and

Such a Hamiltonian can be found through the follow-
ing consideration: In the spirit of molecular-field
theory, let S'„= X, for all r where X is a constant.
Define

np= Q„Qg . (102)

Observe that Eo is the ground-state energy if Qp
&0; that is, if the system is an antiferromagnet.

The equivalent Hamiltonian satisfies the familiar
commutation relations for harmonic oscillators:

[ICO, Q~f]= AfQ)' (103a)

and

I p &pT rSr (93b) [+0, Qf] ——A jQIT. (103b)

These operators are assumed to satisfy transla-
tional invariance. Then it follows that

Hence, it follows that

Q'„-(t) = Qi'e'""'

and

(104a)

[Qf, Q'„-.]=its„ (94)

The first two commutators (92a) and (92b) re-
quire' that

['ICO ~ Qf ] = ZAf Qt (95a)

[3CD, Q~f] = —iAfQ~f, (95b}

where Ap is the energy spectrum. A Hamiltonian
which satisfies (95) is

Qf(~)= Qre
t

Hence, Qp and Qp are operators which, respec-
tively, create and destroy eigenstates of SC, with
energy Og. These operators represent normal co-
ordinates. The above result (103) recalls the solu-
tion of a dense electron gas problem given by
Sawada, ' in which Qp represents single-particle
and collective (plasma) excitations. For small k,
most of the correlation energy is given by the col-
lective mode, which is essentially independent of
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k and is undamped. The plasma oscillation is a
polarization wave associated with density fluctua-
tions. Thus, it is reasonable to identify ~0 with
Qp. That is, in zeroth order the XY model has a
propagating mode, which is physically analogous to
the plasma oscillation. ~0

To obtain (103) with the Sawada Hamiltonian, one
uses the random-phase approximation (RPA). It
is now well established that the RPA is equivalent
to a molecular-field approximation. ' Thus, it is
not surprising that our molecular-field approxima-
tion 8'„= X gives rise to an equivalent Hamiltonian
which is quite familiar in many-body problems.
In Appendix D, our equivalent Hamiltonian is fur-
ther studied. It is shown there that 'Ko is equivalent
to taking q -~ in Kz and that, in this limit, high-
temperature expansion diagrams are exactly sum-
m able.
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e~"oA +e ~"OA, = Y. (B5)

By adding and subtracting (B4) and (85), we ob-
tain the desired relation (B2).

APPENDIX C: FREQUENCY MOMENTS

The zeroth-order frequency moments may be
directly calculated using (Vl). They can also be
calculated via (VO) using our result (6V) as is done
here. The frequency moments are

F„""(k)= J d&a ~"F'"(k~), (c1)

with

and

A—= 1 —B (C3)

where in zeroth order

[F"*(~)]''=A5(u&)+ — dte '"'cos~ot, (C2)
QQ
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Lambeth, and H. E. Stanley for useful discussions.

B -=va" (k)/~o X"(k)

Substituting (C2) in (Cl) we get

(c4)

APPENDIX A: (S~tyf)

From the definition of y„" given in Sec. IV, it
follows that

n

[F*„*(k)] = B —i cos~—o t
t"-0

(cs)

All the odd moments evidently vanish. Now since

(Al)
2n

cos(dot = (- 4FO) c ops& tO,
(c6)

By expanding the product inside the trace, we see
that nonvanishing terms are those with R=r and
8 = r' only. Hence,

(S „y„)=J Z (S"„S"„.)
(r~&

we have the desired result:

[Fa"„(k)]'"= (~0)" ' vF(k) /X" (k) .

APPENDIX D: CONSTANT INTERACTION MODEL

(CV)

S (u&) =A, 5(&u —&uo)+A 5(~+ &uo),

where

A~ = g Y+ g vp/h&p.

Then, if

(Bl)

(B2)

(S'„S„'.) . (A2)
(rr')

We have previously shown that the right-hand side
of (A2) is precisely —,

' vz*(k); similarly,

(y rSf) = —5-v2"(k) (A3)

APPENDIX B: SYMMETRY RELATION FOR S"~(ku)

Write s(~) (suppressing all the irrelevant sym-
bols) as

If we let Op= J(r)/v q and X = I/$4q in (96), we
recover

&q= —~J—Z J(r —r') (S"„S„",+ S'„S'„,), (Dl)

(D2)

Now one can expand Z' in powers of K-=PJ;

where the prime denotes that the sum is over all r
and r'butexcluding r=r'; and J(r —r')= J/N forall
values of separationdistances. This is aconstant-in-
teraction model and one can obtain it from the near-
est-neighbor model (1) by letting q —~. It is gener-
ally known that in the limit q-~ the molecular-
field treatment of, say, the Heisenberg model be-
comes exact. For the XY model it is also possible
to give an asymptotically exact treatment.

Consider the partition function

Z= Tre ~o=e~ Z'.

e ~oA, =A„ (B3)

and

e~oA —e ~OA. = —,
'

v,/(u, (B4)

the symmetry relation (12) is satisfied. Now from
(B2), (29), and (49) we can write

(D3)

where P=N('Ko+ —,'J)/J. In the asymptotic limit
(N-~) we can exactly sum the above expansion
(D3). Consider the second-order term (n= 2). For
the nearest-neighbor model P, we obtain
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T PB 2N-RNq (D4) 2N-na„=, (n —1)!N(N 1-) (N- 2) ~ ~ ~ (N-n)
where q is the coordination number. For the con-
stant-interaction model we get instead

(DS)
TrP = 2" N(N 1);-

similarly, for n = 3,

TrP = 2!2" N(N —1)(N —2).

(D5)
Substituting (D8) into (D3) and by exponentiation we
finally obtain

TrP = 3!2" 4g(4)+ ~ 3! 2" ~g(I, 1)

+ 4x 2 g(2)+ 2 g(1), (D&)

where g(m) denotes a configurational sum. Here
g(4) is a sum on a square, g(2) a sum on a chain
of two units, g(1) a sum on a chain of one, and

g(1, 1) a sum on a separated configuration of two
chains each of one unit. In the constant-interac-
tion model, g(m) becomes extremely simple to
evaluate. Namely, g(4)=g(l, 1)=N(N- 1) (N- 2)
(N —3), g(2) = N(N - 1) (N - 2), and g(l) = N(N —1).
In the limit N- ~, it is clear that only g(4) and

g(l, 1) need be retained since these are most diver-
gent.

A similar analysis can be carried out to higher
orders. For a given order n, the most divergent
graphs or configurations are those with n vertices,
which can be divided into two classes, linked and

unlinked. Of these one needs to consider only the
linked graphs since the unlinked can be accounted
for by exponentiation (as in the theory of fluids). 4

Thus, exact to the order N", we have

In the fourth order (n = 4) we encounter all the non-
trivial possibilities. As shown in detail, for the
nearest-neighbor model TrP consists of the follow-
ing:

K K" NZ=2 exp —+Q —(n I)!
n (DQ)

Z = 2 (1- ~ K) + 0(N
~ 2 «) . (D10)

In the constant-interaction model the fluctuation
above T, can be written in the following special
form:

N

Y = Z (So S',) = lnZ.
r=1

Hence, it follows directly that

Y- (T T,) 1, —

(Dl 1)

(D12)

where T, = J/2ks. This is just a molecular-field
result.

In light of our earlier remark in Sec. XIV, this
result is hardly surprising. What is, however,
interesting is that for the constant-interaction
model it is only necessary to consider, in each
order, the most divergent graph, which is a ring
graph (and is thus summable). This is very simi-
lar to the perturbative solution of Gell-Mann and
Brueckner for a high-density electron gas.

Now if we use the Stirling approximation, the
argument of the exponent (DS) canbe easily summed
and we obtain
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