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Extending the Monte Carlo method to dynamic critical phenomena we investigated the time-dependent

correlation functions in the two-dimensional one-spin-flip Ising model and the critical behavior of the
associated relaxation times. These relaxation times are the following: r~~~r, characterizing the approach of
the order parameter to equilibrium after a change of temperature h, T of the system; r»~„and +»~~
characterizing the slowing down of the order-parameter correlation and autocorrelation functions,
respectively; r~z~z and r~~~~, characterizing the slowing down of the energy correlation and

autocorrelation functions; and finally, r ~„~z, characterizing the cross-correlation function. e give

estimates for the associated exponents b~~~ = d~~ =h, z, ~ = b~&z = 1.90+0.10, and b," = 1.60+ 0.10,
-0.95+0.10, h~ z~z =0, which are consistent with the dynamic scaling hypothesis and with exact

inequalities. A detailed comparison with recent high-temperature-expansion estimates is performed, and the
reliability of the Monte Carlo results is carefully analyzed.

I. INTRODUCTION

Much of our understanding of the static aspects
or critical phenomena arises from the study of
model systems. Prominent examples are the
Ising and the Heisenberg models. The former
provides a useful description of systems in which
a localized variable can take either of two discrete
values. A highlight in any discussion of this model
is Onsager's solution for the zero-field partition
function of a two-dimensional square lattice with
periodic boundary conditions and nearest-neighbor
interactions.

Although considerable progress has been made
in recent years, the present "state of the art" as
regards dynamic model systems is by no means as
advanced as it is for static systems. ' Here we
shall consider the adaptation of the Ising model to
the treatment of dynamic phenomena, introduced
by Glauber. In this model an assembly of Ising
spins is in contact with a heat bath which induces
random flips of the spins from one state to another.
In the original Glauber model, which we consider
here, only one spin is permitted to flip at once,
so that neither its total magnetization nor total en-
ergy is conserved. The heat bath is not treated
explicitly; it is, however, assumed that there is a
transition probability W~(p„. . ., p„) that the jth
spin flips fro'm p& to —p&, which is supposed not to
depend on the previous history of the system. In
this sense the Glauber model is Markovian.

The interest in this model lies in the fact that
it is simple enough to obtain some fundamental
knowledge of dynamic properties in cooperative
systems, and that the equilibrium properties of
the system are quite well understood.

In the work described here we used the Monte
Carlo method, first introduced by Metropolis et

al. , to investigate the critical slowing down in
kinetic Ising models consisting of square lattices
with nearest-neighbor interactions and periodic
boundary conditions (pbc). Our restriction to the
critical slowing down was dictated by the desire to
compare some of our results, which are expected
to simulate an infinite system except in a small
region around T„with estimates obtained by other
methods. Previously, some estimates were ob-
tained based on a high-temperature-expansion
method, ' and an extension of Wilson's expan-
sion techniques. ' Moreover, the latter results
seemed to confirm the dynamic scaling hypoth-
esis' ' (DSH), which in turn implies explicit re-
lations between the critical exponents characteriz-
ing the divergencies of the relaxation times associ-
ated with, for example, the order-parameter cor-
relation and autocorrelation functions, respectively.
Both the recent series expansion ' and Wilson's
expansion estimates predict a "kinetic slowing
Sown, " i. e. , an exponent b, ,„~„ofthe order-pa-
rameter correlation function which is larger than
the exponent Y of the static susceptibility, whereas
these exponents are equal in the earlier "conven-
tional" theories. ' ' In spite of this variety of
methods, knowledge of the critical slowing down
in the kinetic Ising model still seems rather incom-
plete; however, the high-temperature-series
technique is restricted to temperatures T & T„
and the only accurate exponent estimates so far
available are those of b,„» and b,««. Moreover,11

the Wilson expansion results'3 have so far been re-
stricted to the order-parameter exponents 4~„»
and 6",„,„, respectively. Furthermore, the ac-
curacy of the Wilson' approach in two dimensions
seems rather questionable since it fails to reproduce
the exact result P=-,'. ' We note, however, that
this approach is expected to be accurate in three
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dimensions. ' Even the DSH, which was first
formulated by Ferrell et al. ,

' and reformulated
and extended by Halperin and Hohenberg, depends
on as yet unverified assumptions concerning cer-
tain functions. In view of this, an alternative
estimate of the exponents associated with the criti-
cal slowing down in the kinetic Ising model is de-
sirable, to compare them with the previous esti-
mates ' and with rigorous inequalities.
Some preliminary results of this work concerning
the "effective" exponents to be discussed below
were presented earlier in a short communication.
By "effective" exponents of a diverging quantity,
we denote their average slope in a given tempera-
ture interval on a log-log plot Lcf. Eq. (133)].

In Sec. II we describe Glauber's kinetic Ising
model, describe the extension of the Monte Carlo
technique to time-dependent critical phenomena,
and outline the means by which the quantities of
interest may be estimated. The reliability of these
estimates is then discussed. A sensitive test of
the accuracy of time-dependent quantities consti-
tutes the application to the one-dimensional kinetic
Ising model, for which exact solutions exist.
Such calculations are presented in Appendix A. In
Sec. GI we summarize the formal description of
the relaxation times characterizing the critical
slowing down. The definitions of the various equilib-
rium and nonequilibrium relaxation functions are
given, and the relations between their exponents
are discussed. We summarize the predictions of
the DSH and of the inequalities mentioned above.
The Monte Carlo results are presented in Sec. IV
and are compared in detail to the various expansion
results. '"' ' Our exponent estimates are derived
essentially from the region 0.02» ~e ~» 0. 20, where
e is the reduced temperature -& =1 —T/T, . Sev-
eral results are of particular interest:

(i) While the "effective" exponents derived for
the order-parameter and energy correlation func-

tions are symmetric for T&T, and T &T, and pre-
sumably very close to the values of the "true" ex-
ponents, this is not the case for the "effective" ex-
ponents of the order-parameter autocorrelation
function, which have significant asymmetry. It is
suggested that this is due to the presence of impor-
tantcorrection terms which are absent in the other
cases. We discuss how to eliminate the influence
of these corrections and thus derive tentative esti-
mates also for the "true" exponents of the auto-
correlation functions. It is shown that all these
"true" exponents are consistent with the exact
inequalities' ' ~ and the DSH, '~' while the
"effective" autocorrelation exponent turns out to
be inconsistent with the DSH, as remarked
earlier. 3

(ii) Our numerical estimates of the critical ex-
ponents mentioned disagree slightly with the re-
sults obtained from the high-temperature-expan-
sion and ratio method. To elucidate this slight
discrepancy we also present results obtained from
numerical Pade approximants to these series. The
forrnal part of the expansion approach is summarized
in Appendix B, while the detailed numerical corn-
parisons of Sec. IV show that both methods are in
reasonable numerical agreement for the tempera-
ture range investigated; the above-mentioned slight
discrepancy is thus reduced to a problem of extrap-
olating numerical results to T-T„and we there-
fore feel it should be taken as a measure of the un-
certainty still inherent in the determination of ex-
ponents from either method.

II. KINETIC ISING MODEL AND MONTE CARLO TECHNIQUE

A complete statistical description of the kinetic
or stochastic Ising model ' ' would consist of the
knowledge of the probability P(p, , . .., p„; t) that
at time t the spin system is in the state {p.&, . .. ,

The time dependence of P is assumed to be
governed by the master equation

d N

P(tip ~ ~ '1 Agent) ~+'g(tlat '''t ter ''I tN)P(tie ~ ~ ~ i 0'y~ ~ ~ t Ntt)
dt fbi

N

—Q Wy(t q, . . . , t s, . .. , pz)P(pi, . .. , &~, . .., &y,'t), (1)
fe1

where p,, takes on the values +1. The first surn-
mation corresponds to the total number of ways
that the system can flip into the state {p~, .. . , p„),
whereas the second summation corresponds to the
total number of ways that the system can flip out
of the state {p».. . , p„j.

The predictions of Eq. (1) depend upon the choice
for the transition probability 8'. A reasonable con-
straint is the requirement that 8" has. such a form

that it is capable of bringing the kinetic Ising model
to the same equilibrium as that of the conventional
static Ising model.

In equilibrium the left-hand side of Eq. (1) is by
definition equal to zero. This condition corresponds
to the principle of detailed balance, which asserts
that

W~ ( t"~) Pp( t ) y. . . p t ~ p. . . p t «)
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= Wy(Pg) Po(4& ~ ~ ~ ~ ~ &y ~ ~ ~ ~ &N)~ (2)

where Po(p, , .. ., p„) denotes the probability of find-
mg the Ising spine in the configuration fp, ~, . . . , p„}
when the system is in equilibrium. Observing that

Po(P& ~ ~ ~ .~ P~) e-", P= I/ks T,

sometimes obscure in analytical methods. For
a detailed discussion of this scheme we refer to
Refs. 7, 26, and 27. Here we merely summarize
the main points.

Following the usual procedure, we used, instead
of Eq. (7), the transition probability

(4)

where 0& is the external magnetic field acting on
the jth spin, Eq. (2) leads to

e "& &, if 2Pp, &E& &0
v,' Wq(tt~) =

otherwise. (10a)

W, (p&) e 's~"-~ 1 —p, tanh(pEq)
W, (- p,,) e' o&e"s 1+ tt, tanh(PE, )

'

The local field is defined by

(5)

E ~ = PsH)+ Q cd~ P».

Following Suzuki and Kubo one might choose for
W& a form consistent with Eq. (6):

(6)

W~(tt~) = (I/2r, ) [1 —tanh(PE;)] = (I/2r ) (e~ . (7)

In a one-dimensional system Eq. (7} reduces to
the choice of Glauber. The parameter ~, is the
relaxation time of a single free Ising spin inter-
acting with the heat bath, and determines the time
scale of the dynamic processes. As a conse-
quence, the time scale is determined only up to the
factor 7, .

Using Eqs. (1) and (7) and the definition of the
expectation value

(6)

~, —(tt, g, )= —2 (p, p,,)+(p, tanh(PE, ))
d

s dt

+ ( g, tanh(PEq)) . (9)

Thus the calculation problem is reduced to the
problem of solving a hierarchy of differential equa-
tions, subject to certain initial conditions. This
has been done exactly only in the case of one-
dimensional systems by Glaubers; for systems
with higher dimensionality one must make approx-
imations to get explicit predictions. ' '

However, estimates of the exact results may be
obtained by means of the Monte Carlo technique,
which was first introduced by Metropolis et al. in
the computations of the equation of state of a hard-
sphere gas. In addition, this scheme allows one
to deal directly with the system at the microscopic
level, and it is therefore possible to get an insight
into the detailed behavior of the system which is

(p~)= Q tt~P(t 1, , ~ . I I yet)~
[v)

where the sum is taken over all possible configura-
tions, one can then derive the equations of motion:

This choice differs only slightly from that given in
Eq. (7) and is of course also consistent with Eqs.
(2) and (5). It has been argued that the choice
defined by Eq. (10a) leads near thermal equilibrium
to a renormalization of the time rate with respect
to that in Eq. (7). This temperature-dependent
renormalization factor has been calculated to com-
pare our Monte Carlo results with those obtained
from series expansions. For this purpose Monte
Carlo runs were performed with both W& and W&.
Equations (7) and (10a,) and the renormalization
factor was taken to be

(Wy )/( Wg ) =g(T). (10b)

where k again denotes the 0th configuration in the
chain of sequences. A characteristic behavior of
p(t} is shown in Fig. 1 for T & T, . Three time in-
tervals may be distinguished: a first stage, in

The exponent estimates we will derive are unaf-
fected by g(T).

In the Monte Carlo method one starts with an
initial Ising spin configuration hatt„. . . , tt„) and
calculates W&, where the jth spin is chosen by a
random-number generator. For v, 8'& & 1 one flips
the jth spic if 7, W& exceeds a random number be-
tween 0 and 1. If v, S'& = 1 the jth spin is also
flipped. In this manner a sequence of new spin
configurations is generated. Since the system tends
to equilibrium by construction, there is a cor-
respondence between the time lapse and the number
of configurations. So that the time unit does not
depend on the number of spins, this unit is defined
as a sequence in which, on the average, any spin
has the possibility to flip once. This is the so-
called Monte Carlo step per spin, containing a se-
quence of N spin configurations. Thus, for describ-
ing the evolution of the system we may use a pa-
rameter t, called the time, which takes on the se-
quential values tr= (tt/N)v, The kth. configuration in
the sequences is denoted by 0, and t„ is the Monte
Carlo step per spin. On this basis one may now
def ine time-dependent averages. For example,
the time-dependent magnetization at time t is de-
fined as
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averages, &p& [Eq. (12)] should provide a reliable
estimate for the canonical ensemble average of the
infinite system. However, by approaching the
transition temperature of the infinite system, v~
becomes shorter and ~,„ increases. As a conse-
quence, very close to T„condition (13) can no
longer be fulfilled. The actual region depends, of
course, on the number of spins N and decreases
with increasing N. For T & T, condition (13) must
be reversed:

FIG. 1. Schematic sketch of the time evolution of the
average order parameter p(t). The initial state is com-
pletely ordered. Three time intervals may be distinguished:
{1)The initial decay is noncritical (71); {2) the decay
to "equilibrium" which becomes critical v'6~~ ', (3) this
"equilibrium" state is a metastable state with lifetime
7'g. Monte Carlo averages are taken in the interval t„
» 7'&~ ' and t «vz. In practice vz is accessible only
very close to T~ for large systems.

which the system relaxes rapidly from the non-
equilibrium initial configuration towards "equilib-
rium" (vl); a second interval r,„, where the re-
laxation becomes slower and the system develops
towards a metastable state; this metastable state
may be so long lived (7 s, the third interval) that
time averages, such as

(p&= l p(t)dt, (12)= t--t
become meaningful quantities. However, at ~„ the
system may undergo a "first-order transition. "
This behavior expresses the fact that in any finite
system at zero field, the canonical ensemble aver-
age of p vanishes (&p&=0). Nevertheless, as long
as

«t —t„(T& T ). (14)

tmN 1
kgT t —t„

n

[ p(t) —&p,&] dt

(15.)

and the correlation functions

A 1
~ 5u6g (f)

kB TX6g6g tm

In this case &p& represents an estimate for &p&= 0.
However, by approaching T, from above, v& in-
creases. Consequently, close to T, condition (14)
can no longer be fulfilled. It now becomes evident
that the Monte Carlo technique provides a very
direct technique for estimating &p, & and p(t) of an
infinite system, except in a very narrow region
around T, . The actual extension of this region de-
pends on the number of spins ¹ In a 110&&110
square lattice with pbc and nearest-neighbor inter-
actions, it extends from T/T, =0.99-1.02. SMore-
over, this technique may be used to estimate many
other properties, such as the isothermal suscepti-
bility

7'„» t —t„(T& T,) (13)

and the interval t —t„permits reasonable time

tm- t
P",„,„(t)=f

m n

y,".,fg„[p, (t') —
& p&] [ u, ,(t +f') —

& p&l df'
f'"' p (f') —( p&]~dt'

(17)

"tm tn

~6.6.=
~ «ee.o.«)

~0
(18)

~m-~m

&6~ a~
= «46~5. (f) ~

0
(19)

P"„„(t)is the order-parameter autocorrelation
function. Since the relaxation behavior of both

$6„~,(f) and P ~„,„(t) is polydispersive, an unam-

biguous measure of the relaxation rate is the area
under the relaxation curve. Thus the slowing
down manifested in the magnetization correlation
and autocorrelation functions may be characterized

In Fig. 2 we show as an example the calculated
temperature dependence of the isothermal sus-
ceptibility [Eq. (15)] for the square 55&&551attice.
It should be emphasized that the susceptibility is
a second derivative of the energy and is therefore
harder to calculate accurately than first deriva-
tives, like magnetization or energy. In view of
this, agreement between simulated and "exact"
results is satisfactory and reveals again the pos-
sibility to estimate critical exponents with the
Monte Carlo method.

In full analogy to Eqs. (11) and (12) we define
the time-dependent energy at time f [3C&=——p&E&,
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see Eq. (6)]

t'k
~(~) = - T. z, (()= —Z ~, )

—,.)N ~g N ~g (N

and its time average

(20)

(x)=
n ~ tn

x(t) dt. (21)

From the fluctuation of this quantity we may esti-
mate the specific heat

N .tm

Xaxax(~ C» T) = [X(t) —(X)] dt.
m n 4tn

(22)
The slowing down of the energy is characterized by
the correlation functions

N 1
4axdx(t) =

ka TXsxsx t t tn

tm t
x [X(t') —&X&] [X(t'+ t) —&X&]dt', (23)

"'n

&:~".g Ja". '[«(t') &x—&1 [«(t'+t) - &x&1«'
t t t„—-y" J™[x,(t') - &x)]'dt' (24)

which are analogous to Eqs. (16) and (1V). Again
we measure the associated energy relaxation times
by the area under the relaxation curves,

tm-tn

~b3!OX dt(t'axax(t)
&0

«m-tn
/&X&X(t)

A
~b3:5'

40
(26)

In addition to the order parameter and energy fluc-
tuations which are characterized by Eqs. (15)-(19)
and Eqs. (22)-(26), respectively, it is interesting
to consider the coupling between order parameter

and energy fluctuations. This is done by defining
the quantity

Xd.ax=
Z T, , l~

[&(t) —&t &][X(t)—&X&]dt
B m n «tn

(27)
and the associated time-dependent correlation func-
tions

N 1
4'da&X(t)

k~ TXOI.O3, tm ~ ~n

tm-t
x [p(t') —( t(&] [X(t'+ t) —(X)]dt', (28)

tn

Z~-a fa. [ta~(t') - &t&)1 [xa(t'+ t) - &x)]«'
Z~". &"[t «(t')- (ta)][X&(t')- OC&]«'

tn

Tda&X dt's'da&X(t)
0

(30)

In analogy to Eqs. (18), (19) and (25), (26) we de-
fine the relaxation times

which characterize the approach to thermal equilib-
rium. Suppose at time t= 0 a sudden change of the
magnetic field ~ or the temperature 4T is per-
formed. Then we describe the relaxation of mag-
netization by the function

pt -t
[

m n

Td„&X= dtgd„&X(t).
J0

(31)

t((t ) —t(,(tg
t((0)- u(tg '

and the associated relaxation time is

(32)

In Fig. 3 we show as an example the calculated
temperature dependence of the specific heat [Eq.
(22)] for the square 55x 55 lattice. In this case an
exact solution for this finite lattice (with pbc) is
available from the work of Ferdinand and Fisher '
and is included in the figure. The close agree-
ment of the numerical estimates with the exact
solution again gives confidence in the accuracy of
the Monte Carlo calculations.

In addition to these relaxation times Eqs. (18),
(19), (25), (26), and (30), (31), which characterize
the decay of fluctuations in the thermal equilibrium
state, we may also introduce relaxation times

t
T& T, & H

( dt's
T, H&(t)&

&0
(33)

-&T &»( )
X(t)-X(t„)' —
x(0) -x(t„)

and introduce the relaxation time

(34)

In the short communication the time v, „' was de-
noted by v„, , following Suzuki. A similar "non-
linear" autocorrelation function can be defined in
an analogous fashion but will not be considered
explicitly in this paper. Finally, we describe the
relaxation of the energy,
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ti

dt's
d r, dH(t) (35)

"C U, H/kB

2.0—

—FE R D IN AND 8 F I SHE R

(64 x 64)
——INFINITE SYSTEM

So far we have explained how we estimate the quan-
tities of interest using the Monte Carlo method and
have given the appropriate definitions. Comparing
static susceptibility and specific heat to exact re-
sults ' we have asserted the accuracy of our
Monte Carlo methods as applied to static quantities
of the two-dimensional Ising model. However, no
analogous exact results exist for dynamic prop-
erties. But a very sensitive test of the accuracy
of the Monte Carlo method with respect to time-
dependent quantities is the application to the one-
dimensional kinetic Ising model, for which exact
solutions exist. Such calculations have been per-
formed for various temperatures and are sum-
marized in Appendix A. From the very good agree.
ment with the exact results we conclude that our
Monte Carlo programs provide reliable estimates
for dynamic quantities, too.

R IMENT

'I,Q

0.0
0.9 1.0

0
T/Tc

g 3

(6B(-k, 0) 6C(k, t)}
(5B( k 0) 6C(R 0)} ' (36)

FIG. ". Calculated temperature dependence of the
specific heat for a square 55x55 lattice with nearest-
neighbor interactions subjected to periodic boundary con-
ditions. The full curve is the exact solution obtained by
Ferdinand and Fisher (Ref. 31) and the dashed curve is
the result for the infinite system.

III. SUMMARY OF ANALYTIC RESULTS CONCERNING
CRITICAL SLOWING DOWN

A. Formal Introduction

In this subsection we summarize the formal de-
scription of the relaxation times characterizing
the critical slowing down of the fluctuations. The
relaxation function associated with the dynamic
variables J3 and C may be defined by'

where for any operator D,

bD =D —(D),

6D(t) = e-"5D(0).

The operator L, playing the role of a Liouville
operator, is defined by'

L = Z W, (t», }(1 P,), -

(37)

(36)

(39)

~ XT kgTC
P& being the spin-flip operator of the jth spin:

+» t k t k 6»k t k(1 5»k)' (40)

'l00—

The transition probability W»(t»&) has been discussed
in Sec. II [see E»ls. (5)-(7) and (10)]. From E»l.
(36) the relaxation time associated with the vari-
ables B and C is deduced to be [cf., E»I. (38)]

oe

TSBSC 0 SBSC(0& t) dt= t @SBSC(t)dt—
0 0

yx &6B(I/L)6C&
(6B6C) (41)

This relaxation time is expected to diverge as

x~.
»»»lh» I

0.0'I 0.1 " 0.2
where

T T
E, =

C

(-e) 6B« for T —T-0'
C

(e) 6B6C for T —T, 0', (43)

(43)

FIG. 2. Calculated temperature dependence of the
isothermal susceptibility for a square 55 x 55 lattice
with nearest-neighbor interactions subjected to periodic
boundary conditions, +: T& T„X:T& T~. The broken
lines correspond to the asymptotic behavior obtained
from series expansions and exact solutions, respectively
(see Ref. 2).

b,6~« is the critical exponent of the relaxation time
v6s«. It is also necessary to define the corre-
sponding autocorr elation function

(6B»(0}6C» (t)}
«B (0)« (0)}
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),6(5B(-k, 0) 5C(k, t))
yd(5B( f-c, 0) 5C(k, 0))

(44}

The second part of Eq. (44) follows immediately
using the definition of Fourier transform

ceptibility

Td„d„~ (5p, (0, 0) 54(0, 0))= &B T!trt

and thus implies

(52)

5D(k) = —Z e""5D, . (45)

T6Bbc = dtpdBdc(t}t
0

(46)

The relaxation time characterizing the decay of the
autocorrelation function is then

(53)

These results, Eqs. (52) and (53), turn out to be
correct in the mean-field theory, which should be
a reasonable description for an Ising system with
long-range interactions. In this case the stronger
result is found that 5W(0, 0) is an eigenvector of
the Liouville operator I.; i.e. , we have

and its exponents 46Bdc and (5 6Bdc)' follow from the
relations

L5 p, (0, 0)=X5p, (0, 0),

and thus it follows

(54)

(-f } bdsdc for T —T 0'
T fX' gA

C

(6.) bede for T —T,- 0' . (4V) 5 tb(0, t) = e "'5p(0, 0) (55)

The variables in which we are actually interested,
5B and 5C, are the order parameter and energy,
respectively:

5p(k, t) = —Q e'6'"d5p, (t)
5B(k, t) or 5C (k, t) =

AC(k, t) = —Z e'"'"&MC&(t) (48)

Added~(0, t)=e" (56)

turn out to be a simple exponential. From Eq. (54)
it is easy to determine the eigenvalue X deriving
the first moment which is a finite and nonvanishing
constant at T, :

where, according to Eq. (37)
(5P(0, 0) L5!b(0, 0)) 1
(5p(0, 0) 5p(0, 0))

(5V)

5tb, (t) = P, (t) —(P)

57C, (t) = —Z &&, tb
& u, (t) - (5C) .

(49)

(5o)

Equation (56) further implies that all moments can
be simply expressed in terms of the first one;
specifically, it is found that

(5P, (0, 0) L'5P(0, 0))= &'(5!b0, 0) 5!b(0, 0))

Tre ~~~ D
(D)= Tr PD= -xidBrTre (51)

Since the kinetic Ising system is ergodic by con-
struction, the definitions given in Secs. II and ID
become equivalent in the thermodynamic limit N

We are now in a position to discuss several
important concepts concerning the theory of critical
slowing down.

Using Eqs. (48)-(50) in Eqs. (36)-(47), we have the
formal definitions of all relaxation functions and
relaxation times introduced on a phenomenological
basis in Sec. II [Eqs. (16)-(37)]. While these
quantities are derived experimentally from time
averages over a metastable state of a finite sys-
tern, we give these quantities in this section their
conventional meaning as ensemble averages taken
in a canonic ensemble, namely,

(5P(0, 0) L5tb(0, 0))'
( 5P,(0, 0) 5 ted{0, 0))

(58)

i.e. , the ratio of the second and first moments
should tend to zero as T approaches T, . Of course
it is not expected that this result of a random-phase
approximation is actually correct for an Ising mag-
net with short-range (nearest-neighbor!) interac-
tions. Abe and Hatano succeeded in calculating
(5p, (0, 0) L5 tb(0, 0)) and (5p (0, 0) L 5 tb(0, 0)) exactly
at T, . The temperature dependence of these quan-
tities can also be estimated with the aid of the
Monte Carlo technique as shown in Fig. 4.

For comparison we also included high-tempera-
ture-expansion results (see Appendix 8}and Monte
Carlo results obtained from the average transition
probability (W&) [Eq. (7)]. We note that

8. Conventional Theory 2 ( Wb)= (5tb(0, 0)L5P, (0, 0)). (5&)

This concept has been first derived by van Hove aber

for the critical slowing down of the order parame-
ter. It states that the slowing down of the order-
parameter relaxation is determined by the static
fluctuation of the order parameter, i.e. , the sus-

The good agreement between the results obtained
by three different methods (Fig. 4) proves the con-
sistency of our Monte Carlo calculation. The
finite second moment [Fig. 4(b)] shows that Eq.
(58) and thus Eqs. (54)-(5V) are not correct As.
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0.5— ~O

, 0&

(Sp. {o)LSp.{o)) Ts

re„e„~(6p(0, 0) 5g(0, 0)&= ks TX„„,
~ &57C(0, 0) 5X(0, 0)&= C„k,T',

(64)

(65)

of the conventional theory to include energy fluctua-
tions. It is suggested ' that in this case equa-
tions analogous to Eqs. (52) and (53) hold, i. e.
[cf. also Eqs. (22) and (27)],

0.9 )0 since
(a)

&8~(p) L sp. (0)) T

0.05—
X +

x " x x

k, T(Xe, s (-=i" )~)"' for T-T;.
8 (66)

Equations (64) and (65) imply

~dfkdÃ ~ PP ~53!53!

However, recently it has been shown~~ that this ex-
tension of the conventional theory does not even
hold in the mean-field theory.

0.9 1.0
T
Tc

C. Rigorous Inequalities

(b)

FIG. 4. Calculated temperature dependence of (a)
( &p(0)L&p, (0) ) and (b) ({5p,(0)L &p, (0)) for a 55x55 square
Ising lattice with nearest-neighbor interactions and

periodic boundary conditions. For comparison we includ-
ed the exact results (+) of Abe and Hatano:, 20 0 denotes
2 (W&) and the broken line the series-expansion results
[Eq. (B28)]. These results have been renormalized by
the factor 1/g(T) fEq. (10b)].

a consequence, te(0, 0) is not an eigenvector of
L, so that a cumulant representation of the re-
laxation function would require the knowledge of
all moments. However, the failure of Eqs. (54)-
(58) does not necessarily imply that also Eqs.
(52) and (53) are invalid. It only states that the
decay time ~»d„ is different from the decay-time
constant v~„d„of the initial decay, defined by

$,„,„(0,t) e' '- (60)

in the small t limit, with

k~ TX~

&5t (0, o)5t(0, o)&
'

and defining its exponent 4d„d„by
~l

(61)

(62)

we immediately get from Eq. (61) the exact re-
sult":

I

~dydee

(63)

While it is always true that b,,„d„=r, b, d„d„can be
different from 4»d„, depending on the precise
asymptotic temperature dependence of the moments.
If 4d„d„)4,„d„=y we speak of a "kinetic slowing
down" of the order-parameter fluctuations.

Finally, we briefly mention some extensions' ' '

&esse =» (&e s,)''=~,

Suzuki derived

2(Ae. sx)' —(n s.s.)'+ (Asmx)',

and Schnejder der jved

(68)

(69)

Aexsx=» (nsxsx) =» (As~ex) )'r ~ (70)

Note that Pe„ex(0, t) is defined only below T, . It
has been pointed out that the aforementioned ex-
tension' of the conventional theory [Eqs. (64)—
(67)] is inconsistent with the exact result Eq. (70).

Corresponding inequalities may be derived for
the autocorrelation functions [Eq. (44)] by invoking
the static scaling hypothesis, which is exact in the
2d case. These inequalities are due to Halperin,

&s~e~ —& —2» (&see~) —'r —2P

and Schneider,

(essex)' —1 —2P

(71)

(72a)

While an exact calculation of the relaxation func-
tions defined in Eqs. (44) and (46) is possible in
one dimension only [here Eqs. (54)-(57) hold,
but there is no phase transition; for explicit results
see Appendix A], rigorous lower bounds for various
relaxation functions and times, respectively, can
be obtained ' also for higher-dimensional sys-
tems. This approach makes use of rather general
properties of the problem, for example, the semi-
positive-definiteness of L, together with such well-
known mathematical relations as the Schwarz in-
equality. ' For the derivation of inequalities in-
volving the energy fluctuations ~ it turned out to be
convenient to use a generalized Norie two-variable
theory. These rigorous lower bounds for the
critical exponents of slowing down are summarized
in Eqs. (68)-(74). Abe and Hatano derived
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&axax — ( { axox)'—

2(~5 sx) (~d 5 ) +(~5xdx)

(72b}

(73)

The zero in {72b) includes the possibility that there
might be no divergence at all. Emphasizing the
small value of P [= —,'] in the two-dimensional Ising
model and noting the trivial inequalities

pA (g6u6u 6u6u y

A (&6x6x—~6x6x y

(no.o.)'- (&5.5.)'

(+oxax)' —(+oxsx)'~

(+deox) { dladx) t

(V4)

The superscripts denote the sign of T —T, . It is
convenient to express its dependence on tempera-
ture as a dependence on the inverse correlation
length w. Then a "characteristic frequency"
co'6„6„ is defined by

+tdC

f'"„S„sa( ,Kk, (u)d&d

1
S',„,„(K,k)

+Q

Sa 5 (I& k &(()d&(( = 5, (76)
~6u6u

The shape function F',„,„(K,k, &d/&d'5„5„) is defined
by15

which follow from the definitions (36), (41), (42),
(44), (46), and (47), it becomes clear that the
lower bounds (71) and (72a) are rather restrictive.

These rigorous inequalities [Eqs. (68)-(74)] are
very helpful in discussing the validity of the nu-
merical data [Sec. IV]; it will be pointed out that
the "effective critical exponents" as deduced from
a log-log plot of the relaxation function for I& I

~ 0.01 can be different from the "true" critical
exponents considered in the present section. This
difference is due to the existence of correction
terms to the leading critical behavior near T, .
Therefore "effective exponents" might violate the
exact inequalities [Eqs. (68}-(V4}],indicating the
existence of important corrections.

D. Dynamic Scaling Hypothesis

The dynamic scaling hypothesis (DSH) was first
formulated by FerreQ et 4. in their study of the
X point of He .' Here we follow the reformulation
of their approach due to Halperin and Hohenberg. '
For this purpose we introduce the Fourier trans-
form of the order-parameter relaxation function,

S'„„((&,k, &(()=(l/2(() t dte("
&t( „,„(k,t). (V6)

The DSH involves the following assumptions:

Fds os (Ki 4 «) fg g 5s (k/K, «),

&ds„s„(XK,Xk) =X 5»d&o „5„(K,k);

(79)

(80)

Z6u6„denotes the critical exponent associated with
In addition, scaling of the static correla-

tion function Ss„s„(K,%), implies'

(81)
Using these expressions, the relaxation times of
critical slowing down of the order-parameter cor-
relation function r's„s„, Eqs. (18) and (41) and of
the associated autocorrelation function 7",„'„, Eqs.
(19) and (46) assume the following forms:

Ss„s„(K,k=O, &d =0) I"ddt( 5t((0, 0) 5P, ( Ot}
Ss„s„(K,%=0) (5t((0, 0)5t&(0, 0))

= 2 P»s„(0, t)dt= K»»",",'"' ' ' (82)

AS;„5„(K,k, &d =0) f&(dt (5V((0)5V((t))
Q~S;„5„(K,k) (5P({0)5t(((0)}

= 2 /odds(t)dt K odds dsdla
0

„~S.'„,„(1,k/K}f ss„s„(k/K, 0)
si. &o,a, (1,k/K)

d denotes the dimensionality of the k summation.
In Eq. (83) we used the fact that gdS;„5„(K,k) is
nonzero and finite at T,. Also the sum in Eq.
(83) is only a slowly varying function of tempera-
ture near T, ' so that according to Eqs. (81)-(83),

&Vddds((() I ~ I u&Vddds+5) I I &&5 5+5( (64)
~6u6u

where we used w= &0i& (". This DSH prediction,
Eq. (84}, implies for the critical exponents n, s„s„
and t("5„„[Eqs. (42) and (47)]

VZdsdla alcalde navale +odds —V(d 2+(t) = 2p. ( )

In the last step we used the scaling relations' 3

r = (2 —&7)v and r + 2p =dv to derive the equality be-
tween exponents

&5»„—as„a„=2P ( = —' for d = 2). (86)

Furthermore, it implies symmetry above and below'

Tc, i.e. ,

Equations (V6) and (77) imply
+1 oo

JI Fa„a„(K,k, «) d« = 5, Fa„s„(K,k, «}d« = l.
(78)

1
Sado~(K~ k, &d) = —, , k) S;„,„(K,k)u u p y c (g ~dsdla (+odds) ~

A Atoo,s. = (~s.s.)'. (87)

x F;„5„(K&k, &d/~5„„). (77)
similar predictions can be derived for the energy
relaxation times using an "extended dynamic"
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scaling hypothesis. " The derivation is completely
analogous to Eqs. (75)-(87) but Eq. (81) has to be
replaced by

—1+
3e,sx(&K~ &k) = &"'"«35,5X(K~ k)i ~s,sx =

(88)
or

scale. The order-parameter relaxation functions
at all temperatures of the critical region should

fit a single curve, thus determining the shape func-
tion g'(0, x), which does not depend on tempera-
ture. In order to save space we do not write down

all the definitions and derivations for the other
functions, but merely quote the results

axsx( ~ )= " sxex( ~k)~ sxsx=
(89)

(99)

The case a = 0 corresponds to the logarithmic
anomaly of the specific heat in the 2d Ising mod-
el. ' ' The results corresponding to Eqs. (86) and

(87) are

where the function hs'„5„(x), which is obtained from
Eqs. (44) and (94)-(9V) carrying out the integra-
tion over k, should be, again, independent of tern-
perature, and

(as„sx)
' —(ns „Sx)'= 1 —a,

where the result

«~a(0)5765(0)&" (-~)', T-T.
has tobe used in the analog of Eq. (83), and

(90)

(91}

(ja»x(t) gssax—(0~ t(e
I

5"Sx)~

4axsx(t) gsxax(0i t
I
~

I

(100)

(101)

&sxsx tssxsx = 2(1 +)~

A A
nexsx (+Sxsx) t nax«( dxdx) (93)

Of course, a critical slowing down of the energy
autocorrelation function is inferred only if hdged3
~ 2(1- a) and n«sx~ 0; otherwise the autocorrela-
tion time of the energy has a finite cusp at T, .
Since the numerical calculation is performed
rather in time than in frequency space it is help-
ful to translate the DSH from the (k, &u) into a (k, t)
representation. The equation analogous to Eq.
(VV) is

(~t (k 0)5&(» t)&=35,5,(x, k) Gaea. (x. R t/v5;5. )

(94)
Again it is required [cf. Eq. (78)] that

Gs„s„(&,k, x)dx= 1, I G „5(5K,k, )xd =x—. sd u t
~

t
~~

t

~
~
~ ~ ~ u t

I
j

~~ ~
21 I

0 0 (95)

The DSH involves assumptions equivalent to Eqs.
(79) and (80):

Gs„a„(&,k~ x) =gases(k/ x~ x)~

75'„„(XX,XR) = X essa Vase„(X, k).

(96)

(97)

From Eqs. (94)-(9V) we immediately derive the
scaling behavior of the function ps»„(0, t) = P»a„(t)
[cf. Eq. (36)],

t
(1 0))(t. = ' 0

dods

~go.s.(0 t I'I""'"& (98)

i. e. , we may test the scaling behavior of the func-
tion $5„5„(t) itself, suitably renormalizing the time

E. Determination of Exponents by Expansion Techniques

The technique of high-temperature series ex-
pansions has been generalized by Suzuki, Yahata,
and others (Refs. 8-11) to derive exponent esti-
mates for the critical slowing down in the kinetic
Ising model. In order to perform a comparison
of these results with our numerical data which is
as detailed as possible, we outline their method
and our reanalysis of their results in Appendix B.
The main results of those investigations "are

ns„s„=2. 00+0. 05, n, axsx= 2. 00+0.05. (102)

Also a series expansion for ~d„d„ is given' but
does not allow for making precise statements about
the exponent. The remarkable feature of Eq. (102)
is that it disagrees with the conventional theory
[Eq. (53)] and its extension [Eq. (67)]. Both re-
laxation times exhibit the phenomenon of a "kinetic
slowing down, " contrary to conjectures based on
mode-mode coupling approach for anisotropic
magnets ~ that the conventional theory for the or-
der-parameter g elaxation should be valid. Suzuki'
conjectured ("similarity hypothesis") that the
kinetic slowing down [i.e. , deviation from Eqs.
(53) and (67)] should have the same amount both
for order parameter and energy fluctuations, which
is also borne out to be incorrect. However, Eq.
(102}is consistent with the rigorous inequalities
Eqs. (68) and (VO), respectively.

Another expansion technique which has been
applied recently is the generalization of Wilson
expansions to dynamic critical phenomena. s

This method does not apply to the kinetic Ising mod-
el directly but to a continuous analog: from the
universality argument it is concluded' that the
critical exponents should be the same as in the



3276 STOL L, BINDER, AND S C HNE IDER

kinetic Ising model. These expansions are either
expansions in e = 4 —d (where d is the dimensionali-
ty of the system) or in I/n (where n is the "di-
mensionality of the spin"). From these expa, n-
sions it is found that the DSH is correct to order

or n '; for the exponent Z„,„[Eq. (80)] it is
found that

We may identify the density matrix p(t) with the
time-dependent probability P(o». . . , o&, t) obeying
the master equation [Eq. (1)]. Since the system
is constructed to be ergodic via the detailed balance
condition [Eq. (2)], P(t) will evolve towards the
final probability distribution P„or density matrix
p

Z, ,„=2+ (61nf —1)n +0 (& )

Z,„,„=2+0(1/n ) (d= 2),

(103)

(104)

exp(- y, z;/us T,)
p t~ao

Tr exp(-$&3C& /ke T&) '

where

T)= T+hT, , H) ——H+~g

(109)

(110)
while the conventional theory implied [Eqs. (53),
(80), and (82)]

(105)

These results [Eqs. (103) and (104)] support the
existence of a kinetic slowing down and agree with
the high-temperature series-expansion result
[Eq. (102)], at least in the order of magnitude.
The accuracy of Eqs. (103) and (104) for the 2d
Ising model (e =2, n=l) seems questionable, how-
ever, since, for example, the prediction for the
order-parameter exponent P is

1 1 3 (2n+1}(n+2)
2 4(n + 8) 4(s + 8) (106)

and [cf. Eq. (6)]

SCAN=
— Z &gy Pg Py -If' Pg Ps ~

1(It) )

It is now convenient to introduce a reduced func-
tion y(t) by~

p(t) =y(t) p- ~ (112)

If we rewrite the master equation [Eq. (1)] in
terms of the operator L introduced in Eq. (39),

d
«p(t) = Lp(t), - (113)

we get an equation for y(t) in terms of a new opera-
tor I.'.

which disagrees with the exact value P = —,
' = 0. 125.

This approach [Eqs. (103) and (104)] is expected
to be more reliable for d=3.

dt V(t) = —L'q (t)

with

(114)

F. Nonequilibrium Relaxation

-Xo(l ~r
p(t)= p(0)= po= „I» for t(0.Tr8 (107)

Generalizing a treatment of Suzuki we allow for
sudden changes ~q and hT& (which may depend
on the lattice site j). We then consider the evolu-
tion in time for some variable B(k),

(B(k, t}&= Tr p(t) Q e' '
& B& . (108)

A critical behavior does not only show up in
equilibrium relaxation functions, but also in the
nonequilibrium relaxation. This relaxation occur s
if a sudden change bT, btI in the intensive vari-
ables T, H is performed. This is a very common
procedure in Monte Carlo calculations, since
equilibrium configurations of the state to be in-
vestigated are not available at the very beginning
of the procedure [cf. Sec. II and Fig. 1]. In the
formal description of a nonequilibrium process,
one assumes that the system is in thermal equilib-
rium at times t & 0, described by some initial Ham-
iltonian ~ and initial density matrix po'.

The formal solution of Eq. (114) is

q(t)=e ' 'V(0)=e ' 'pop (116)

and from Eqs. (108), (112), and (116) it follows
that

(B(k, t)&= Tr p(t) B(k)=— 5 P(p~, . . . , p„, t)B(/p&]; k)
tv~)

= 2 B({p,),k)P(p„. . . , p„t)
(gg&

(117a)

= Tr B(k)p(t) = Tr B(k)y(t)p„

&fL'g& = &gL'f &, (118)

which can be derived from arbitrary spin functions
f, g from the detailed balance principle [Eq. (2)].
The meaning of the expectation brackets in Eqs.
(108) and (117) is thus shown to be an average in

or

(B(k, t)& = Tr B(k) e 'po= Tr poe 'B(k), (117b)

where in the last step the symmetry relation en-
ters,
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the initial ensemble

&B(k~ t)) = &e B(k)& r „=&B—(k, t)&r „. (119)
TOB Cc
~s er ( 5) 6 ~ "~ ' for T —T- 0'

(122(g- es, eH, ~r for T T 0'

Now the nonequilibrium relaxation function is de-
fined by

(120)

In close analogy to Eq. (41) we define its relaxa-
tion time

eo g OO

&(0, t)dt —= Q
"&' &(t)dt

0 ~0
(121)

and its critical exponent &» « ~r [cf. Eq. (12)],

(B(kt ))r, H (B(k))r+5 r, H+5Hg I (123)

and then one uses the expansion

In Ref. 29 it was conjectured that 66 gH 0 should
be equal to 6,»„, and a series expansion for

was given. In the Monte Carlo calculation
usually vB' is important and we thus proceed to
relate the nonequilibrium relaxation function

&(k, t) to the appropriate equilibrium relaxa-
tion function P»ec(k, t) considering the limiting
case of L3H~ - 0, 4T&-0. First, one notes from
the ergodicity property ' that

(B(k, t))r „=&B%)& r,s —
}t, T Q [(B(k, t)P~(0)&r, s —&B(k)&r~,s &Pg &r~, H~] tdfy

(124)

which is valid in the limit ~&-0, 4T&-0, where
the density matrix may be linearized

(125)
Introducing the Fourier transforms of &T& and
nH& one derives from Eq. (124) [cf. Eq. (37)]

(5B(k, t)& = — ~(k) &5B(k, t)5u(k, 0))
B

assumes the validity of Eq. (128) not only for fi-
nite changes teH, teT/T but also for infinite changes
(b,H=~, teT=T); the initial state of a fully aligned
ferromagnet is achieved either by T=O or H=~,
all correlations being identical in both cases.
Thus heating the system at H=O from T =0 to T
abruptly or switching off an infinite field I= ~
for a system at temperature T leads precisely to
the same behavior. Thus we have

g4H=~ gh T=T ~EH"-~ gh T=T (129)6X 6X

The assumption that Eq. (128}also holds in this
case now implies that all exponents ne»„(ne„ex)',
and ~ex«are equal,

(5B(k, t)6K(- k, 0)).
B

(128)

/tee», = (teeuex) —nexex.

IV. MONTE CARLO RESULTS

(130)

Thus we get the relations

lim %ca~' (k, t)=46B5 (k t)
lh Hy 0

(127a}

lim 46a '(k, t) = /csex(k, t).
4 1'g 0

(127b)

It is plausible to assume that the exponents
&»,«,~r introduced in Eq. (122) should be inde-
pendent of the magnitude of ~ or 4T. Equations
(127) thus imply abbreviating tee~ ~H 5

—=46„",
hT

+Oft, ,p ar +Og y

hH hT hT' dT
~eeep t ~ee (+csex) +el' I ~ex +exex '

(128}
A further equality of exponents is derived if one

To estimate the critical exponents associated
with the relaxation times v»», 7'6„'~„, 76~«,
&~„«, and 7'««, &6x«, respectively, we used
the Monte Carlo technique outlined in Sec. II. As
pointed out in the last part of Sec. III these ex-
ponents may also be estimated considering non-
equilibrium relaxation, and since this approach
was used in the previous investigation of Ogita et
al. ' (without the justification given in Sec. III,
however) we first present some results derived in
this way.

In Fig. 5 we plotted the time dependence of
Pe„'r(t) [Eqs. (32) and (120)], where we used the
scaling representation [Eq. (98)], for a variety of
temperatures T & T, and a 220x220 square lattice
with nearest-neighbor interactions and pbc. For
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FIG. '. Calculated time dependence of the nonequilib-
rium relaxation function [Eqs. (32) and (120)] for vari-
ous temperatures above T, and a 55 x 55 square lattice
with nearest-neighbor interactions and periodic boundary
conditions. At two temperatures two independent runs
are plotted to display the magnitude of the statistical
errors. The time scale was renormalized according to
Eq. (98) in order to exhibit the dynamic scaling behavior.

some temperatures two independent runs are shown
to illustrate the magnitude of "statistical" errors.
Within these errors all functions fit to one curve
for all temperatures in the critical region; this
fact demonstrates the statement [stronger than
Eqs. (79)-(101)]that even nonequilibrium relaxa-
tion functions seem to obey the DSH in the critical
region. It is important to note that for large times,
Q„' (t) may be approximated very well by a simple
exponential. For each temperature the time inte-
grations were performed in accordance with Eqs.
(33) and (121) to derive the associated relaxation
time ~6„' . The calculated temperature dependence
of &&'„' is shown in Fig. 6 for T & T, and for
T & T, . Since one expects [Eq. (122)] a power-law
divergence ' (c,+ ci

I
&

I
"+cs I

~ I"'+ "}'(»I)
it is appealing to plot b, ,„ in a log-log plot well
known from experimental investigations, in order
to estimate the critical exponent 4,„~,

»vl'"= —n~»'"'(Ie I)» le I
+I~o (132)

where

d,""'(lel)-n"
—ln [1+(Cz /C, ) I

~ I"+ (Cs /Co) I
e

I

*'+ "] /» I
~

I

(133)
is an "effective" temperature-dependent "expo-
nent"; inpractice one takes the average of
6,„'"'(la I) over a certain temperature interval.
One wants to estimate the "true" exponent 4~&„~,

of course; the effect of correction terms in Eq.
(133) can be neglected if either their amplitudes
are very small (C, /Co «1) or their exponents

)i ~OedT
Sp,

iIOO—

+
C -~-vrvc

T/Tc

Zi
' =1.85

Sp.

T& Tc

0.04 0.1

FIG. 6. Calculated temperature dependence of the re-
laxation time v'6„' ~ associated with ft, „' (t) shown in Fig.
7. The slopes indicated by the full and broken lines
correspond to „' = 1.85.

rather large (x, = 1) or I a I is made very small.
In our computer simulation which is always done
on finite systems, I & I cannot be made arbitrarily
small, there is an unattainable temperature inter-
val of about (c I -0.02. This restriction is simply
understood since near T, all relaxation times be-
come large, and as a consequence accurate esti-
mates require an increasing number of Monte
Carlo steps (MCS) per spin. In practice, this re-
quirement can only be met as long as conditions
(13) and (14) are satisfied: this expresses the fact
that T, cannot be reached using a model system of
finite size. Thus to make the correction terms in
Eqs. (131) and (133) as small as possible we found
it convenient to make plots versus e' = 1 -v/v,
above T„where e is the high-temperature expan-
sion variable tahn(2 /kJTs). From Fig. 6 no in-
dication of important correction terms can be seen,
and thus we tentatively estimate the critical ex-
ponent ho„:

g~~~ g~~'= 1.85+0. 10, (134)

as indicated in the figure. This result is consis-
tent with the previous estimate, ~5 and combining
it with Eq. (130) is consistent with the inequality
Eq. (70).

Next we turn to the slowing down of the equilib-
rium relaxation functions. The relaxation functions
defined in Sec. II were calculated at several tem-
peratures, and integrating them the associated re-
laxationtimes were estimates. In Fig. 7 the tern-
perature dependence of the order-parameter relaxa-
tion time 76'„~„ is plotted for T& T, and T& T, . Since
it might be conjectured that our data are seriously
affected by the finite-size rounding phenom-
ena, ' ' we perform calculations for systems
of various size, e. g. , N = 20 x 20, 55 x 55, and
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110X110. Including the data of the smallest sys-
tem above T, , it turned out to be essential to
take the "shift" of T, into account. This shift was
taken from the exact calculation to be

FIG. 7. Calculated temperature dependence of the
relaxation time w6„6„[Eq. (18)] associated with the mag-
netization correlation function. The slopes indicated by
the full and broken lines correspond to ~„=1. 85. For
comparison we included the Padh approximants to the
series expansions of Yahata (Ref. 11). These estimates
have been renormalized by g(T) [Eq. (&ob)].

The kinetic slowing down predicted by Eq. (136)
is somewhat smaller than the high-temperature
series prediction, Eq. (102). In order to elucidate
this slight numerical discrepancy we reanalyzed
the series expansions [Appendix B] and formed
Pade approximants to them; the dashed-dotted
curve included in Fig. 7 is a numerical approxima-
tion obtained in this way. It is seen that the nu-
merical agreement between the series result and
our data points is, in fact, remarkably good, in
spite of the slightly different exponents. Since
other curves also fit better to exponents near 1.85
than to 2. 0, we are in favor of the value of Eq.
(136) instead of 2. 0; the possibility of effects due
to corrections [Eqs. (131)-(133)]should not be
forgotten, however, and as also pointed out in Ap-
pendix B, the series extrapolation approach suffers
from several uncertainties. Therefore the slight
discrepancy between Eqs. (102) and (136) should
be taken as a measure of the uncertainty still in-
herent in the determination of exponents by nu-
merical techniques.

In Fig. 8 the calculated temperature dependence
of the order-parameter autocorrelation time w",„,„
is shown. Again the two systems N=20x20 and
N = 55X 55 yielded results consistent with each
other. From Fig. 8 it is seen that the "effective
exponents" are

~6&&& = 1.35 for T & T

(137)
AT~/T, = —0. 36/vN . (135) &6„'6„=1.0 for T &T„

h~„~„= (b,„,„)'~1.85 +0.10. (136)

Even if we neglect the shift of T, [Eq. (135)] the
same result [Eq. (136)] is obtained, provided N is
greater than 55' 55, as in our preliminary com-
munication, where it was stressed that our re-
sult [Eq. (136)] does not rule out the validity of
the conventional theory [Eq. (53)]. It is also im-
portant to note that the data of Fig. 7 should not
be invalidated by the rounding phenomena, since
our smallest )c ) =0.03 and, according to Ref. 31,
l~ I

~& IE l~'" holds. This result canbe un-
derstood qualitatively from the fact that, for ex-
ample, at T/T, = 1.OV the correlation length has
the value $ -8, which is still small compared to
the linear dimensions of our systems. On the low-
temperature side this situation is even more favor-
able, because 2)c= $0= 1/1. V6. e These facts exclude
the possibility that our results are seriously af-
fected by the rounding phenomena. We note that
the same conclusion is evident from Figs. 2 and
3.

Then it appears that independent of N all data points
fit the same curves both above and below T„yield-
ing the estimate

implying a pronounced asymmetry of the effective
exponents above and below T, . Above T, a
series expansion of v. ",„,„ is available. However,
as noted by these authors, the series for 7'",„,„
has too few terms to yield reliable estimates from
the ratio method. This fact is also evident from
our Pade approximants to this series. In fact,
only two Pade approximants could be formed, which
in turn led to exponents 4",„,„=1.25 and 1.33.
Nevertheless, we included these estimates in Fig.
8. Combining Eqs. (137) and (136) we find

eft / eff 1.85 —1.35= 0. 5 for T & Tc
1.85-1.00=0. 85 for T &T„

(138)
which strongly implies that the effective exponents
do not fulfill the dynamic scaling hypothesis [which
predicted for the difference in Eq. (138) a value of
26 = ~, Eq. (86)]. In the absence of any rigorous
knowledge about the exponents one would have to
consider the possibility that Eq. (13V) might in-
dicate also a violation of the DSH for the "true"
exponents. From the rigorous inequality Eq.
(71), 6",„,„»—,', owing to Halperina' it is immediate-
'.y clear that the true value of 4",»„must be con-
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This fact implies that the effective exponent
6",„',"„' tends to zero for t='1 —

I T, /T I -1. There-
fore it seems reasonable to plot v'",„,„on a a,
=

I 1 —v /t), I scale in order to remove this trivial
source of changeover of the effective exponent. In
Fig. 9 the result of this removal of correction
terms is shown: Again, v6"„6„$~S(k)fits to straight
lines both above and below T, , but the slopes are
now very different from those given in Fig. 8. In-
stead of Eq. (137) we find

50— n, ~„6„=l. 60 + 0. 10, (n, ~o„~„)'= 1.60 a 0. 10, (140)

I

0.0 1

I

0.1

T& Tc i. e. , symmetric exponents, which are consistent
with both the rigorous inequality of Halperin [Eq.
(71)] and the predictions of the DSH [Eq. (86)]. In
fact, from Eqs. (136) and (140) it follows that

(141)
Fj:G. 8. Calculated temperature dependence of the

order-parameter autocorrelation time v&„6„. The slopes
indicated by the full and broken lines correspond to
"effective" exponents &~„=1. 0 for T& T and +„'X„=1.35
for T & T~, respectively. For comparison we also in-
cluded Pads approximants to the series of Yahata and
Suzuki(Ref. 10). 0 leadto b~~„=1.33 and ~lead to
Q+„6~=1.25. These estimates have been normalized by
g(T) tzq. (10b)].

In order to test the accuracy of the present cal-
culation, we included in Fig. 9 the rigorous lower
bound for v",„,„derived by Halperin ".

(142)

where the abbreviation L. B. denotes lower bound
and I' denotes [cf. Eqs. (59) and (7)]

siderably larger than its "effective" value in the
temperature range 0.02~ Ie I ~0. 20, Eq. (137).
Such deviations between a "true" exponent 4 and
an "effective" exponent 4" are due to consider-
able correction terms, as explained in Eqs.
(131)-(133). In order to also provide an estimate
for the true exponent 4",„,„, it is necessary to
estimate the main correction terms. First we
note that below &, a correction will be caused
from the temperature dependence of the normaliz-
ing denominator of v~„~„, which is [Eqs. (17),
(19), (44), (46), and (83)]

I' = 2 ( Wq ) .

7 . E
Sp8p a

10—

x 20

x55

(143)

(139)

where B=1.22 is the critical amplitude of the
spontaneous magnetization. For v', „,„, etc. ,
the leading temperature dependence of the de-
nominator does not give rise to corrections,
since the denominator is critical and thus its tem-
perature dependence changes the "true" exponent,
while the cusp-shaped temperature dependence of
Eq. (139) enters only into the correction terms.
Thus it seems preferable to plot v~„),„$~$(k)
below T, instead of +&„,„itself to remove this
correction term. Furthermore, it is useful to
note that v'o„,„ is an even function of e for T &T, .

IAL
OPE

0.5

0.1

FIG. 9. Calculated temperature dependence of the
"critical part" ~6~„Eq S(k) of the relaxation time r&u6u,
where d'=1- (v/v~) and ~ =1-u/I, . The slopes indicated
by the fu11 lines correspond to ++~„=1.6. The rigorous
lower bound Eq. (142) is represented by the dashed-dot-
ted line; its asymptotic slope is indicated by the broken
line and corresponds to h~g~6~=1. 5; L. B. denotes the
lower bound.
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g = 1.85

0.01
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FIG. 10. Calculated temperature dependence of the
relaxation time v'6„63C tEq. (30)]. The slope indicated by
the full line corresponds to (~) = 1.85. For compari-
son we include the result obtained for w&„6„[broken line]. (n,„,s)' = 1.85 +0. 10, (150)

rigorous inequality Eq. (142). It is further seen
that the effective exponent of the lower bound is at
high temperatures considerably higher (b,~' = 1.7)
than its exact asymptotic value 4",„'6„' = 1.5.
Therefore it is clear that data of even higher
statistical precision would not allow to give more
accurate exponent estimates than the ones given
in Eqs. (136) and (140). A higher accuracy can be
obtained only from data which are closer to T„
requiring considerably larger systems because of
the conditions Eqs. (13) and (14); this is outside
the scope of present computing possibilities.

In Fig. 9 we included also the initial slope of
r, ,„at v - 0 [note that the limiting value of v",„„
(v - 0) = 0. 5 and not 1.0 due to the renormalization
of the time scale, Eq. (10b)].

Next we turn to the correlations involving energy
correlations. In Fig. 10 the calculated tempera-
ture dependence of ~,„«is plotted. Note that this
relaxation time is defined below T, only. Again
we find

[
s

S(k)= » [s'+4, ((t)]
(144)

with

Noting that the available explicit exact solutions
for pair correlations in the square lattice apply
to certain directions of k only, we evaluated the
sum in Eq. (142) using the so-called "second
Fisher-Burford approximant" for S(k):

which is consistent with inequality (70) and the
estimate for 4,„[Eq. (134)] as expected [see Sec.
111, Eq. (128)]. Furthermore we included our re-
sult for v,„,„ in Fig. 10 to show that the critical
amplitudes of ~,„,„and 7"6„63 are nearly equal.
The coincidence of the values found for the ex-
ponents confirms Eq. (130).

In Fig. 11 the temperature dependence of the
associated autocorrelation function v",„63 is shown.
From these data it is seen that the effective"

@2=1+-,'q C'

and [v = tanh(2Z/k, T)]

@p ~ 4 1 —2.360217v
1 —0. 360217v —4. 220435 v~

(145)

(146)
Y$
10—

A

Sp, SX
~ &Sp; SZ;&/(&p& ~ )

Sp.SX kBT

r~= 0. 57959[1—0.350(T/T, —1)], (147)

logy o K = v loggo(T/T+ 1)+ 0. 24640

—0. 299(T/T —1). (148)

The angular-dependent momentum K (k) is in the
case of the square lattice given by '

—0.70

yX

x 095

K (k) = 4 —2(cosk, + cosk„). (149)
0.01

I

0.1
The accuracy of the expression Eq. (144) is by far
sufficient, since for I' we had to take the numerical
values of the Monte Carlo calculation [see Fig. 4).
Figure 9 shows that all data points satisfy the

FIG. 11. Calculated temperature dependence of the
relaxation time v'6~3. [Eq. (31)] of the autocorrelation
function (Eq. (29)]. The slope indicated by the full line
corresponds to (Q„ss}= 0.95.
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exponent in the temperature regime investigated
is 6",„',„'=0.70+0.10. In the case of v",„,„ the ef-
fective exponent was considerably smaller [Eq.
(137)] than the rigorous lower bound [Eq. (71)],
while b",„'~~3' is only slightly smaller than the asso-
ciated lower bound r",„',x' '=0. 75 [Eq. (72a)].
Nevertheless it is easy to see that the denominator
of v», x (which can be calculated exactly) leads
again to important correction terms. Therefore
it is useful to eliminate these corrections as was
done in the case of 7",„,» here we have to con-
sider the quantity n",„,„(5 p, , 556,)/(J/ks T ( p)),
which is also plotted in Fig. 11. From this plot
we find

, ( ~A
SXSX

0.0 1

+ T&Tg
x T&Tc

I

O. l

(n5 6x) =0 95+0 10 (151)

+«ax= (nnxsx)'= 2 0 (152)

IIOOO—

Combining the estimates (150) and (151)we obtain
(a»,x)' —(a",„«)'=0.9+0.15, which is consistent
with the prediction of the extended DSH [(6,„«)'
—(b.",„,x)'=1 —a; Eq. (90)].

In Fig. 12 the temperature dependence of the
energy relaxation time v,x,x [Eq. (25)] is shown.
Here we plotted the low-temperature data versus
& =1 u/u„-where u=e ~~~~sr. These data are
less accurate than the order-parameter relaxation
data, since they involve four spin correlations.
The straight lines shown in the figure correspond
to exponents

FIG. 13. Calculated temperature dependence of the
relaxation time 76333 [Eq. (26)] of the energy autocorrela-
tion function [Eq. (24)]. Note that the scale of 7'Me63 is
here linear; thus the full lines correspond to a logarith-
mic divergence of v&333;.

which are consistent with the inequalities (72b) and
in rough agreement with the conjecture expressed
in Eq. (130). The estimates (136), (150), and
(152) reveal that the exponents 6„,„, (n, ,„«)',
and b, ,~«are nearly equal.

In Fig. 13 the temperature dependence of the en-
ergy autocorrelation time v««[Eq. (26)] is
shown. From the extended DSH [Eq. (92)] and the
result (152) it is expected that n,««= 0, i. e. , the
energy autocorrelation time should diverge with a
logarithmic singularity. This prediction is ob-
viously consistent with our results shown in Fig.
13 and the lower bound (72b).

Finally, let us comment on the ratios of the re-
laxation times at corresponding temperatures
above and below T, . Conventional theory of slow-
ing down predicts, according to Eq. (64),

kgT

Sxsx + + /
6goff, / hyoid Xegeg / Xsgeg ~ (153)

0.0&

I

0.1

FIG. 12. Calculated temperature dependence of the
energy relaxation time ~6~ [Eq. (25)]. The slopes
indicated by the full and broken lines correspond to b~
= 2. 00 and (33~)'= 2. 00, respectively. The broken
curve is the result of the series expansion (see Ref. 11).

In the two-dimensional Ising square lattice the ratio
is 36.8. From Fig. 14, it is seen that the cal-
culated ratio is considerably smaller than that
predicted by the conventional theory of slowing
down. This result again indicates the failure of
the conventional theory and is more reliable than
the conclusions drawn from the dynamic expo-
nents.

In judging the reliability of our estimates we re-
call the arguments why the following error sources
do not invalidate our results.

(i) Correlation between pseudo-random-numbers:
We used a random-number generator by suitable
mixing of several pseudo-random-number sequen-
ces, which was carefully tested. If serious cor-
relations between the random numbers existed,
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the series expansions where the critical exponents
of initial and asymptotic decay are different. In

doing so we consider the ratios of the critical
amplitudes of the coefficients a„ in the frequency
expansion [Eq. (B22)]. From the expansion coef-
ficients f„"we get for the order-parameter re-
laxation function

f~/n~f~= 0.1, f„/n f„'= 0.07. (154)

0.0 0.5

ICI

0

FIG. &4. Calculated ratio of the relaxation time of the
order-parameter fluctuations at temperatures above and

below T~.

The smallness of these coefficients indicates a
rapid convergence of the series Eq. (B22). This,
in turn, implies that the changeover of f(x), defined
in Eq. (B24}, from the low- to the high-frequency
behavior occurs for rather large x values, namely,
x»1. Consequently, we conclude that [Eq. (16)]

they should be visible in the calculations of the
one-dimensional Ising model, described in Ap-
pendix A. No effect of such correlations could be
detected. Such correlations would enhance the
time-dependent spin correlations at short times.

(ii) Statistical inaccuracy: Since conditons (13)
and (14) allow only time averages over finite-time
intervals, the question arises whether or not the
intervals considered are large enough to guarantee
small statistical errors. It was shown in Sec. II
and Ref s. 28 and 30 that our choice of the time in-
tervals leads to an accurate description of static
properties like the static susceptibility (see also
Fig. 2}. The accuracy of our time-dependent quan-

tities has been asserted in Appendix A. A further
test of consistency is provided by Figs. 3 and 4.

(iii) Finite-size rounding phenomena: According
to usual theories ' ' these effects should occur
only if the correlation length $ is comparable to
the linear dimension N of the system. In fact,
it has been shown that rounding corrections are
of the order e-~' «. As shown above, this fac-
tor is very small in our case provided (a ~» 3x10
This argument is well established with respect to
static quantities; the results of Appendix A show

that it also holds for dynamic quantities.
(iv) Time integration: In order to calculate the

relaxation times, one has to perform time inte-
grations [Eqs. (18), (19), (25), (26), (30), (31),
and (35)] over time intervals f, which are short
compared to the intervals available to perform
time averages. It was found that the decay is ex-
ponential for large times. Using this fact we
integrated to infinity in Eqs. (18), (19), (25), (26),
(30), (31), and (35) by extrapolating this expo-
nential. To justify this procedure it must be shown
that the correlation functions already exhibit the
asymptotic decay in the time intervals considered.
Next we analyze the problem in more detail.

For this purpose it is interesting to estimate the
time when the asymptotic decay shows up, using

&j,„,„(t)=constexp[-(t/~, ) C, e &~&~] (155)

(f/~ ) g Sedll & l. (156)

C~ is a constant of order unity. From Eq. (155)
we may now estimate the time when the asymptotic
decay as predicted by the series expansion should
show up. The result is

(157)

Exponent j is the exponent of the initial decay of

P,„,„(f) [Eq. (63)), and exponent 2 is series ex-
pansion estimate for b, ,„,„.' ' ' %e note that the
time when our exponential extrapolation was taken
was always larger than f [Eq. (157)]. Consequent-
ly, our results for ~,'„O„cannot be seriously af-
fected by calculating p,„,„(f)for a very large but
finite time only.

In summary, we conclude from remarks (i)-(iv)
that sufficient accuracy has been achieved tc pre-
dict effective exponents with reliability of about
5%. These exponents refer to the temperature
region )e ) ~2&&10 ~. It has to be stressed that
possible experiments refer to a similar tempera-
ture region as our Monte Carlo calculations.

V. CONCLUDING REMARKS

It is clear that the kinetic Ising model in which
each spin can flip according to prescribed transi-
tion probabilities should not be regarded as a mod-
el which faithfully simulates phenomena occurring
in certain real systems. The value of the kinetic
Ising model lies in the fact that it provides us with
a precisely defined model in which no statistical
approximations enter. This allows us the study of
dynamic critical phenomena with techniques such
as the high-temperature series-expansion approach,
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which was first developed for the study of static
critical phenomena, and the Monte Carlo method.
Since the alternative approaches to dynamic criti-
calphenomena are still highly phenomenological,
studies of the kinetic Ising model can be regarded
as complementary and are expected to open a door
towards a better understanding of the dynamics of
phase transitions and critical phenomena.

In this work we extended the Monte Carlo tech-
nique to time-dependent critical phenomena. Among
other tests of this method we calculated the one-
dimensional kinetic Ising system and obtained
striking agreement with the exact solution of
Glauber. The main purpose of this investigation
was then to calculate various relaxation times of
slowing down in the two-dimensional kinetic Ising
system. The associated "effective" critical ex-
ponents have been determined with reasonable ac-
curacy. Tentative arguments have been provided
that these "effective" exponents should agree with
the "true" ones within the given accuracy, except
in the case of the order-parameter autocorrelation
time: here, correction terms whose nature could
be investigated in detail lead to pronounced change-
over of critical exponents. Nevertheless, in the
latter case also, a reasonable estimate for the
"true" exponent b,"6„5 could be obtained. A de-
tailed comparison with all available results of
other methods (for example, series expansions)
has been performed. For the sake of clarity we

collect in Table I all these exponent estimates so
far available. It is seen that a large number of
new exponents could be determined which have not
been estimated by any other method previously.
Ne found slight discrepancies with recent series-
expansion estimates ' ' for he„e„and 66363.
Therefore we gave a detailed discussion of re-
liability for both methods [Sec. IV, Appendix B],
suggesting that the slight discrepancies indicate
the magnitude of uncertainty still inevitable in the
derivation of estimates for the exponents of slow-
ing down with both methods. It is emphasized
that the estimates of the (true) exponents in this
paper are symmetric (with respect to the change
of the sign of T —T,), are consistent with the exact
inequalities' ' and consistent with the dynamic
scaling hypothesis. ' %'hile we have been able to
derive all the relaxation times of interest, it was
beyond present possibilities to determine the full
S(s, R, &) functions and the characteristic frequency
[Eqs. (V5) and (76)]. Nevertheless, the numerical
results presented may promote a better under-
standing of dynamic critical phenomena in stochas-
tic models, which so far have "remained a mys-
tery. "
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TABLE I. Relaxation times and exponents in the kinetic two-dimensional Ising model.

Relaxation
time Definition Exponent Kawasaki
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1.60+0.10
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'Reference 16 (extended conventional theory; see Sec. III B).
preference 12 (similarity hypothesis: generalizes the treatment of Ref. 16 to take the kinetic slowing down as found

from Refs. 8-11 into account).
Reference 29 (high-temperature-series extrapolation; see Appendix B)~

Reference 11 {high-temperature-series extrapolation; see Appendix B).
'Reference 13 ("Wilson expansions" of Halperin, Hohenberg, and Ma; see Sec. IIIE).



MONTE CARLO INVESTIGATIQN OF DYNAMIC CRITICAL. . . 3285

should like to thank P. C. Hohenberg for helpful
discussions and correspondence as well as for
sending the preprint, Ref. 13. We acknowledge
fruitful discussions with Y. Imry, R. Kubo, P.
Meier, and H. Yahata. We thank P. Heller for
a careful reading of the manuscript.

APPENDIX A: MONTE CARLO STUDY OF THE ONE-

DIMENSIONAL KINETIC ISING MODEL

An exact solution for the kinetic Ising chain with
the transition probability Eq. (7) has been given

by Glauber: all time-dependent pair correlation
functions are thus known. A Monte Carlo calcula-
tion will not reveal new results in this case, but
it will provide a sensitive test of the accuracy
which can be achieved evaluating time-dependent
quantities by the use of this technique. It is im-
portant to perform such a test, since several
sources of inaccuracy have to be considered.

(i) No true random-number sequences are
available for the Monte Carlo method, but only
sequences produced by pseudo-random-number
generators. II there existed any (higher-order)
correlations between these numbers, time-depen-
dent quantities would be seriously affected, while
static pair correlations and similar quantities are
less affected (these static quantities would be af-
fected by low-order correlations between these
numbers). Therefore the tests that have been
made in connection with the calculation of static
quantities ' cannot rule out completely the pos-
sibility of such correlations.

(ii) Since the length of the Markov chain used
for the Monte Carlo averages is finite, all quan-
tities are affected by some statistical error. It
is rather difficult to estimate this statistical in-
accuracy precisely. ~ It can also be difficult to
judge whether one is close enough to thermal
equilibrium or whether there is still some in-
Quence of the starting configuration.

(iii) As discussed in Secs. II and IV the calcula-
tion is done for a finite lattice. As long as the cor-
relation length $ is much smaller than the linear
dimension N of the lattice, this finite lattice is
expected to simulate an infinite system very well.
While this idea is well established with respect to
static properties, '~' 3 little is known about the
finite-size effects upon dynamic quantities.

All these problems can be investigated very
well considering the kinetic Ising chain. The time-
dependent pair correlation function is given in
terms of modified Bessel functions f, (z),

xI,((f/~, )tanh(2')). (Al)

From Eq. (Al} it is shown that the correlation
length k is given by

$ = [lntanh(PZ)] '. (A2)

& p, (o) p, „(t))
~ .00-
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FIG. 15. Calculated time dependence of various pair
correlation functions in the one-dimensional 1dnetic Ising
model (N= 220) with nearest-neighbor interactions and
periodic boundary conditions. The curves represent
the exact solution of the in5nite system tzq. (Al)].

Thus the finite-size rounding effects (iii} can be
studied conveniently, since ( gets very large at
low temperatures.

In the computer simulation of the kinetic Ising
chain the transition probability of Eq. (7) was used
instead of Eq. (10a). There is no need to renor-
malize~~ the time scale as discussed in Sec. II.
At several temperatures, systems with N= 20, 55,
and 220 spins were calculated. As an example,
the correlation functions are plotted for N= 220,
PS=1 in Fig. 15. The exact solution [Eq. (Al}]
is represented by the dashed-dotted curves. Agree-
ment between the exact calculation and the simu-
lated results is very good. In this case 2. 5&&103

Monte Carlo steps per spin have been used. Note
that in the two-dimensional case the total number
of steps per spin was typically as large. It turned
out that the autocorrelation function ( po(0) po(f))
was already most accurate for very short Markov
chains, while the inaccuracy increased with the
distance n between the spins. But within the draw-
ing accuracy of Fig. 15 the results of various
shorter independent runs agreed with one another
and also with the results for the N = 55 and N= 20
systems. It is interesting to mention that the cor-
relation length ( is $

-=3.7 [Eq. (A2)] in the present
example, which would correspond to T/T, = 0. 92
in the two-dimensional case. These results prove
convincingly that all three sources of inaccuracy
mentioned above [(i}-(iii)]have quite negligible
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N z I+tanh(PJ)
kz T s 1 —tanh(PJ)

(A4)

This correlation function is plotted in Fig. 16 at
several temperatures and compared to the results
of the Monte Carlo calculation. Again good agree-
ment is observed. It turned out that this correla-
tion function is more sensitive to the error source
(ii), i.e. , the statistical error due to short
Markov-chain lengths. In most cases a rather
large number (-10 Monte Carlo steps per spin)
of configurations had to be discarded at the begin-
ning of the calculation until thermal equilibrium
was obtained. In addition, short runs (500 Monte
Carlo steps per spin) have not yet yielded accurate
results. Most of this error is due to that of the
static susceptibility X. However, the error in the
normalized correlation function Qz„,„(t)
= (5p(0, 0)5 p(0, t))/Xr is considerably smaller
This observation strongly indicates that the in-
accuracy of the relaxation time ~6„&„should be
smaller than the inaccuracy of the corresponding
static susceptibility. Thus Fig. 2 (in which the
static susceptibilities are compared to "exact"
asymptotic expressions in the two-dimensional
case) also presents convincing evidence of ac-
curacy with respect to dyn:unic quantities.

In conclusion, we have shown that in the one-
dimensional case any time-dependent correlation

effects in our case.
It is also useful to study the time-dependent cor-

relation function of the magnetization itself, which
is given by

Xr4z, ,(t) = (5u(0, o)5u(0, t)&

= Xr exp [- (1/7, ) t (1 —tanh2Plj], (A3)

and the static susceptibility Xr ~ven by

Here we briefly discuss the extension of the
well-known high-temperature-series- expansion
technique' to time-dependent correlations in the
kinetic Ising model. It will turn out that the com-
parison between the extended and conventional
expansion methods clarifies the slight discrep-
ancies between our Monte Carlo results and the
estimates obtained from the extended expansion
method ~'~

The conventional high-temperature-series-
expansion method starts from

(
Tre ~A
Tr e-~

Tr exp[(2J/kzT) P&, p~ pq]A
Re exp[(2cl/ksT) $g g p, ( p,g]

Expansion of the exponential and the identity

exp [(2I/k z T) p, g& ]= cosh(2J'/k z T)

x [1+p, p& tanh(2I/kz T)]

leads to

Trg, [1+p, ~p&V]A

TrII, , [1+p, p, V]

(Bl)

(B2)

(B3)

V= tanh(2Z/kz T). (B4)

Expressing the quantity A in terms of p~, rear-
ranging terms of products in Eq. (B3) according
to the power of V and performing the traces, one
obtains the high-temperature expansion

functions could be calculated with reasonable ac-
curacy.

APPENDIX B: APPLICATIONS OF THE HIGH-TEMPERATURE-
SERIES-EXPANSION TECHNIQUE

(A) = Q f,"V'.
)ao

(B5)

tn fs ~ (t)
i

+
~

T=100
B

k
T=0.75

B

0
k

T=0503
8

We note that the Eth order term in this expansion
can contain contributions from all powers of K up
to X'. In most cases the coefficients f," can be
obtained only numerically, up to some order L.
A finite series, however, cannot exhibit any sin-
gularity at the critical point V, = tanh(W'/k T)z
Thus, the series must be extrapolated in order to
study the nature of the singularity. Suppose that

'e

10

X

20 50
t

where

(B&)

FIG. &6. Calculated time dependence of the magnetiza-
tion correlation for three temperatures in the linear
Ising chain with N= 220, nearest-neighbor interaction,
and periodic boundary conditions. The straight lines
represent the exact solution of Glauber (Ref. 6).

This implies that the f,"behave like

(BS)
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or
A

V, -~+1= yA
fry

(89)

The susceptibility associated with a dynamic
variable A may be defined by

X,...(~)= p j ~ '"'(L4e "LL4)«
for large l. Equation (89) indicates how the ratio
of subsequent coefficients can be used to estimate
the critical exponent yA. '

A second familiar technique of extrapolating a
finite series starts from the observation that
logarithmic derivative of (A) should diverge like

where

6A=A —(A), L = Q W~(g~)(1 —P~). (813)

=P L4.6A -z~ M . gA

(812)

—ln(A)- ", V- V, .
C

(810) L is the Liouville operator and I'~ is the spin-flip
operator of the jth spin, so that [Eq. (40)j

This suggests that a useful extrapolation might be
obtained by approximating the auxiliary series for
din(A}/dv by apolynomial, i. e. , forming a
Pade approximant

d 1,-1—ln (A) = Z g", V'
dv t.o

o+ui V+''' +~&VA A N

1+b1 V+ ~ ~ ~ +5"„V" (811)

The new coefficients a"„b", are determined by
comparing the coefficients on both sides in Eq.
(811), which requires N+M =L —1. The degrees
M and N of the polynomials in this (M, N) Pads
approximant are otherwise arbitrary. From Eqs.
(810) and (811) it becomes clear that y„may be
estimated from the residue of Eq. (811) at V, .
The advantages of this technique for our purpose
are twofold: (i) the consistency can be checked to
some extent, because various choices of (M, N)
should lead to consistent results; (ii) by inte-
grating (811) over V one obtains a numerical in-
terpolation formula which holds in the whole range
0 (V( V„while Eq. (86) only holds asymptotical-
ly near T, .

The number of coefficients L (order of the ex-
pansion) which typicallyis taken into account lies
between 10 and 20. The accuracy of these meth
ods has been tested on several nontrivial models
exhibiting phase transitions and for which exact
solutions exist (two-dimensional Ising model,
d ) 3 spherical model). ' » Difficulties arise only
in cases where additional parameters are intro-
duced (e. g. , next-neighbor exchange interaction).

The extension of this method to dynamic prop-
erties is hampered by the fact that there are no
such exactly soluble models. Furthermore, one
has an additional parameter (the time or the fre-
quency). Since we need these expansion results
for comparison, we briefly sketch the procedure
to obtain the series-expansion coefficients.
Furthermore, we outline our method to obtain an
interpolation scheme for the temperature depen-
dence of the relaxation times and discuss the re-
liability of these series techniques.

f ~» ~» 6f» +»( 6J» )&

a(1-Ps) p»
(814)

To derive a series expansion of X one constructs
in a first step a perturbation expansion for Eq.
(812). For this purpose one may split L into an
"unperturbed" part Lo and perturbation terms L1
and L3,

L = (1/T»)(L» —Lg —L»)&

where

1 N

Lo= —Z (1 —P~),2

Lz = Q (tanh6P J+4 tanh4PZ+ 5 tanh2P J)

(816)

(816)

x Q Q p pq-,'(I —Pq)j 1 (l)g

L3 =*(tanh6PcT —3 tanh2P J)

(817)

1
(Pg x Q» x ' ' ' x pN).ZTg+n

(820)

This property of Lo suggests the following expan-
sion:

1 ( v', Lx+Ls1+. + ~ (. 821
$(d +L 1~5')T&+Lo zQ)T& + Lo

N

x Q p g» p» p„ i& —,'»(I, —p ). (816)
y*1 (a1a~a3)~

denotes a summation over such k which are
nearest neighbors of j. Equations (816)-(816)
follow from Eq. (813) by expanding W& (g&) with the
aid of Eq. (82). In deriving an expansion in powers
of V it should be emphasized that the coefficient of
L& yields a coefficient of V' (+higher-order terms),
whereas L» starts with V (+higher-order terms).
If Lo acts on an n-spin product p 1x p'p x ~ p'N

one finds from (814) and (816)

Lo(jlgx p»X ~ ~ ~ X py) s(+1X p»X ' ' ' X PN)
(819)

or
1

(pgx p»x' ' ' x jig)Z7-. +Lo
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Substituting Eq. (821) into (812) one may now per-
form the trace, using the conventional expansion
technique [Eqs. (81)-(85)]. We note that each
term in the expansion [Eq. (821)] contributes a
factor (~7,+20), or using Eq. (820), (irur,
+n) . These terms are then expanded in powers
of i&~, because one is interested only in the low-
frequency region. Rearranging terms (for details
we refer to Refs. 8-12) one obtains the final re
suit

(822)

where all a~ are series in V, with non-negative
coefficients f». The a,'s have been calculated up
to k = 3, both for the order parameter and the en-
ergy ao .determines the static susceptibility or
specific heat. For including L3 up to third order
in the perturbation expansion one must already go
to higher than ninth order in the common high-
temperature variable V. This property [following
from Eq. (818)] has no analog in the expansions
of static quantities. It also indicates that the ques-
tion of how many terms are necessary for reliable
expansion estimates must be studied with care.

The expansion of the a~'s has been given up to
twelfth order in V. Applying the ratio estimates
[Eqs. (8) and (9)] it was found that

a~- e "~, cp~= go+km, ,

leading to the conjecture

X(w)=X(&@ =0)f(fu7, /& ).

(823)

The case where X(&u) represents the order-parame-
ter susceptibility deserves particular interest.
Here yo—=y =j. Ratio estimates seem to indicate
that"

(825)

However, from Ref. 11 it is not clear in what tern-
perature region the asymptotic form (23}holds
and how important correction terms are. In view
of this, we applied the Pads analysis [Eqs. (810)
and (Bll)] to derive an explicit interpolation for-
mula for v,'„,„=a&/ao and also valid for V-0,
from the coefficients tabulated in Ref. 11. Several
Pade approximants have been evaluated for both
ao and a» yielding consistent results among one
another and with Eq. (825). It was found sufficient
to take the (3, 4) approximants

4 —42 V' —102V' —88V'

1 —12. 5 V' —7 5 V' + 68. 5 V' + 24. 5V' (826}

and

8 + 51.3423V'+ 113.262V' + 222. 098V'
(827)

The estimates for ln7», „ following from these ex-
pressions are shown in Fig. 7. Evidently, these
series-expansion estimates of v,„,„are in close
numerical agreement with the Monte Carlo results,
although the predicted exponents differ slightly.
Therefore we believe this slight discrepancy does
not violate the credibility of both methods, but is
rather an estimate of the error involved in the ex-
trapolation T-T, .

Similarly, we formed Pade approximants to the
series for r,'„' and v",„,„,' which did not yield

reliable results due to the brevity of the available
series. The result for 7«,„ is included in Fig.
12 and is in full agreement with our data.

In addition, we performed series expansions for
(W&) Eq. (7). This quantity was needed to provide
the series estimates shown in Figs. 4 and 9. The
standard procedure outlined in Eqs. (Bl)-(85)
leads to the result

2 (W)=1 —4V +4V —44V +180V —+ ~ ~ ~ .
(828)
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