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It is shown that the polarization in a thin ferroelectric film, which is sandwiched between

semiconducting electrodes, is compensated incompletely. The associated depolarization fields are size

dependent and change the magnitude of the polarization, transition temperature, coercive field, and the
order of the phase transition. Thermodynamic considerations give stability requirements for thin films,

which are different from the bulk. The properties of a thin ferroelectric film, which in bulk form
exhibits a secondwrder phase transition, are investigated as a function of thickness, temperature, biasing
potential, and electrode properties. Numerical results are presented for triglycinesulfate.

I. INTRODUCTION

In the phenomenological formulation of the theory
of phase transitions by Landau, ' a second-order
transition is described by an expansion of the free
energy in terms of an order parameter up to fourth
order (where the fourth-order term is positive) while
a first-order transition follows from an expan-
sion up to sixth order (where the fourth-order term
is negative). Some authors2'~ have recently dis-
cussed the origin of the order of a phase transition.
Anderson and Blount have pointed out that a first-
order transition is possible in an expansion up to
fourth order when strain is involved since the third-
order term in strain does not generally vanish in
the free-energy expansion. Pytte as well as Gillis
and Koehler have discussed the results of model
calculations that go beyond the Landau theory.
They conclude that the self-consistent-field theory
can lead to a first-order transition when the only
anharmonicity is of fourth order. In a recent brief
communication we proposed a new type of first-
order phase transition in a ferroelectric resulting
from Landau's theory by considering only terms
up to fourth order in the polarization but the fourth-
order term is positive. The purpose of this article
is to present the detailed formulation and further
implications. It has been shown by considering a
unidomain ferroelectric thin film sandwiched be-
tween semiconducting electrodes that the order of
a phase transition can be size dependent. The
change of the order of the transition results from
the distribution of the charge in the semiconducting
electrodes which compensates the ferroelectric
polarization.

For a unidomain ferroelectric the compensation
of the polarization by external charges is vital.
Without compensation usual values of polarization
of about 1 p, C/cm lead to fields 10 V/cm inside
the ferroelectric opposite to the polarization and
under these conditions ferroelectricity is thermo-
dynamically unstable. For its stability, charges
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FIG. 1. Distribution of potential V in a ferroelectric-
semiconductor configuration.

and their distribution in electrodes are important.
The usual thermodynamic theory neglects electrode
effects by assuming a large volume of the ferro-
electric. In thin ferroelectric films, however, the
electrode properties and details of charge distribu-
tion play an important role. It is realized
in thin films the polarization is not completely
neutralized by external charges and fields opposite
to the polarization, called depolarization fields, are
present.

The existence of depolarization fields can be
physically understood from Fig. 1, which shows
the potential V in a ferroelectric (~ && ~ x l) of
thickness l in contact with two semiconducting
electrodes. Owing to the low spacecharge den-
sity in semiconductors, the charge neutralizing
the polarization is spread over a certain dis-
tance from the interface. The field from the
surface of the ferroelectric penetrates over this
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distance into the electrodes which causes a poten-
tial drop or band bending in the electrodes. The
band bending V~ gives rise to the depolarization
field in the ferroelectric which under short-circuit
conditions is essentially the sum of the band bend-
ing in the electrodes divided by the thickness l of
the ferroelectric. Large depolarization fields re-
sult when l becomes small and the polar state can
be completely destroyed. The depolarization field
indicates that there is a lack of compensation,
which is a consequence of electrode properties and
circuit conditions.

In what follows we will examine the influence of
depolarization fields on the properties of a thin
ferroelectric film including the order of a phase
transition. The stability considerations based on
thermodynamic free-energy calculations will be
thoroughly discussed. The ferroelectric is as-
sumed to be a perfect dielectric with homogeneous
polarization compensated by charges in the elec-
trodes only. Inferface states are neglected in our
calculation but densities & 10' /eV cm' would not
alter our conclusions.

II. THEORY

Consider a ferroelectric sandwiched between two
semiconducting electrodes subject to a biasing
potential V, . The energy-band diagram for such a
system is shown in Fig. 1. Owing to V„the Fermi
levels E~ in the two electrodes are relatively dis-
placed by qV„where q is the magnitude of the
electronic charge. When the ferroelectric is uni-
formly polarized (the polarization direction as in-
dicated in Fig. 1 is taken to be positive), compen-
sation charges accumulate near the interfaces re-
sulting in bending conduction E, and valence E„
bands in the electrodes. In the upper part of Fig.
1, the electrostatic potential V is shown and the
band bending V~ which is responsible for the de-
polarization field in the ferroelectric is indicated.
The field E& in the ferroelectric is determined by
V, and V~. For a ferroelectric, which in bulk form
exhibits a second-order phase transition and is
under the influence of a macroscopic electric field
Ez, the free-energydensity F(T, P) is"

F(T, P)=F0+ aP 2+ q g —f E~dp,

where I"0 is the free-energy density in the unpolar-
ized state, a [=4w(T —To)/C]and gare the usualex-
pansion coefficients, To is the bulk transition tem-
perature, and C is the Curie constant. From Fig.
1 it is clear that due to the field penetration into
the electrodes there is electrostatic energy stored
in the electrodes as well, which has to be included
in the total free energy of the ferroelectric-semi-
conductor system. The total free energy per unit
area is

P
P(T, P)l=l(P, ~ qP ~ '

—, (P — Pqqj)
0

+— E',(x) dx, (2)
4m

Efl = V, —2V~, (4)

from which E& can be computed if the band bending

V, is known. A negative value of E& results in de-
polarization.

The band bending in the intrinsic semiconducting
electrodes is calculated from Poisson's equation

dE 4' [n(x) —n, —p(x) + n, ],

where n and p are electron and hole concentrations,
respectively, and n, is the intrinsic carrier den-
sity. The impurity concentration is assumed to be
negligible compared with the concentration of free
carriers. As will be seen V, » kT/q and thus p(x)
can be neglected for electron accumulation and n(x)
for hole accumulation. This coupled with the
Boltzmann statistics n(x) =n, e' ("}~' gives an equa-
tion' for the electric field distribution in the elec-
trodes which can be readily solved to obtain

47t' xE (x) = —p 1+— x~0e g
0 (6)

where d = ekT/4xqpo. The carrier distribution in
the electrode for accumulation then is

x 2

q(q)= „(l~ —„,q —0
2d

where nn = po/2qd is the charge density at the inter-
face. For po= 1 p, C/cm at room temperature n„
= 2 && 10 /cm and d = 1.5 A.

The band bending in each electrode is

kT
1

n~ kT 2mpo

q q, (T} q q, (T)kT) ' (8)

and the intrinsic carrier concentration n, (T) of a
semiconductor is related to its band gap E~ by

n, (T) =Noe

where No is the effective density of states which is

where E,(x) is the electric field in the electrodes
of dielectric constant e. A factor of 2 has been in-
cluded in the electrode energy term since there
are two identical electrodes.

The field in the ferroelectric follows from the
continuity of the displacement vector at the inter-
face and is

Ef = 4x(po P), —

where po is the total charge per unit area in each
electrode. Since this field is spatially uniform, it
immediately follows from Fig. 1 that
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assumed to be equal for conduction and valence
bands.

The requirement that the band bending V, » kT/q,
which enabled us to neglect the minority carriers,
can now be formulated as the condition [2wpo/
an, (T)kT]» 1, which for n, = 10 ~/cm at room tem-
perature is satisfied if po&7X10 ' pC/cm'. Since
po=P, usual values of po are on the order of 1 pC/
cm, and the above condition is always satisfied.
For a typical value of po of 1 pC/cm, the concen-
tration of carriers at the interface ns = 2&&10 0/cms
is degenerate and it might be argued that one should
use Fermi-Dirac statistics. However, the devia-
tions from Boltzmann statistics occur only in a
layer of a few angstroms at the interface (the char-
acteristic length d for the carrier distribution is

01.5 A) and the resulting changes in the band bending
are small. Furthermore, one knows that the effect
of Fermi statistics is to lower the interface charge
density and consequently increase the band bend-
ing. This can only emphasize the effects under
consideration but the essential physics remains
unaltered.

The field E& in the ferroelectric from Eqs. (4)
and (8) is

+ ln T + 5, (14)
2kT 2mpo 1
q/ &n)kT 1+5

~ = —(T —T )0+ 3)PB E 4n'

2kT 2 1 1

qlpo 1+5 (1+5) (1+5)

where 5 = kT/wqlpo and is generally very small
compared with unity (for po= 1 pC/cm' at T= 300'K
and f = 10 ' cm, 5 = 10 ). Equilibrium solutions
(absolutely stable and metastable) for the polariza, —

tion must satisfy the conditions

BE—=0
BP (16)

their stability as a function of ferroelectric film
thickness, applied voltage, and temperature, we
need at least the first and second derivatives of
the free-energy function with respect to P. These
can be obtained directly from Eqs. (2) and (10)-(12)
without approximating po by P and are

BE 4m—=—(T —To)P + $P —V, /l

~V 2kT 2mpo

/ ql zn] kT (10)
and

2E
(17)

and using Eq. (3}we find the relation between po
and P:

kT 2m'po V,
2nq/ cn; kT 4m/

'

The electrostatic energy in the electrodes follows
from Eq. (6) and is

xj 2kTE,(z) dx =— E,(x) dx = po . (12)

The integration is terminated at x, where n(x, )
=p(x, ) =n„because that is the limit of validity of
our assumption that minority carriers can be ne-
glected. For computing the energy associated with

E& in the ferroelectric, recall that the polarization
P is stable only for Ez~ 10 V/cm when E& is oppo-
site to P. Since for usual values of P of 1 pC/cm'
without compensation the depolarization field is
E& 10 V/cm, we se—-e that for stable polarization
values the compensation charge po can at most dif-
fer by 1/o from the polarization P. Therefore we
replace po by P in Eqs. (10) and (12) and find the
total free energy per unit volume of the ferroelec-
tric to be

F = Fo+ —(T —To) P + 4 g P PV,/l-
2kT 2'

( » )-'
To obtain equilibrium polarization values and

Equations (16) and (11) can be solved simultaneously
to obtain equilibrium values for the polarization as
a function of film thickness l, applied voltage V„
and temperature T. The stability of these equilib-
rium solutions is then checked in Eq. (17). Solu-
tions which satisfy Eq. (17) are stable because they
belong to a minimum of the free energy. A solution
is absolutely stable if it belongs to the lowest mini-
mum in free energy. Solutions which are stable
but not absolutely stable are called metastable
which means that there is another minimum for
which the free energy has the same or a lower
value. Unstable solutions are obtained when S'F/
BP & 0 and the phase transition is a result of this
instability condition. It should also be remarked
that due to the nonlinear nature of the equations,
analytical solutions for po and P cannot be obtained.
Numerical solutions and the physical interpretation
of the results are presented in Sec. IG.

III. RESULTS AND DISCUSSION

Since the free-energy function of the ferroelec-
tric-semiconductor system is nonlinear, solutions
can only be obtained by numerical methods. For
computations and discussion of physical results we
chose triglycinesulfate (TGS}, a typical ferroelec-
tric which in bulk form exhibits a second-order
phase transition. Its material constants are: To
=49. 8 'C, $ = 8. 0&&10 '0 (esu/cm ) and C = 3300'C.
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I'IG. 4. Polarization P as a function of TGS film thick-
ness l for different intrinsic carrier concentrations n~

in semiconducting electrodes.

positive values ($ &0) due to the P' contribution.
Such behavior predicts a first-order phase transi-
tion and the term F, is responsible for it. With
increasing l the relative contribution of F, de-
creases, eventually the minimum near P = 0 disap-
pears and the transition becomes of the second
order. It should be emphasized that the functional
dependence of the compensating charge is respon-
sible for the modification of the order of the tran-
sition.

Now let us examine the dependence of polariza-
tion on external parameters. Basically there are
four variables, namely, temperature, length,
biasing potential, and band gap or intrinsic carrier
density upon which polarization depends. One could
plot P as a function of one of these variables hold-
ing the other three fixed. In what follows E, [or
n, (T)] will be used strictly as a parameter and l,
T, and V, dependence will be more thoroughly in-
vestigated. These results are obtained by solving
Eqs. (11) and (16) simultaneously using a iterative
numerical technique due to Muller. '

The polarization as a function of thickness under
short-circuit conditions (V, = 0) for E~ = 0. 69 and
0. 35 eV is shown in Fig. 4 at two different tem-
peratures. The higher band gap gives n, = 10"/cm'
at 300'K which is realized in germanium. The
lower band gap gives n, = 10 /cm at room tempera-
ture, a value not too different from tellurium. It
is seen that the polarization decreases with de-
creasing thickness and at any finite thickness lies

below the bulk value P,. The transition from non-
zero to zero polarization is abrupt again indicating
the "first-order behavior" of the ferroelectric-
semiconductor system. In reducing the thickness
of the ferroelectric, the transition occurs when
nonzero values become metastable and zero values
absolutely stable. One solves for this transition
length l, by setting F = 0 along with Eqs. (11) and

(16). Physically this means that at I = l, the free
energy of the polar state is equal to the free energy
of the nonpolar state. Any further reduction of l
raises the free-energy density of the polar state
making it energetically less favorable. Consequent-
ly, a transition occurs at l, . The curve for n,
=10' /cm lies above the curve for n;=10' /cm be-
cause the higher carrier concentration provides
better compensation of the polarization.

The polarization as a function of temperature for
V, =O and E~=0. 69 eV [n;(300'K) =10 /cm ] for
several values of l is shown in Fig. 5. The curve
marked "Bulk" shows that the polarization goes
continuously to zero at the transition temperature
Tp= 49. 8 'C showing a second-order transition for
bulk TGS. At lower thicknesses of the ferroelec-
tric film, the transition is of first order and takes
place at a temperature T, which is below' Tp and is
l dependent. For a given l one can solve for T, in
a manner described for obtaining l, at a given T.
At any temperature above T„the free energy of
the nonpolar state is lower than the free energy of
the polar state and, consequently, a transition
takes place at T, . The transition temperature and
the transition length play an equivalent role and
may be used interchangeably in the physical de-
scription.

The shift in transition temperature Tp —T, as a
function of l is shown on a log-log plot in Fig. 6 for
two different band gaps at V, = 0. For higher-band-
gap material (lower intrinsic carrier concentra-
tion) the shift is more than for the lower-band-gap
material because of poorer compensation. Equiva-
lently, Fig. 6 gives the temperature dependence
of the transition length l,. The thickness l, at
which the transition takes place is essentially pro-
portional to (To —T) ~ . This can be derived by
eliminating P from the relations F = 0 [see Eq.
(13)] and &E/SP =0 [see Eq. (14)]. This T depen-
dence can also be inferred by noting that the
square-root dependence of P on Tp —T for bulk
TGS is hardly changed in thin films (see Fig. 5)
and, consequently, the first iwo terms in Eq. (14)
are essentially proportional to (To —T) ~~. Since
the last term in this equation is a weak function of
T, l, -(To —T) '~'. This dependence has also been
found' in superfluid thin films and could not be
explained in terms of the usual Landau free-energy
expansion.

The calculated polarization as a function of volt-
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FIG. 5. Polarization P
as a function of tempera-
ture T for different thick-
nesses of TGS films.
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age is shown in Figs. 7 and 8. In Fig. 7 loops for
different thicknesses but at the same temperature
are shown, and in Fig. 8 thickness is held fixed
for different temperatures. Both figures show
double hysteresis loops which are characteristic
for first-order transitions. A TGS crystal of
100-p, m thickness shows a normal loop and first-
order double loops occur upon reducing the thick-
ness, which also reduces the coercive field. In
Fig. 8 double hysteresis loops result from an in-
crease in temperature at constant thickness of the
ferroelectric. One sees from these figures that
an increase in temperature and reduction in thick-
ness of the ferroelectric in a ferroelectric-semi-
conductor system have similar effects and lead to
first-order transitions.

Now we are ready to examine the nature of the
solutions. As mentioned earlier, upon simulta-.
neously solving the nonlinear Eqs. (11) and (16),
one ends up with several solutions belonging to
polar and nonpolar states of the ferroelectric and
to understand hysteresis loop, transition tempera-
ture, and transition length it is important to know
which solutions are stable. This is conveniently
done in terms of the stability plots" shown in
Figs. 9 and 10, where different regions specify the
type of solutions. Figure 9 gives the temperature
dependence of polarization for /= 10 ' cm and E,
=0. 69 eV for several values of applied voltage.
The spontaneous bulk polarization is shown for
comparison. The metastability limit which sepa-
rates the region of absolutely stable polarization
values from the metastable ones, and the stability
limit which separates the metastable and unstable
regions, are also drawn. The metastability limit
is obtained through an iterative process which in-
sures that in the presence of a field the free energy

at the root "near" P =0, which is a nonpolar solu-
tion (in the presence of a field I' never exactly
goes to zero), is equal to the free energy at the
root in the polar state called the polar solution.
In the absence of a field this process is rather
straightforward because the free energy of the
nonpolar state can be set equal to zero and this
gives the metastability limit at T,. Below this
temperature, the metastability limit must coincide
with the P curve corresponding to V, = 0 because
the free energy for the two polar solutions of op-
posite sign is equal and smaller than the free en-
ergy for the nonpolar solution. Any application of
a field would make one or the other of the polar

100

O
0

o 10
I

~Q

10-' 10-4

0 (cm)

FIG. 6. Shift in transition temperature To —T~ of TGS
films as a function of thickness l.
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FIG. 7. Polarization P
vs applied voltage V, (hys-
teresis loops) for TGS films
of different thickness at T
= 35'C.

solutions absolutely stable. The stability limit is
relatively easy to get because the solutions must
also satisfy the condition S F/SP =0 along with
E|l. (16). One notes from Fig. 9 that for a given
voltage at T &T„the I' curve meets the metasta-
bility limit twice at different values of P but at the
same temperature and intersects the stability limit
at two different temperatures.

The transitions between different polarization
states are a consequence of the intersection of the
P(T) curves with metastability and stability limits.
Transitions occur from inside the metastable re-
gion to points in an absolutely stable region. As
an example let us follow the polarization at an ap-

plied voltage of 0. 65 V from low to high tempera-
ture in the upper-half of Fig. 9. The polarization
is absolutely stable below 39 'C and becomes meta-
stable at 39 'C and unstable at 39. 7 'C which is the
superheating temperature. The transition occurs
somewhere between 39 and 39.7 C. When we fol-
low the same curve from high to low temperatures,
the nonpolar state becomes metastable at 39 'C as
did the polar state, but becomes unstable at the
supercooling temperature of 33. 8 'C. The transi-
tion may occur anywhere between 39 and 33.8 'C
and it is of first order as indicated by the possibil-
ity of supercooling and superheating. Usually the
transition temperature is defined at the metastabil-

P (pC/cm ) T = 26'C

-1.2
I I
I

—.8 F '.
I

—.4

0

0
~C

I I I I

4 .8
V (V)

1.2
a

FIG. 8. Polarization P
vs applied voltage V, for a
TGS film 10 5 cm thick at
different temperatures.
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FIG. 9. Stability plot of a TGS film 10 cm thick with
semiconducting electrodes of band gap E~ = 0.69 eV in
the polarization-temperature plane.

begins at the critical point, meets the temperature
axis at T„andfollows it below T, since for T & T,
it is given by the zero-voltage curve in Fig. 9.
Transitions as a function of temperature are usual-
ly taken to occur at the metastability limit and as
a function of voltage at the stability limit. In gen-
eral, however, actual transitions occur from a
state somewhere in the metastable region to a state
in an absolutely stable region.

To show the correspondence of the stability plots
in Figs. 9 and 10, we will construct a polarization
versus voltage loop at 35 'C as shown in Fig. 8.
%e begin at +0. 7 V, where P»0 is absolutely
stable. Reducing the voltage, the polarization be-
comes metastable at 4 and unstable at B at a value
of l. 5 pC/cm as seen from Fig. 9 and at a voltage
of +0.43 V as seen from Fig. 10. Also Fig. 10
shows that for V,~+0.43 V, only P=0 is absolutely
stable. Therefore at +0.43 V, a transition occurs
from P = l. 5 p C/cm to P = 0. This solution re-
mains absolutely stable until we reach point E
where it becomes metastable. The transition, how-
ever, occurs at point E where P =0 becomes un-
stable from P = —0. 2 pC/cm at a voltage of —0.65
V and it goes to an absolutely stable value of P

ity limit. As is known, " a first-order transition
will become a second-order transition in the pres-
ence of an applied voltage of proper magnitude.
This occurs in Fig. 9 for the critical voltage V„
=0. 745 V at the critical temperature T„=42.5'C.
At higher voltages or at higher temperatures there
is no phase transition. This is equivalent to the
liquid-gas phase transition where these conclusions
are drawn from a volume versus temperature plot.

Transitions at constant temperature as a function
of voltage, i.e. , the polarization versus voltage
loop, can also be derived from Fig. 9. But a bet-
ter way to do it is in conjunction with a voltage
versus temperature plot given in Fig. 10 where the
extensive variable (polarization P) has been ex-
changed by its conjugate intensive variable (voltage
V,). (While Fig. 9 resembles the volume versus
temperature plot for gases, Fig. 10 corresponds
to the pressure versus temperature plot. ) The
lines drawn in Fig. 10 give the voltage, as a func-
tion of temperature, which must be applied to bring
the polarization on the stability or metastability
limit. These lines separate regions of absolutely
stable s, metastable m, and unstable u states.
Since intersections of the P(T) curve at constant
voltage with the metastability limit in the upper-
half of Fig. 9 occurred at the same temperature,
the same voltage has to be assigned to the lower
and upper branches of the metastability limit.
Therefore both branches of the metastability limit
are represented by a single line in Fig. 10, which

1.0

I Point

)
0

0 1

t cj

To
0

50

I Point

-1.0
FIG. 10. Stability plot of a TGS film 10 ' cm thick

with semiconducting electrodes of band gap E~= 0. 69 eV
in the voltage-temperature plane. Superscripts +, 0, —
identify regions where P» 0, P=0, and P«0, respec-
tively, are absolutely stable s, metastable m, or un-
stable u.
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& —2. I pC/cm . Going back to a positive voltage,
the transition from P «0 to P =0 occurs at point G

and from P = 0 to P»0 at point C, and this com-
pletes the double loop.

From Fig. 10 we see that below T = T~ when one
polar state becomes unstable the other is absolutely
stable and the system does not make a transition to
P = 0. Consequently, the first-order character of
the phase transition as a function of temperature
manifests itself in double hysteresis loops only at
T & T~. Below T~ there are no double loops as the
loop at 25 'C in Fig. 8 shows, although this is still
above T,.

The first-order behavior of the ferroelectric-
semiconductor system as a function of temperature
and voltage is revealed in the stability plots in
Figs. 9 and 10, but since in our system the devia-
tion from a second-order transition depends on the
ferroelectric film thickness, the whole stability
plot is "thickness dependent. " With increasing
thickness l of the ferroelectric, the transition tem-
perature T, at zero applied voltage approaches the
critical temperature T~ and both approach the bulk
transition temperature To. As T„-To, the polar-

ization and voltage at the critical point tend to
zero. The second-order transition occurs as the
limiting case of the first-order transition for l -~.
Some indirect experimental verification of the pre-
dictions of the model has recently been presented'
and further work is in progress.

IV. CONCLUSION

It is shown that a second-order bulk ferroelec-
tric will exhibit a first-order transition when sand-
wiched between semiconducting electrodes. The
change of the order of the phase transition is
caused by the compensation charge distribution in
the semiconducting electrodes. Furthermore, a
thin ferroelectric film will show reduced values of
polarization and transition temperature.
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