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Using Greens-function techniques, we present a theoretical calculation of the behavior of the density

of states, free energy, and order parameter of very thin superconductors in a high magnetic field as a
function of spin-orbit and spin-flip impurity scattering. In very thin superconducting films without spin
scattering, the upper critical field is determined by the Pauli p~magnetism of the normal-metal

electrons. Tunneling measurements by Meservey and Tedrow have shown a spin splitting by 2p,~H in

energy space of the BCS peak in the density of states. Zero-temperature calculations of the separate up-
and down-spin Greens function for a superconductor show that spin-orbit impurities destroy the
magnetic field separation of the peaks in the density of states but do not destroy the energy gap.
Spin-flip scattering is much more destructive and destroys both the separation of the peaks and the

energy gap. We generalize the calculation to T +0 and calculate and plot the critical field versus

temperature and the magnetic field dependence of the free energy and order parameter for the various

values of the spin-orbit and spin-fhp parlxneter. We also use the theoretical calculations to obtain a fit
to the low-temperature tunneling data of Meservey and Tedrow between thin Al and a normal metal
and the spin-polarized tunneling between thin Al and ferromagnetic metals.

I. INTRODUCTION

Recently, Tedrow, Meservey, and Schwartz'
measured the temperature dependence of the crit-
ical field of very thin aluminum in a high magnetic
field. Pure aluminum was chosen, sinceprevious
experiments indicated that spin-orbit scattering
was very low and could be neglected in any the-
oretical analysis. The experiments on very thin
Al agreed with the analysis that its critical field
was limited by the Pauli paramagnetism. Tedrow
and Meservey next performed tunneling experi-
ments between thin Al and a normal metal at low
temperature as a function of magnetic field. For
zero field, they observed the usual gap in the ex-
citation spectrum with a peak in the density of
states at energy (voltage) equal to the gap. How-
evex', at a finite value of magnetic field, two yeaks
in the density of states were observed, one at
~+ p~H and one at b, —p~H. As 0 was increased,
the peaks shifted. At first glance, this result is
most unusual, since the magnetic field does not act
to break the Cooper pairs. However, because of
the single-particle nature of the excitation ob-
served by tunneling experiments, one can observe
the energy dependence of each spin member of the
Cooper pair separately, thus there is a peak at
~+ p&& and 4 —p&H. It is interesting to note,
that the many-body theory developed during the
1960s, for a superconductor in a magnetic field
actually had anticipated the experimental results
of Tedrow and Meservey, yet none of the theorists
suggested doing the experiment. This is due to
a few factors which make the experiment difficult.
First, one needed a very thin film (& 100 A) such
that the upper critical field was determined by the

Pauli paramagnetic condition. Note that magnetic
fields ordinarily do not penetrate superconductors
so that tunneling in a magnetic field was not serious-
ly considered. Second, spin-orbit scattering has
to be small. The structure observed by Tedrow
and Meservey would be considerably broadened and
unobservable with large spin-orbit scattering. Of
the superconducting metals, aluminum is easy to
fabricate as a thin film and has a low value of
spin-orbit scattering. Third, the two peaks in the
density of states can only be observed at tempera-
tures T such that T/T, «1. For thin aluminum,
T, is low (= 2. 5 K) and so Tedrow and Meservey
were forced to work in the more difficult range of
He temperatures = 0. 35 K. Fourth, to get a good
separation of the peaks, a large magnetic field on
the order of tens of kG was needed. A preliminary
explanation of the experiments of Tedrow and
Meservey was first presented by Fulde and Engler
and by Schwartz who recognized that the density
of states could be obtained from the separate
Green's function for up- and down-spin supercon-
ducting electrons. These Green's functions were
discussed by Maki for superconducting electrons
in a magnetic field and were later generalized to
include magnetic impurities and spin-orbit scat-
tering.

The splitting of the superconducting density of
states into up- and down-spin states has been used
in a very novel way to determine experimentally
the polarization of electron spin in ferromagnetic
metals. In remarkable experiments by Meservey
and Tedrow, high-field tunneling between alu-
minum and ferromagnetic metals has been used to
obtain the relative density of states of majority
and minority spin electrons at the Fermi surface
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of Fe, Co, Ni, and Gd. The theory developed in
this paper can be used to get quantitative mea-
sures of the polarization of the ferromagnetic me-
tals.

In Sec. II we present the superconducting Green's
functions as applied to thin films. In the presence
of impurities it is extremely helpful to make use
of a 4&&4 matrix diagram technique combined with
an averaging process developed by Abrikosov and
Gorkov' and Nambu. " In Sec. III we use the spin-
up and -down Green's functions to solve for and
discuss the density of states. We present detailed
numerical calculations of the magnetic field de-
pendence of the density of states of thin-film super-
conductors with a given value of spin-orbit and
spin-flip scattering. Spin-orbit scattering couples
the up- and down-spin superconducting electrons
and acts to eventually wash out the spin-splitting
of the density of states. Spin-flip scattering cou-
ples the up- and down-spin superconducting elec-
trons and eventually destroys the energy gap as
well as washing out the spin-splitting of the density
of states. In Sec. IV we investigate the magnetic
field dependence of the order parameter, critical
temperature, and the free energy as a function of
spin-orbit and spin-flip scattering and magnetic
field. In Sec. V we use some of our theoretical
results to fit the experimental data of Meservey
and Tedrow on thin Al.

H. GREEN'S FUNCTIONS

The most general solutions for the Green's func-
tions of a superconductor with impurity scatter. rs
in a magnetic field have been obtained by Keller
and Benda. ' In their calculation the nonmagnetic
scattering centers are described by a potential with

a spin-independent v(p, p') and spin-orbit v~ part:

PF
where p and p' are the momentum of the incoming
and scattered electron and p~ is the Fermi mo-
mentum. The magnetic (spin-flip) scattering cen-
ters are described by a localized moment

s sf (ps p ) & ' Sl ~

where p is the vector spin operator of the electron
and S, the vector spin operator of the ith magnetic
impurity. The results of the Keller and Benda
calculation are

9 (p, &o,)» +(
g (p» ) 8 +]3+jm

r„(p, (g„) +iE

where $ = (p /2m) —y, (p is the chemical potential)
and b,„,and ~~ are the solutions to the following
coupled equations:

1 1 1 (S ) ao T(S )

(2)

(1 1 1 (S,) ZE„, T (SB)
2v„2v„S(S+1) ((g„,+ E„,) &,g S(S+1)

where &o„=(2n+1)~T, T is the temperature, and 6
is the order parameter. The sums over m include
only those energies ~„within the limits of the BCS
interactien from —» to +(d~. II is the total field
acting on the spins of the electrons, applied plus
molecular, K is the total field acting on the spins
of the impurities, and p, l is the magnetic moment
of a magnetic impurity. ~ is the electronic scat-
tering time off the spin-independent potential

1/~=niN(0) f«'Iv(p p') I' Ip'I =p. ~

7.„is the scattering time off a spin-orbit potential,

1/T«= ~n, N(0) f «'Iv„I sin e.
7.„is the scattering time off a spin-flip impurity

»~. =naN(0)S(S+1) f «'I~.~(p p') I'

where the N(0) is the electron density of states
of one spin direction on the Fermi surface and

n& and n& are the densities of nonmagnetic and mag-
netic scattering centers. It is assumed that the
interaction between the electrons and impurities
makes it possible for the field 8 that acts on the
electrons to be different from K, the field that
acts on the impurities. Because the impurity spins
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are coupled to the electron spins, the values of
(S,) and (S,) are determined largely by the col-
lision frequency with electrons and the size of the
field K relative to the value &oD//12. If K» &oe/
p, ~, the electron interaction cannot flip the spins
since they are frozen by the field. In this limit,
(S,) = (S,) =S where S is the impurity spin. If

K«vn//12 the interaction with the electrons con-
stantly flips the impurity spins so that the impuri-
ties do not align and (S,)=-,' S(S+1).

Equations (2) and (3) are extremely complex and
are solvable only in a few simple limits. The limit
of K»+n//12 is easy to solve but is not very phys-
ical. The equations are

1 1 1

In this limit both magnetic and spin-orbit im-
purities mix the spin-up and spin-down states.
This mixing of spin states produces interesting
effects on the density of states as calculated in
Sec. ID.

III. DENSITY OF STATES

A. Spin&rbit Scattering

We obtain the density of states of spin-up elec-
trons from the Green's function

1 "d'p
N((g) = —

1~,2,2 Im gss(p, —ia)
I s.~+is

and similarly for spin-down electrons. The
Green's function in the presence of spin-orbit
scatterers is given by Eq. (1), where

1 1 1 S
2 2 „2„S(S~ 1))

1 1
+ (na 2)1/2 2

+
2~

In Eqs. (4) and (5), the sum over the m has van-
ished so that only the spin-orbit term mixes the
spin-up and spin-down states. The spin mixing
caused by the magnetic impurities is suppressed
by the large field K. The magnetic impurities
still act to destroy superconductivity since they
act differently on spin-up and spin-down electrons.
The depairing parmneters is reduced by a factor
of S /S(S+1) as compared to a situation where
there is no magnetic fields and the magnetic im-
Purities are free. This limit of K»ve/i12 is dif-
ficult to achieve in practice. With the molecular
field acting on the impurities K» ~n//12 it is
likely that the molecular field caused by the align-
ment of the impurities acting on the electrons would

be greater than 6/i12 so that superconductivity
could not exist.

The opposite limit of K very small (K «h/i12)
is more physical and more interesting. The zero
temperature equations in this limit are

1 1 1~,=(&a+/12H)+ —+ + s-2 -ai1/2
2T 2T~O 6T~g (4~ —(d g

1 1 co~
+

3
+ (~a '-2}1/2 (5)

1 1

1
+ — + I~2 Qyl fm ~

3~gg &go 'L y vJ

Z, 1
+ (ga 2)1/2 ~ (10)

The density of states can be expressed simply
in terms of the ratio &o, /4, =u„

N, ((gp) tC~

( )
—N(0}M

(
2 1),/2.

The equations for u, and u are coupled by the
spin-orbit scattering,

co + p~H 1 u, -u,
(1 -ua)1/a ~ (12)

This equation has been solved in order to find
N (&ol/2) and N, (&o//2) as a function of &0/h for vari-
ous values of I/v„h and i12H/b, . The effect of
the magnetic field on the calculated curves of

N, ur(b/) and N, (&o//2) for a given spin-orbit parame-
ter I/1 „6is plotted in Figs. 1-3 for a few values
of I12H//2. Throughout this discussion on the
density of states, 6, is the order parameter at a
given field, temperature, and impurity concentra-
tion. Hence it would be correct to write 6
= n, (H, T, 1„). Though it is often quite difficult to
calculate this functional dependence, we sketch
some curves for b, in Sec. IV. The density-of-
states curves are quite useful if 6 is treated as
a free parameter which can be obtained from a fit
of the data to the theory. In all the figures
presented we have plotted the density of states
above the Fermi surface only. The density of
states below the Fermi surface is just the mirror
image with the spin assignments reversed. In all
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FIG. 1. Density of states
for up- and down-spin elec-
trons in a superconductor as
a function of magnetic field
for a small value of the spin-
orbit scattering parameter
1/7'~b, = 0.1. Note the major
effect of the spin-orbit term
is to mix the up- and down-

spin states with some of the
density of states in the peak
at co+p~ shifted to (d -p~.
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the curves shown, the spin-down density of states
is the curve which rises higher and peaks at lower
energy. The spin-up density of states peaks at
the higher energy. Where the curves are left
broken at the top, the peak value is higher than the
scale of the axis.

The most obvious feature of these curves is that
at zero magnetic field, the presence of spin-orbit
scatterers has no effect on the density of states.
At peH/n, =0, the density of states has just the
classic BCS energy behavior. When psH/n. = 0,
u, =u =(g/A, so that N((o/n. ) =&(0) Rel&o/& I/
[(&g/6) —1] ~ . However, if we turn on a magnetic
field, the density of states does not preserve the
simple spin splitting of the BCS curves as with
the pure metal or a metal with only regular im-
purities.

For low values of spin-orbit parameter 1/v„n,
«1 (Fig. 1) the spin splitting due to the magnetic
field is modified slightly. The density of states
shows evidence of spin splitting but there are
major differences from the density of states of a
pure superconducting metal or one with only reg-
ular impurities. The infinite peaks in the density
of states are rounded off to finite values. The
peak of the spin-up density of states, originally
at b, + p~H gets more severely rounded than that
of the spin-down at 4 —p~H. There is a shifting
of some of the spin-up density states from the peak
at b, + p~H to a lower energy at approximately
4 —p, ~H, leading to another but smaller peak close
to where the spin-down curve peaks. As the spin-
orbit parameter increases 1/v„6=1 (Fig. 2), the
splitting caused by the magnetic field is moderated
and the two peaks of the spin-up curve broaden in-

to a single peak. In Fig. 2, where 1/r„h» 1,
the spin-up and spin-down curve nearly coincide.
As the spin-orbit parameter increases, u, and u
become nearly equal so we can make an expansion
of the equations in terms of u = —,'(u, +u ) and v
= —,'(u, —u ). Adding and subtracting Eq. (12) we
get

CO 5 1
v„a ~1- 'l' tI (1 —u')'ri)

p&H v 1 1
7 g (g — )'&I (g — ~)'&~ )

Upon expanding in powers of v and neglecting terms
of O(v ) we get

..a(p If/a)~)=u 1 3&]a(1 —u )

v = ——,'(p, H/n. ) 7„n.(1-u')'".

As 1/v„n, gets very large, v gets small, and
hence u, =u. u is the solution of the classic de-
pairing equation of Abrikosov and Gorkov'3 with
the depairing parameter given by —,

' v„A(peH/6) .
The depairing parameter is related to perturba-
tions such as magnetic impurities which act to
destroy superconductivity. The larger the depair-
ing parameter, the more superconductivity is de-
stroyed. This depairing manifests itself in the
superconducting density of states by rounding off
the peak in the density of states and decreasing
the energy gap. Notice that this depairing effect
is inversely proportional to the spin-orbit parame-
ter so that as 1/r„n, gets much larger than one,
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spin-flip scattering.
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(o/a=u(1 —1/v» S) [1/(1 —u )'~ ],
where u, =u. This is identical to Eq. (14) for only
magnetic impurities at zero magnetic field.

At zero magnetic field, a superconductor with
magnetic impurities as an energy gap as long as
1/r» d & 1. It can appear gapless in a magnetic
field because of the shift in the density of states
caused by the magnetic field. Since increasing
the spin-orbit scattering reduces the effect of a
magnetic field, the gap can reappear. However,
if 1/v» A~ 1, the system is always gapless and
we cannot induce an energy gap no matter how
large we choose 1/7„b, .

In Fig. 8 we illustrate the effect of adding mag-
nebc impurities to a superconductor at a fixed
value of 1/r 6 and psff/h. As 1/r»r2 increases,
the peaks in the density of states become more
rounded and the energy gap decreases. As
1/v» b,- 1 the peaks are very poorly defined. For
1/v»h&1 the peaks areeven more broadened and
the energy gap is zero. In general, magnetic
impurities are destructive to superconductivity.
The calculations show that the spin-flip parameter
exerts a stronger influence than the spin-orbit
parameter on the density of states.

IV. THERMODYNAMICS OF THIN-FILM SUPERCONDUCTORS

A. Order Parameter

As a measure of the strength of superconductivi-
ty, the order parameter is very important. In
terms of the finite temperature Green's function:

&&(&'(f ~) —&'(P, ~)) (19)

The 5' functions for a thin film in a magnetic
field are given by Eq. (1) and yield for the order
parameter

( (
448T2 Re (4 - ).()')l

)& 44& 2W (2)R + g + 6~
The momentum integral is performed using con-
tour integration giving

1~= lglW0)»
0«eR& 44& 1 +sn

We solve this equation approximately for small
b by expanding u~ in powers of b, and grouping all
the terms of a given power of d together. For
all but the lowest-order coefficient we take the
sum over &„out to infinity without adding a signif-
icant contribution. However, the lowest-order
term does not converge soweusea standard cal-
culational device which enables us to sum to in-
finity. The result is

T r (22T 2T)) (2)'
- 2 z'l~

x Q —Re (0)
l

(1+2u' ')&' '), (19)
n&o ~n+ ]

where

u„= (1/s)(u(0)+u„", ' a'+u„"'a'+ ~ ~ ~ ).
The supercooling critical field as a function of
temperature is obtained from Eq. (19) by setting
6 = 0. It can also be used to solve for 6 in the
limit of r)/2vT as a small parameter.

An exact equation for 6 may be obtained from
Eq. (18) if we convert the sum over (2)„ to a con-
tour integral using a function which has a simple
pole at every {d„. The result of this lengthy but
standard calculation is

Q) 1 1
(( )

~"((- ')"4)

P(d 1taW
2

—™
(1 ( ~~)a), ), , (20)

where u, refer to the zero-temperature Green's
function. This equation however is extremely dif-
ficult to solve numerically and an analytic solution
cannot be found.

B. Free Energy

The free energy may be found from an analytical
expression for the order parameter using the very
general thermodynamic equation:

G, —G„=f b'd(1/lgl). (21)

A general analytic solution of 6 as a function of
1/ (g ( could not be obtained so that the free energy
cannot be calculated exactly in all regimes. In
the limit of small r2/2v T however, one can use Eq.
(19) to find the free energy. Since

(2& y/v)e-)/N(0) I&l

upon differentiation of Eq. (19) with respect to
1/Ig I we obtain

Q3
+4C, 4 + ) 44, (22)

where C, and C, are the coefficients of a/2vT and
(r)/2wT) in Eq. (19). Maki and Tseuentos and
Maki pointed out that C~=O determines the criti-
cal point at which the superconducting to normal-
state transition changes its order. If C~ is nega-
tive, the transition is first order. If C~ is posi-
tive, the transition is second order. Using Eqs.
(21) and (22) we calculate G, —G„:
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1.0 (u„= 2vT(n+-,').

Xg
Xn

0.5

This function is numerically calculated for mag-
netic impurities and is presented in Fig. 9. Us-
ing this low-field approximation of the super-
conducting free energy together with the calcula-
tions of the supercooling field and change of order,
we can present a very good plot of the behavior
of G, (H) —G„(0) for all values of magnetic field.

C. Very Thin Film with Spin-Orbit Impurities

l. Supercooling Curves (b, = 0)

0
I

&s~ ~oo

0.5
Using Eq. (19) we substitute the u expansion

for spin-orbit impurities and we arrive at the fol-
lowing expression for the supercooling critical
field versus temperature:

FIG. 9. Spin susceptibility of a superconductor as a
function of spin-flip scattering.

~C b, 2&4
2 (2w T) 3 (2m T)

(23)
Since this expression is valid only for small n/2vT,
we must resort to approximate methods close to
T = 0. We will also need to know the dependence
of the superconducting free energy on the mag-
netic field. To obtain this free-energy dependence
exactly is very difficult. However, at low fields,
we may approximate the field-dependent free-en-
ergy difference by

(24)

where X, is the susceptibility of the superconduct-
ing state at zero magnetic field with either spin-
orbit or spin-flip scatterers. Normally for a
superconductor at T=O, X, /X„=O. However, both
spin-orbit and spin-flip scatterers destroy spin
as a good quantum number and tend to increase
the value of X,/X„. The superconducting-state
susceptibility has been calculated in the presence
of either spin-orbit or spin-flip impurities by
Maki and Fulde':

1.5

i. O

0.5
T

Tco

I.O

where u„ is given by

FIG. 10. Critical-field-vs-temperature curve of the
second-order phase transition for a paramagnetically
limited superconductor. For values of 1/7.~4 &2.32.
The order of transition is always second order. For
1/v~A& 2.32 the intersection of the dashed line with
the solid lines gives the temperature below which the
transition is first order.
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AT 1»(f)= + Re (o&
0 un+ n+2

where

(26)

= (n+-,') +fo

t ~oo 2yt

tPgH 1 I 2a= (n+-,')— (n +-,') +
b,oo 2yt T o b,oo

versus the reduced temperature t for various val-
ues of the spin-orbit parameter 1/v„n, oo. Ob-
sexve the difference between the b, -normalized
parameters of Sec. III, I/v„n, , i&, sH/n. , and these
parameters I/& „600, ps H/F00 normalized to
b, oo. The relationship between 4 and boo can be
obtained from the dependence of the order parame-
ter on H and 7„. b, oo we must remember, is the
order parameter at zero field, temperature and
impurity concentration. We have also calculated
C2 of Eq. (23) so tha(, we may find the effect of
spin-orbit impurities on the critical point at which
the order of the phase transition changes:

y = 1. 7811.
T

co

In Fig. 10, the critical field p, » H/n~ is plotted

27TT '
Ca=-,' Re Z (o& (I+2u„', 'u"')

n Qn+

where u' ' is given by Eq. (27) and

(28)

�

0 5 Q -Q 1 1 1 I 1 1 1 1 1
Q~~

T Aoo 2yt Q„T„boo2yt u„, u u T„4~2yt u„, u u„u„,
JH' tt

(o) + (o) (o) + (0) (0) (0) (P) (20)

(0&
( (0&)

The locus of critical points as we increase
I/7„boo is shown by the dotted line in Fig. 10.
Notice that the addition of spin-orbit scatterers
raises the supercooling field and at the same time
drives the first-order transition to a higher field
and lower temperature. At I/&. „happ= 2, 32 the
transition is second order even at T = 0. This
agrees with the results reported earlier by Fulde. '
At this concentration of spin-orbit scatterers the
(T =0) superheating, supercooling, and regular
critical field converge. For 1/7„600» 2. 32, the
transition is always second order and there is no
superheating or supercooling field. We can un-
derstand this rise in critical fields in a qualitative
way by realizing that a superconductor with spin-
orbit impurities has a spin susceptibility unequal
to zero, which means superconducting electrons
can respond to an applied magnetic field much
like normal metals. The critical field obtained
from equating the free energies is much larger
than the Pauli paramagnetic field H~ which is ob-
tained when the superconducting electrons do not
respond to the field.

2. Order Parameter (T = 0)

The exact equation for the order parameter is
too difficult to solve. Nevertheless, by using ap-
proximate methods we can sketch the dependence
of the order parameter upon the magnetic field and
spin-orbit impurities. The curves n(H)/Zoo are
shown in Fig. 11 for various values of 1/v„400.
Notice that the &ombined effect of a magnetic field

I.O

n(~)
~OO

~so

0.5

(2.32

0 1.0
eH

~oo
FIG. 11. Sketch of the field dependence of the order

parameter as a function of spin-or&it scattering. For
1/7'~4 &2.32 the order parameter is double valued due
to the first-order nature of the transition giving rise to
a superheating and supercooling transition as well as the
thermodynamic transition.

0.5 2.0l. 5

and spin-orbit impurities is to decrease the order
parameter. For small H, n, (P) descends qmdrat-
ically with H. This is because I/v„b, oo and

u»H/40p together create a depairing effect propor-
tional to H . As I/r„h iMs increased to 2. 32, the
quadratic dependence of h(H) increases and reaches
a maximum at I/~„600= 2 32, Below 1/v'„n, 00
= 2. 32, the h(H) curves are double valued with
dn, (H)/dH= ~ corresponding to the superheating
critical field and [n.(H) = 0] corresponding to the
supercooling critical field. Above I/~„bop= 2, 32,
the n, (H) curves are single valued. As we increase
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the normal state, the normal-state free energy is
I

Io Aoo
5G„=G„(H)—G„(0)=——,

'
X„H . (30)

- 2.0

4.0
cv 3

Cl

0
40 z

-6.0

.0
-e.o

2.0l.o p, H8

~00
FIG. 12. Sketch of the field dependence of the free

energy of the superconductor and normal metal as a
function of spin-orbit scattering. For spin-orbit param-
eter 1/v~b &2.32 the transition is first-order indi-
cated by the crossing of the superconducting free energy
with the parabolic normal-state paramagnetic-suscep-
tibility energy —$X„H .

I/r„6pp from 2. 32, the depairing effect becomes
smaller so that the n, (H) curves become less steep.
Note that as we vary the spin-orbit parameter the
h(H) curves continuously deform into each other.
The curves for 1/v„hoo& 2. 32 all cross the dotted
curve of d(H) for 1/v„dpi=2 32 Above 1/r„L oo
= 2. 32, the order of the transition is always sec-
ond order so the n, (H) vs-H curve is singl-e valued.

Free Energy (T = 0)

With the supercooling critical field exactly known
and the superheating field determined by Fig. 11,
the magnetic field dependence of the superconduct-
ing free energy can be quite well determined with-
out an exact calculation. We approximate the low-
field dependence by using the zero-field suscepti-
bility given by Eq. (25). This susceptibility is
identical to the result of Abrikosov and Gorkov. "
As a function of 1/v„hoo, l(, rises from zero and
approaches 1 asymptotically as 1/v n, oo gets
large. We expect that h:ti. (24) will be a good ap-
proximation to the free energy for small H. Since
the spin-orbit impurities do not appreciably affect

At high-field values, the superconducting suscepti-
bility X, has a magnetic field dependence y, (H).
When 1/v AM» 2. 32 the susceptibility has a suf-
ficient field dependence that the free energy of the
normal and superconducting states intersect tangent-
ly. This susceptibility increases as 8 increases
because the depairing parameter gets larger. The
depairing parameter is proportional to H . At low
fields we expect this effect to be very small so that
our low-field approximation is expected to hold
quite well. In Fig. 12 we have plotted the super-
conducting and normal-state free energies as a
function of peH/boo for selected values of the spin-
orbit parameter 1/r„boo. For low values of
1/v„Aoo, where the transition is first order, the
supercooling and superheating extremum are con-
nected by an unphysical free-energy curve. For
1/v„4oo~ 2. 32, the order of the transition changes
and the superconducting and normal free energies
merge at a single-field value, which is the second-
order transition field. Note, for example, the
1/v„hoo= 3.0 curve. The intersection of G„and
G occurs a't peH/Apg= 1 9. If the susceptibility
with spin-orbit impurities y, (H) did not increase
from the zero-field value of 0. 8, the two curves
would intersect at a lower-field value of peH/non
= 1.59. This is expected since the low-field ap-
proximation where the H dependence of X, can be
neglected is only valid in the limit peH/sop & l.

This completes our discussion of the thermo-
dynamics of very thin films with spin-orbit im-
purities. It is possible to extend this discussion
to finite temperature, but the effect of tempera-
ture is to round off and disguise the effects we are
most interested in.

D. Thin Film with Magnetic Impurities

We present the thermodynamics of the thin film
with magnetic impurities. The similarities to the
spin-orbit case are many, but there are also some
significant differences.

I. Supereooling CritieaI-Field Curves (6 = 0)

As with spin-orbit impurities, we expand u„,
in powers of 4 and obtain the following expression
for the supercooling critical-field versus tempera-
ture and magnetic impurity parameter 1/v„n, oo:

AT 1Int= Q Re ro&
—

x
~o +~ &+a

where

AT v~ hoo 2yt hoo 2yt
Pl+2 + +Q
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2~ (0) ~ (0)2 ~ (0) (0) y
+n-

0.5

2 (0) (0)

(0) + r (0)&3
+n n- J

(32)

0.5
T

Tco

1.0

FIG. 13. Critical-field-vs-temperature curve of the
second-order phase transition for a paramagnetically
limited superconductor. For values of 1/v'&6&0. 461,
the order of the transition is always second order. For
1/v z4 & 0.461 the intersection of the dashed line with the
solid lines give the temperature below which the tran-
sition is first order.

"+2 a 2yt
' „~„2yt

1 ip~H 1 1 1

happ 2yt 3vsg App 2yt
(31)

In Fig. 13 this critical field p~H/noo is plotted
versus the reduced temperature t for a number of
values of spin-flip impurity parameter I/r, f Goo.
Notice that unlike spin-orbit impurities, the pres-
ence of magnetic impurities lowers the critical-
field values. Even though the magnetic impurities
give the superconductor a susceptibility which

would tend to raise the critical field, the destruc-
tive effect of the magnetic impurities more than

offsets the rise so that the total effect is that the
critical field declines. %'e have calculated the co-
efficient of the (n/2mT) term. The change in sign
of this coefficient determines the order of the super-
conducting to normal transition'.

(0) (0) g —3. ~ 2yf

This coefficient has been calculated and the locus
of points at which it assumes a value of zero is in-
dicated by the dashed line in Fig. 13. For tem-
peratures to the right of the dashed line the transi-
tion is second order and therefore the critical-field
curve plotted is the actual critical field. To the
left of the dashed line, the transition is first order
and the transition plotted in Fig. 13 is the super-
cooling curve.

Note that unlike spin-orbit impurities, the net
effect of magnetic impurities is to decrease the
zero-field critical temperature. Increasing I/v„n, oo

also drives the critical point at which the order of
the transition changes to a lower field and tempera-
ture. For /Ir„h o&o0. 461 the superconducting-
normal transition is second order at all tempera-
tures. As shown in Fig. 14, the density of states
of the superconductor is gapless at zero field when
1/r„,boo~0. 456. Thus, to destroy the first-order
transition in a magnetic field requires a concentra-
tion of magnetic impurities slightly greater than
the concentration at which the superconductor be-
comes gapless. At this concentration where
I/r„, 6000. 461, the supercooling, superheating,
and actual critical fields merge.

2. Order Parameter

To discuss the magnetic field dependence of the
order parameter, we first describe the well-known

1.0

0.5

Cz= —' Re Z &z&
(1+2u' 'u"')

n &n+

0.25
I

&s~ ~m

0.5

where u' ' is defined above and
FIG. 14. Dependence of the order parameter 6 and

energy gap 4 on the amount of spin-flip scattering.
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I
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0,4
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h (o) 0.5 —p.45

Note that X, /y„remains relatively small until
I/r~ happ approaches its gapless value of 0.456 when
it rapidly increases to one at I/~„b, Oo= 0. 5. Gap-
lessness greatly increases the spin susceptibility
of the superconducting state since the electrons of
the broken pairs can align themselves with the field.
Unlike spin-orbit impurities, magnetic impurities
destroy superconductivity and considerably in-
crease the zero-field free energy. An expression
for this energy is given by Maki, '

G,(0) —G„(0)= ——,
' N(0)dP(1 —~v$+ —,$ ) if $ «1

= —~N(0)d fl —)sin (I/$)

+ 5'[1 —(1 —5')"']

Q.5
p.8 H

~oo
where

x (I —Ll —(I/$~)]~~ $], if $ &I (33)

FIG. 15. Sketch of the field dependence of the order
parameter as a Nnction of spin-flip scattering. For
1/v'@Ah, & 0.461 the order parameter is double valued.

dependence of the order parameter on 1/v~ naa at
zero field. This is plotted in Fig. 14 along with
the magnetic impurity-dependent energy gap $, .
Notice that above I/v~ d, oo= 0.456, $, = 0, and a
severe decline in the order parameter occurs. The
gaplessness caused by a magnetic field through
spin splitting of the density of states also causes
a severe decline in the order parameter. At
I/v~ 600= 0. 5 the order parameter is zero and
superconductivity is completely destroyed

In Fig. 15, we have sketched the curves of a(H)/
Aao at various values of I/7'„&00. At zero field,
the order parameter is simply that of a supercon-
ductor with magnetic impurities and has the value
given in Fig. 14. As the magnetic field is in-
creased, the order parameter decreases quadrat-
ically with ps H/600 with a very small coefficient.
The coefficient is calculated and plotted in the Ap-
pendix. As the magnetic field is increased fur-
ther, the superconductor eventually becomes gap-
less with a sharp decrease in the order parameter.
The sharp decrease in the order parameter in Fig.
15 occurs at a value of peH/dao approximately equaj
to the energy gap $~/500 in Fig. 14 for the same
concentration of impurities. For I/v„d, oo& 0.461,
the a(H) curves are double valued, their extreme
points corresponding to the supercooling and super-
heating fields.

Free Energy (T= Oj

In analogy with the discussion of spin-orbit im-
purities, we use the zero-field susceptibility of Eq.
(25) to approximate the free energy at low-field
values. This susceptibility is shown in Fig. 9.

0

~3
Cl

o
X

-)cv

—0.5

—I.O

0.5
p.~H

~oo

SGg~ ~ Xp H
I 2

l I

I.O

FIG. 16. Sketch of the field dependence of the free
energy of the superconductor and normal metal as a
function of spin-flip scattering. For spin-flip param-
eter 1/T&«0. 491 the transition is first order.

)=1/v~ b.

Using this expression for the zero-field energy
diff erence together with the low-field approximation,
we obtain a very good description of the impurity
and magnetic field dependence of the free-energy
difference. The free energy versus field energy
for selected values of the magnetic impurity param-
eter is shown in Fig. 16. Because the susceptibility
is quite low for all but the highest value of I/7„doo,
we note that the G,(H) curves are very flat in the
low-field region. As the magnetic field increases,
the spin splitting of the density of states gets larger
so that the superconductor approaches gaplessness.
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The convolution of the theoretical superconducting
density of states with a temperature function

1.5—
P

~e
2( &see 1'/2 -2( o&+e 1'& /2) 2

——F((g) + eV)+e (34)

(
disn

)
Cn

I.Q—

0.5—

T =0.4
H =0.0kG

Tco = 2.33

I

900

&oo
/

I i I

300 600

shifts the voltage of the conductance maximum high-
er than the zero-temperature peak of the density
of states obtained from setting eV= happ.

The dashed line in Fig. 18 is the experimental
conductance for the same Al film but with a mag-
netic field of 22. 44 kG applied parallel to the film.
The 22. 44-kG magnetic field yields a value of
0. 369 for the parameter pH//happ. The solid line in
Fig. 18 is the theoretical fit obtained from the
field-dependent calculation of the density of states
for a BCS superconductor without spin-orbit scat-
terers. The expression for the conductance is

FIG. 17. Fit of the density of states from the BCS
theory with the measured density of states of a thin Al
film.

Isn= &n
I+ —Q~HI

2
[( ~ H)Z +2]1/2

+
[( H 2 / F( +«). (36)

I&+ @~0 I

&+ p&H

The susceptibility rapidly increases when the field
is close to $ /p. s, where $2 is the zero-field ener-
gy gap shown in Fig. 14. Therefore, as the mag-
netic field approaches ge/p, p, the free energy of the
superconducting state decreases rapidly. %hen
1/r~ 12 pp~ 0. 461, the zero-field susceptibility is
already greater than 0. 75x„so that the enhanced
susceptibility is sufficiently large to ensure that
the normal and superconducting curves intersect
each other tangently.

The free-energy and order-parameter curves
sketched in this section give a very physical pic-
ture for discussing the detailed behavior of very
thin films in a high magnetic field.

V. COMPARISON OF THEORY WITH EXPERIMENTAL DATA

The dashed line in Fig. 17 is a tracing of the
x-y recording of the conductance versus voltage at
zero magnetic field obtained in an experiment by
Meservey and Tedrow at T = 0.4 K for a thin Al film
with T, = 2. 33 K. The theoretical conductance for
a BCS superconductor with an energy gap related
to T, by the relation 2bpp= 3. 52 k~T, is shown by
the solid line. Except for the increased broaden-
ing of the experimental curve, the theoretical curve
is a reasonable fit. The reason for this broaden-
ing is not known but is probably related to the dif-
ference between a very thin film and an ideal BCS
superconductor. The broadening cannot be attrib-
uted to magnetic impurities since metallic Al
does not allow for the formation of a magnetic mo-
ment about an impurity. The broadening in the field-
free film sets a limit on the quality of the fit one
can expect to obtain for filn s in a magnetic field.

l.5

d&sn

I.O

0.5

300 600 900

FIG. 18. Fit to the density of states of a thin Al film
in a magnetic field including the effects of spin-orbit
scattering.

The amount of spin splitting in the data agrees with
the calculated value of

3P, ZH//ZM = 0.369.

A better fit to the experimental data is obtained
by recognizing that spin-orbit scattering acts to
transport spin-up electrons from the high peak to
the low peak. The dotted line is a theoretical curve
obtained by calculating the superconducting density
of states with a spin-orbit parameter 1/T happ= 0 ~ 06.
The calculation presented in Fig. 11 [Sec. IV]
shows that the order parameter /2(H) is essentially
unchanged from its zero-field value of happ. This
value for the spin-orbit parameter yield~ a con-
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T
l.5— x ' F((u+eV}. (37)

N, ((o)

(d@) I.O
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paY

FIG. 19. Fit to the density of states between thin
Al film and ferromagnetic ¹i.The fit is made with
polarization of Ni of 0.08.

ductance curve which gives a better fit to the low-
voltage and high-voltage peak and also locates the
peaks somewhat better than the simple spin-split
BCS density of states. Another effect of spin-orbit
impurities is a slight increase in the energy gap in
a magnetic field.

The dashed line of Fig. 19 shows the experimental
conductance for the tunneling from superconducting
Al into a ferromagnet, i.e. , Ni. Note that unlike
tunneling into a nonferrornagnetic normal metal,
the conductance is nonsymmetric in voltage. Since
each peak in the spin-split density of states is
associated with a separate spin, tunneling can be
used to obtain the relative density of states of up-
and down-spin electrons at the Fermi surface of
the ferromagnetic Ni. Assuming the tunneling pro-
cess does not flip the spin of the tunneling electron,
the relative heights of the spin-split peaks are
related to N, (0) and N, (0) for ¹i.In paramagnetic
metals N, (0) =N, (0), but in ferromagnetic metals
N, (0) need not equal N, (0}. The theoretical expres-
sion which can be used to fit the experimental data
is

NMi~(0)N (&)
dV " „N„,(0)N(0)

Nwia(0)K(&u)
+ ""(

)
('

)
F((u+eV), (36)

Nj

v. here N (s0)=N„~,( ) 0N+„„(0), N, (+) and N, (&a) are
the density of states for aluminum in the super-
conducting state, and N(0) is the density of states
of aluminum in the normal state. If we define a
polarization P as

P = [N„„(0) N„~, (0}]/N„,-(0),

the tunneling current can be rewritten

dI, f ~
"'" 1+P N, (d 1 -P

The solid line in Fig. 19 is a theoretical fit of a
spin-split density of states with a value for the
polarization P = 0. 11. This tunneling technique from
a superconductor into a ferromagnet developed by
Meservey and Tedrow has been used to directly
measure the polarization of Co, Fe, and Gd as
well as ¹i.

The polarization values obtained by Meservey
and Tedrow are not in agreement with the simple
band picture for ferromagnetic metals. Similar
anomalous results have been obtained by Bush et
al. ' ' analyzing the spin spectra of electrons ex-
cited by photoemission from ferromagnetic me-
tals. The experiments differ in that the polariza-
tions of Meservey and Tedrow are associated with
electrons within millivolts of the Fermi surface
whereas the photoemission technique probes elec-
trons much deeper in the electron bands. These
anomalous polarization values have stimulated a
great deal of theoretical analysis. The spin split-
ting of the density of states of superconductors
has been developed into a very powerful technique
to determine the relative spin polarization in
magnetic metals as well as to determine super-
conducting metal parameters.

Thus far, tunneling experiments in high rnag-
netic fields have been performed only on thin Al
films where the spin-orbit effects are small. To
get a more quantitative fit one should include the
depairing effect of the orbital term. Further
experiments are presently being carried out on
other metals with larger values of the spin-orbit
parameter. Our curves will be useful in interpret-
ing these experiments. As yet, experimentalists
have not considered the problem of tunneling into
thin films with magnetic impurities. Our calcula-
tions predict spectacular changes in the density of
states and energy gap as a function of spin-flip
parameter and magnetic field. The theoretical
calculations for spin-flip impurities have assumed
that the impurity spin is relatively free to flip.
One expects that in the experimental sample, the
molecular fields will modify the scattering effects
of the magnetic impurities. In such cases a more
general expression of the spin-dependent impurity
Green's function mill have to be used in the cal-
culations.
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At T =0, Eq. (Al) is written

1 1 1
1 ((+u.')'" ((+u')"')

0.25
I
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where u, and u become continuous variables.
Expanding Eq. (A3) in powers of //H/n. we find
that the linear term is zero. The second-order
term is

C ~aH = C P~H I

FIG. 20. Plot of n as a function of spin-flip scattering.

APPENDIX: THIN-FILM ORDER PARAMETER WlTH
MAGNETIC IMPURITIES

where

d((d/a), 2 1 —2u20

212/2 uo +2 2 +1 1 2 (A4)
p 4 +upg +Qp

We investigate rigorously the low-field behavior
of the order parameter of a thin film with magnetic
impurities. We start with an expression which is
a slight variation of Eq. (20)

(1 )'i (1+ )' )
d((o/&)

[1+( /4)2jg/2 ~ (Al

Expanding 2/ in powers of p«H//2, where 6 equals
the order parameter at zero field:

u„,=so„+X,„(//«H/ )+X2„(P«H//2),

1c )).= Ro)) +s y))( P 2 H/n ) +s 2„(P 0 H/6),

where

1+p
1 3 I1 g is/3+gyp„)

Taking the derivative of Eq. (A3) with respect
to // «H/6001

d
3 ln

d(i «H/ 00) ~00 «0

n. (H) ~(O) /, H '
~pp ~pp ~pp

(Ag)

The plot of o as a function of 1/~, f 600 is shown in

Fig. 20. For small values of 1/~„600 the de-
crease in the order parameter is very slight. The
largest values of n is obtained for values of
1/~~ 600 slightly greater than the gapless regime.

&00 d'(&/&I) 2C ~oo

&(0) d(u«H/&00)' «=o ~(0)

shows that the expansion of n(H)//200 in powers
of p«H/boo is related to C by

a(H) 4(0) moo //. «H
~oo ~00 ~(0) (2 oo

The coefficient C has been evaluated numerically
and is negative. We define n = —C(200/a(0) to
obtain
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