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An exact expression is obtained for the partition function of the arbitrary-electron-density Hubbard

chain in the infinite-coupling (U oe) limit. It is shown that the magnetic susceptibility obeys a Curie

law, while the orbital contribution to the specific heat corresponds to that of a noninteracting band of
spinless fermions, The electronic nobilities in this limit are shown to be infinite.

I. INTRODUCTION

One-dimensional systems' have received con-
siderable theoretical attention for several reasons.
Often problems exactly solvable in one dimension
may only be approximately treated in higher dimen-
sionalities. Thus one expects that the insight
gained in the exact solution may lead to a better
understanding of the underlying physics applicable
in other situations. On the other hand, there exist
special features of one-dimensional problems
which often lead to drastically different results
from similar problems, say, in three dimensions.
A well-known example is the absence of long-range
order in one dimension. Over recent years the
discovery of a variety of compounds possessing
quasi-one-dimensional structures has lent further
impetus to the theoretical investigation of lower-
dimensionality models. Some examples of such
systems include (1) magnetic insulators such as
(TMMC) tetramethylmanganese chloride~ and various ~.

hydrated salts; (2) one-dimensional "metallic"
compounds such as the square planar platinum
salts and the organic charge-transfer salts based
on tetracyanoquinodimethan (TCNQ). It is this
latter situation which interests us here. The salt
N-methylphenizinium (NMP)- TCNQ has been studied
in detail by the University of Pennsyl, vania group
and its conducting-insulating transition analyzed
in terms of a half-filled-band Hubbard model.
Other TCNQ salts may be described as more or less
than half-filled bands, e.g. , in quinolinium (Q)
TCNQ», there presumably exists one electron per
two TCNQ molecules and thus a one-quarter-filled

Therefore the one-dimensional Hubbard model
with variable electron density is of interest.

The one-dimensional. Hubbard-models Hamiltonian
which is to be discussed here is

s t tf ~ ««.» c~ +c& c(&+» )+ I ~ "«"«
f,a

(1.1)
where t is the hopping integral which is the matrix
el.ement for the transfer of an electron to a near-
est-neighbor site; c&„c«are, respectively, an-
nihilation and creation operators for an electron

with spin o at the ith site; U is the local Coul. omb
repulsion which operates when two electrons occupy
the same orbital; n„= e&,e&, is the number operator
for electrons on the ith site. We consider only one
nondegenerate orbital at each site. Lieb and Wu

have solved for the ground state exactly for arbi-
trary f, U, and electron density p. Takahashis has
calculated the magnetic susceptibility at T= O'K
for the half-fiiled band (p = 1) and Shiba has ex-
tended this result to arbitrary density. Ovchin-
nikov 0 has computed elementary excitations (at
T=O'K) of both magnon and single-particle char-
acter; Coll" has extended his results to arbitrary
density. Thus we have a fairly complete descrip-
tion of the T=O'K properties for all values of the
parameters. At finite temperatures, there exist
fewer results. For finite chains, of up to six sites
with p = 1, the partition function and thermody-
namic properties (specific heat, spin susceptibility)
have been computed' in both the canonical and
grand canonical. ensembles for arbitrary U and t.
For infinite chains, the statistical mechanics of
the noninteracting limit (U-0) is of course simply
a problem of Fermi statistics on a, tight-binding
chain. The purely local limit (f 0) is also com-
pletely sol.vable. '3

The purpose of this paper is to discuss another
situation which leads to exact thermodynamics
and for which correlation functions associated with
dynamical response functions can be calcul. ated.
This is the strong-coupling limit, i.e. , t and p
arbitrary but U- ~. In this case, Sokoloff has
already derived an expression for the partition
function and shown that the susceptibility obeys a
Curie law. By a rather different method, we re-
derive these results showing that there is a com-
plete decoupling of the orbital and spin degrees of
freedom, i. e. , (1) the spin susceptibility is a
Curie law corresponding to an electron density of
(2 —p) (for p & 1) and p (for p & 1); and (2) the spe-
cific heat is that for a noninteracting tight-binding
band of spinless fermions of density I p-1l.
Finally we demonstrate that correlation functions
associated with dynamical properties can be cal-
cul, ated. As an example, we explicitly compute
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the velocity-velocity correlation function and show

that the mobility is infinite.
In Sec. II, me consider the case of a half-filled

band with one extra electron (or hole). This situa-
tion has previously been considered by Brinkman
and Rice mho showed that the mobility is infinite.
Ne shall reconsider their cal.eulation in detail and

then generalize the result to arbitrary densities
in Sec. III.

H. HALF-FILLED SANO PLUS ONE CARRIER

Ln this section, we consider a uniform-Hubbard-
model chain described by the Hamiltonian (1.1)
in the limit U- ~ containing one electron per site
plus one additional. carrier. In particular, we
take the extra carrier to be an electron, but by
electron-hole symmetry, this is equivalent to add-
ing a hole (i. e. , subtracting one electron from the
half-filled band}. The infinite local repulsion
described by U- ~ ensures that states of the chain
with more than one doubly occupied site are ex-
cluded. By projectirg out such states explicitly,
Brinkman and Rice point out that the resulting
Hamiltonian commutes (in one dimension only) with

the velocity operator,

(I= (itff/ ) ~ (C(i+1&oCfo CfoC((+1&o}
$ pe

(2. 1)

where g is the lattice constant. Thus, the total.
vel.ocity is a constant of the motion and the mobility
is infinite. These authors also explicitly computed
the vel.ocity correlation function

4&(&) = {((&)( (o)+ ( (o)~(r)},

where (I(1') is the velocity at time v and the brackets
indicate an ensemble average, and showed that
indeed the correlation function (t&(v) is independent
of time, r. In this section, me shall reconsider
this problem in a slightly different formalism and
derive the partition function, yielding the thermo-
dynamic properties, as mell as the velocity cor-
relation function. In the folloming section, the
method is easily extended to arbitrary density.

Since we are interested in the strong-coupling
situation, it is appropriate to solve the interaction
term in the Hamiltonian (proportional to U) exactly
and treat the transfer term (proportional to t) by
perturbation theory. For t=0, each site is singly
occupied except for the one doubly occupied site.
The energy of the system is then U, mhich we now
take as our zero of energy. Each singly occupied
site has spin & and thus the application of a mag-
netic fieM removes the up-down degeneracy by
+ fff&H = +h (fff& is the B—ohr magneton and H the ex-
ternalfield), where+and —refer, respectively, to
spin parallel and antiparallel to the field. For the
zero-transfer case, each site is independent and
the partition function is then simply

Zo= (2coshpI()" ' (2. 2)

V(x) = ff'"f&Ve n(& (2. 5)

and R'0 is the unperturbed Hamiltonian, in this case
the interaction term [second term of {1.1)]; Ao

is the unperturbed thermouyraamie potential
(Qo = —P 11nZO); and the ensemble average in (2.4),
{)I&, is with respect to the unperturbed density
matrix. The U= ~ limit ensures that the transfer
term V has nonvanishing matrix elements only
mhen operating on one of the electrons of the doubly
occupied site. Thus the nth-order term of the sum
in (2.4) involves the doubly occupied site moving
n steps, and because me are calculating a trace
the final step must be a return to the initial site.
Such a round trip must be independent of the spin
configuration of all singly occupied sites because
(1}no matter whether a given singly occupied site
has spin up or down an el.ectron of the appropriate
spin may move onto it, and (2} in one dimension
all paths contributing to a diagonal matrix element
must be retraced leaving the original spin config-
uration unaltered. Furthermore, since any mo-
tion of the doubly occupied site leaves the interac-
tion energy (or Ã0) unchanged, V(x) is independent
of x. Only the even terms in V contribute to the
sum; the (2n)th term is then simply

t(pt)"/(2n)1»(2n), (2. 6)

where P(2n) is the number of distinct paths by which
the doubly occupied site may move and return to
its original site in 2n steps. This must involve n

steps to the right and n steps to the left; thus
t&(2n) is the number of ways one may make n right
steps out of 2n steps, i.e. ,

P(2n) = (2n}!/(n! )' (2. 7)

Substituting, (2. 6}and (2. 7) into (2.4), we obtain
an exact expression for the partition function,

c-'&"-"o&=1+K (Pt)~/(n! )'=f,(2Pt}, (2. 8

where N is the number of sites on the chain. The
doubly occupied site is necessarily in a singlet
state involving no spin degeneracy and thus does
not contribute to the partition function; hence, the
exponent N-1. The extreme simplicity of Zo is a
direct consequence of the fact that we need not take
into account multiply-occupied sites because
U= ~. Denoting the transfer term jthe first term
of (1.1)] by V, standard formal thermodynamic
perturbation theory'6 for the thermodynamic po-
tential 0 gives

fgl 3 xw

&-I&(o-oo& 1++ { 1)o dX~ ~ ~ e dÃj
ff=j. 0 0 0

&({V(/) V(f(f&) ~ ~ ~ V(x„)) (2 4)

mhere
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where Io{x) is the hyperbolic Bessel function of
zero order. The thermodynamic properties are
now easily computed from the thermodynamic po-
tential A. In particular, since 0 —A~ is indepen-
dent of magnetic field, the spin susceptibility }t
is completely determined by Ao and is easily shown
to be a Curie law corresponding to (IU'-1} nonin-
teracting spins,

X=X 1)-t&sP . (2. 9)

&t'(v) = &v(v)vt(0)+ v(0)v(r)&

= Z & Tr(e-NÃ[e(x( /h&v4e-cx( /)&&v4

+ (n (v/&) &vs (x(t/&)&]1- (2. 11)

where the velocity operator v is given by (2. 1).
Again rewriting the Hubbard Hamiltonian (1.1) as
Bo+ V, where the transfer term V is treated by a
perturbation expansion to all orders, the corr ela-
tion function becomes

(t)(v) = Z ' Tr[Q(p, 8'/R)vQ(iv/f&, 0)v

+ Q(P+ 8'/5, 0)v Q(0, iT/8) v), (2. 12)

where

Q(x, x)=&~ Q.(x, x)
ftao

(2. 12)

Q„(x,y)=(-1)"f dx, f d~" f "'dx„

x&V(x&)V(x&)) ~ ~ . V(x)4 &)& . (2. 14)

The expression (2. 12) for (t)(r) can be easily in-
terpreted in the following way: Suppose that the
carrier (i. e. , the doubly occupied site) is initially

In a finite magnetic field, there exist two contri-
butions to the specific heat: (1) the Schottky-type
anomaly associated with the N-1 localized spins
whose Zeeman levels are split by the field; (2)
the kinetic heat capacity arising from the motion
of doubly occupied site. The Schottky term is well
known and we shall not discuss it further. The
kinetic contribution is given by

(i fl ~ d I&(x)
CV d 742 4x d I ( )

4 (2. 10)

where x=2pt. For ksT»t, C„=—,'kJ&x and for
kJ3T«t, C„~& k~. The low-temperature resul. t is
just the familiar Dulong-Petit value of 2 k~ per
degree of freedom (which is one for a free particle
in one dimension}. This result obtains because at
low temperature the band-structure effects on a
single carrier are negligible; the zone boundaries
play no role.

Let us now turn our attention to the velocity cor-
relation function (t&(r) which should be explicitly
independent of time, according to Brinkman and
Rice. 'I This quantity is explicitly

(t)(T) =2Z-' Z S~ [&ol Q(p iv/ti}l q+ )&&q+ ql vl q&
e=~ %=a~

x&qlQ(ir«0) l»&1lvl0&

+ &0 I Q(p+ is/5, 0) I q+ &7&&q+ '/ll v
I q)

~&qlQ(o, iv/2}l»&1lvl0&], (2. »)
where the factor of 2 arises from the fact that the
first step may be either to the right or left, the
U= ~ condition again forces V(x) in the Q integrals
to be independent of x; also the second term in
the square brackets of (2. 15) is easily seen to be
the complex conjugate of the first. Then perform-
ing the integrals in (2. 14}and using the velocity
matrix elements,

(q+ &}
I
v

I q) = (i ta &)/5), &)& = + 1 (2. 16}

leads us to

4&4)=4(—')(a~))RsIE z( ', ' ) 4„((,4)

x P [P (q-1, 0) —P (q+1, 0)]
- [t(iv/tt- p)]

~~0 mf

(2. 17)
where P„(a, b) is the number of ways one can move
from site b to site g in n steps; the factor Zo ap-
pears because the motion of the carrier is inde-
pendent of the over-all spin configuration of the
chain. The combinatorial function P„(a, b) is

nl

{ b )]&[, ( b}]
for n) I b —at and zero otherwise. Using (2. 18),
the typical series that occurs in (2. 17) is easily
summed":

00 n

P„(a, b) = J(&, ,&(2iZ)i'.-o &~

where Ze(x) is the Bessel function of order (r. In-
serting (2. 19) into (2. 17), and after some manip-
ulations,

(2. 19)

4&') = 4 ~
l Rely

(- ()'a, z,(- x)
g 'I ggi~

Z)

at some site which we may take as the origin. The
velocity operator causes the carrier to move one
step either to the right or left, i. e. , 0-+1. The
final result must be independent of the sign of the
initial step, so we can arbitrarily choose to con-
sider the first step to be to the right (0-1). The
development operator Q, because it contains an
arbitrary number of transfer operations, allows
the carrier to move an arbitrary number of steps
to some site q, i.e. , I-q. The velocity operator
again generates a shift by one site, i. e. , q(- q+1.
Finally the operator Q must return the carrier to
its original location, i. e. , q+1-0. Thus in the
site representation,



x[&~(y) 2&(y)+& a(y)]I, (2, 20)

where a, = & for q=O, 1 otherwise, and where

x= 2tt/g, y = x+ 2itp

Finally, the q sum is performed with the aid of the
Bessel-function-addition theorem, 8 which yields
the result that P{v') is only a function of y —x;
i. e. , independent of the time v. Using the parti-
tion function, (2. 3), the explicit expression for
the correlation function is

(3.1)

where Zo is the partition function for the singly oc-
cupied sites;

g, =!2 cosh(Ph)!"" " (3.2)

and Z' is the partition function for n=N(p —1}spin-
less fermions in a tight-binding band. The mag-
netic fieM dependence of the partition function is
entirely in Zo leading immediately to the Curie
susceptibility

0 (~) = 4(«/S)'(I —Ii (2&P)/fo(2fP)l) (2. 22) X=W2 P)V-sP . (3.3)

Thus we indeed find that the mobility is infinite in
agreement with Brinkman and Rice. The function

P is then simply 2{@), i. e. , twice the average
square velocity of the carrier which according to
(2. 22) tends to zero as 7-0 and for pf « I, tends
to 4(«/I); i. e. , {v~)-2(ta/K)~. In the next sec-
tion we generalize the experience gained in this
problem to the case of arbitrary density.

HI. ARBITRARY DENSITY

Let us now consider the U- ~ limit in the situa-
tion where we add an arbitrary number of electrons
{2&p&1)to a half-filled band. Electron-hole sym-
metry dictates that the identical results should ob-
tain for the physical quantities of interest when
1 & p &O. Sokoloff derived an expression for the
partition function for this situation by generalizing
the method of the Lieb-Wuv calculation of the
ground-state energy to finite temperature. Our
method is to generalize the technique utilized in
the preceding section. In particular, we begin
with the general expression for the partition func-
tion (2. 4). In that case where there existed only
one carrier (doubly occupied site), the nth term in
the perturbation expansion was determined by
summing up the contributions from all possible ex-
cursions of the carrier such that it returned to its
initial site in exactly n steps. For the present
situation, we must carry out the same type of anal-
ysis with the additional constraint imposed by the
Pauli principle that two doubly occupied sites can-
not pass through one another. This clearly limits
the number of available excursions and greatly
complicates the combinatorial problem. However,
the path counting can be avoided by noting that it
is identical to an already solved problem. Con-
sider a noninteracting tight-binding chain (0= 0)
which contains a density F of electrons with all
spins parallel. In principle, we may compute the
partition function for this problem by using (2. 4)
and summing to'aQ orders. Notice that Fermi
statistics imposes the same paths to count for this
problem as for the U= ~ problem with a density
p= 1+ 1', Thus, we are immediately led to the re-

Z
I Tr -P(x-gx) (s.4)

where the chemical potential p, is determined by

st=&(P —1)=Z f(wg, ) ~

Here f(x) is the usual fermion function

f(x) = I/(e"" "'+ 1) (S.6)

and &~ denotes the energy spectrum of the nonin-
teracting tight-binding band,

&~ = 2t cosh, —m & k & m (3.7)

The internal energy @' is calculated in the usual
way,

W=& '«f(sa) ~ (3 3)

which using (3.6) and (3.7) is

2' yf(y) {3.9)(1 —y')' " ~ '
wg

The specific heat C„=8W/8T is easily computed
numericall, y and is shown in Fig. 1 for several
densities. Let us compute the ground-state energy
R~ explicitly. First the Fermi momentum k~ at
T=O'K is found from (S. 5),

~kg

st=+ f(w )= —I (3.10)

or kw = w(p —1). The ground-state energy is then

W, =5 f{w)= w- (2'/ )f w' cosf du

= —(2f&/w) su+~=(2tN/w) sinw p, (3. 11)

which may be written as W, = —(2tH/w) i sinw pi and
is identical to the U= ~ limit of Shiba's calcula-
tion. At infinite temperature, f(w~) must be in-

Note that X-~ as T-0 in agreement with
Shiba's9 calculation that )I'(0)-~ as U-~. On the
other hand, the properties based on the orbital
motion are completely associated with the spinless.
doubly occupied sites. The fermion partition
function in the grand canonical ensemble is given
by
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O. I-

0.0

0.2-

p = I.IO

p = l.25
(b)

directly from the argument given by Brinkman and
Rice that the velocity operator commutes with
the Hamiltonian when U= ~. The mean square
velocity is

(~') =~(~z) z(,~') f(~.)

(2. i2}

O. I

03
(c)

At absolute zero, using the Fermi momentum given
in (2. io),

(e )0= (2ta/I) (Ã/2)[p —i —(2v) 'sin2vp]
(2. ia)

which for p=1+N gives zero, in agreement with
the result of Sec. II for one extra carrier. In
the infinite-temperature limit all f(e,)'s are equal
to p-1, leading to

0.2 (u') = (2ta/ft)'(N/2)( p - 1) (2. i4)

O. l

0.0 0.5 IA) 2.0 5.0
kg T/t

4.0 5.0 6.0

FIG. 1. The orbital contribution to the specific heat
in zero external field for various values of the electron
clensitJJ p.

which for p-1+N ~ again agrees with the result
of Sec. II.

As we have seen the U= ~ limit of the arbitrary-
density Hubbard chain is exactly soluble, at least
for its thermodynamic quantities. The basic re-
sult is that the magnetic and orbital properties are
completely decoupled. The magnetic behavior is
that of a set of localized spins while the kinetic ef-
fects correspond to the appropriate density of spin-
less noninteracting fermions. Future studies will
consider the use of these exact results as a guide
to obtain good approximations for finite but large
U situations.

dependent of k, leading to W(+=0.
As in the case of one carrier considereLpre-

viously, the mobility is infinite. This follows
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