
P H YSICA L RE VI E W B VOLUME 8, NUMB ER 7 1 OCTOBER 1973

Modified Dechanneling Theory and Diffusion Coefficients
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A new type of dechanneling theory is presented by constructing a Fokker-Planck equation. The

damping term, which is not renormalized to the diffusion coefficient, and a new term in addition to
the usua1 diffusion equation appear in the Fokker-Planck equation. Making use of the general

expression of the diffusion coefficient given by Ohtsuki, some simple analytic expressions for diffusion

coefficients due to the many-phonon excitations, the one-electron excitation, and the plasmon excitation
are presented.

I ~ INTRODUCTION

A rapidly growing interest has developed in the
depth dependence of the channeling phenomenon,
i. e. , in the rate of dechanneling. A detailed
knowledge of dechanneling, which consists of par-
ticle transition from the channeling motion inside
the crystal to a random motion, gives information
on the electronic distribution and on the ion-atom
interaction potential. The axial dechanneling has
been widely investigated for light ions in W, '
Si, ' and Ge" single crystals. The planar-dechan-
neling data' '7 has been interpreted on the analogy
of the axial-dechanneling theory. ' Most dechan-
neling theories ' are based on the diffusion-type
equation first introduced by Lindhard,

= divD(p, ) gradg(p„z),

where g(p~, z)dp~ is the differential probability at
the penetration depth z. D(p~) is the diffusion co-
efficient which is calculated from the "local"
mean-square angular spread in the quasielastic
approximation; i. e. , for axial cases,

(l. 2)

for the one-phonon excitation and

for electronic excitations. In the above, E and

Z,e are the energy and the charge of the incident
particle, respectively, p, is the mean-square
amplitude of the thermal vibrations perpendicular
to the string, and d is the interatomic distance
along the row. n(r, ) and K(r, ) are the averaged
electron-cloud density and the force acting on the
ion at r, due to the string potential, respectively.
L, is defined as

velocity, and the mean ionization energy of the
atom, respectively.

However, we note that the above theory has been
introduced by some physical intuitions, and the
intuitions bring forward too simplified an equation
to interprete experimental data qualitatively. In
this paper, we start from the Fokker-Planck equa-
tion taking into account the collision terms due
to inelastic scattering and derive a modified dif-
fusion equation. Damping effects due to inelastic
scattering and the interaction between the two
directional transversal scatterings are included in
the modified equation. The exact expressions for
the diffusion coefficient introduced in the modified
diffusion equation are calculated for many-phonon
excitations, the plasmon excitation, and the one-
electron excitation both for axial and planar cases
making use of the general expression of the "local"
diffusion coefficients derived by Ohtsuki. "

II. MODIFIED DECHANNELING EQUATION

We consider a beam of positively charged par-
ticles incident in a low-index crystallographic
direction. By multiple scattering with electrons
and nuclei in the crystal, the transverse momentum
of the channeled particle increases, and this leads
to dechanneling.

Since, in our system, scattering processes are
regarded as small-angle scatterings, the change
of the distribution f of the channeled beam in phase
space is described in terms of the generalized
Fokker- Planck equation.

Let @(r~,p; bp) be the transition probability of a
collision in which the particle momentum p is
changed to p+ np at the fixed point r, = (x,Y) in the
plane perpendicular to the channeling axis z. By
use of the transition probability P, we obtain the
generalized Fokker-Planck equation as follows:

sf—+ v. grad;f- grad;U(r, ) grad-f

L, = ln(2mv'/I), (1 4)

where m, n, and I are the electron mass, the ion
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+ 0(oP,sP,~.). (2. 1)

where (. ) means the averaged value over the
transition probability P, that is,

—Q rL p;bp dip. (2. 2)

(~p/~t) =- —s(~„E,)p/p„ (2. 4)

where S(x„z,) is the stopping-power function'I "
and E=—E, the energy of ion.

In our system, r„ is not the usual diffusion co-
efficient. For the z component of scattering pro-
cesses, energy losses (~,&0) are dominant.
Therefore, in the following, we neglect cr„because
of (dp, /Af)» (~pgrd&.

We consider the axial case. In principle, from
Eq. (2. 1), it would be possible to determine
physical quantities for dechanneling. This, how-

ever, meets considerable mathematical difficul-
ties. Therefore, at first step, we restrict our-
selves to the quasiequilibrium state, where since
channeled particles are mixed, it can be assumed
that f is independent of x and y in the transversal
region. '6 At the same time, in our case, we as-
sume that time t is not explicitly contained in the
distribution f. Taking into account that the con-
tinuum potential U(z, y) is an even function both for
x and py Rlld

z = f, ' S-'(E,) dZ„

Eq. (2. 1) reduces to the differential equation in

(p„p„, E,) space,

In the above, U(y~) is the continuum potential and
—,'(hp, hp&/At) = a,&

is the (i-j)th element of the dif-
fusion coefficient.

The relation between the energy transfor hE,
(the total energy transfer AE =g& AE, ) and the mo-
mentum transfer bp& is written

r).E( ——(I/2M')(2P(@PE+ dPg), (2. 3)

where M, is the ion mass. From Eq. (2. 3}, it is
easy to note that energy decrease (damping effect)
may not be described in terms of Ape, (diffusion
process}, but in terms of EP&. If the damping force
due to energy losses is directed against the par-
ticle's motion in our system, we can easily obtain

x( Z, (irx ) ~ 2r (irx )),
( 82 8

I) f~fvg ,~ 8P, 8P,

(2. 5b)
where the caret over a symbol means the averaged
value over the transversal region in an unit cell,
that is, S(E,) and 8,&

are the channeling stopping
power and the channeling diffusion coefficient, re-
spectively. Eo is the incident ion energy.

Alternatively, we can write Eq. (2. 5b) in the
form of the cylindrical coordinate (p„8,E,}. In
the case discussed here, it is a good approxima-
tion that the distribution function u is isotropic in
(P„8) space. In this approximation, we can ne-
glect cross terms of diffusion coefficients because
of axial symmetry. From Eq. (2. 5b), we obtain

+
p sp

92PJJ }'«} ) (2 6)
L L

where pLL and p» are written using the usual dif-
fusion coefficients D„and D», "

8„=-,'(~Jm)= p S(E,),

D„=k (AP/~& = }),«s(z, ).
(2. 7)

1 8
+

p ~ PiPu sp , (2. 9)
L L L

where u„ is the equilibrium distribution.
It is worth noting that for the steady-state pro-

cess, p.» does not appear in the differential equa-
tion. In Eq. (2. 9), the second term in the right-
hand side gives the usual diffusion equation widely
used in dechanneling theories. For our case, we
have from the standard potential,

Strictly speaking, p ~ (or D«) is not zero in our
case, especially for the plasmon excitation. In
random system, y,~= p«(or D~=D«) We note.
that the first term on the right-hand side of Eq.
(2. 6) is very small compared with the third term
in our channeling condition where (}) ()), ((})=p,/p„
())„ the critical angle).

Thus, finally we have

8u 8 - 1 8
s (pu+)+ ~ ((2p~ —p«)s),

z L L L

(2. 6)
or for the steady-state process,

8u 1 8 d
E=p e, p --dp

S(E()) ~E

S(z,) z,

9g 1 1
(p, grad;u)+

~(

(2. 5a)

C2
A= 2 +1,

%0

d P, 2 A exp(2EJEA)+ 1
dP~ '~ M, E,(})', Aexp(2EJEP~) —1 '

(2. 10)
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where a is the Thomas-Fermi screening length,
&(& 0 is the area of the unit mesh in the (x,y ) plane,
and c = v3, E, =p h/2 M&. From Eq. (2. 10), we
note that the first term of Eq. (2. 9) is not ne-
glected gene rally.

Now, the Fokker-Planck equation for axial case
may be solved in principle only if we get the local
stopping power and the local diffusion coefficient.
Many authors' "have already discussed the local
stopping power. However, we have no calculation
of the local diffusion coefficient except for simple
derivations according to the Lindhard theory.

Recently, according to the steady-increase
model, Bjorkqvist et al. ' calculated dechanneled
fractions taking into account the damping effect.
In our theory, the damping effect are introduced
in (4p/M) [Eq. (2. 4)), which does not appear in
the usual diffusion equation.

Dechanneling rate a per unit energy loss is de-
fined as

x5 K, +q -K+
Sv, &

(3.2)

where v; and e "'"are the usual scattering factor
and the Debye-Wailer factor, respectively, V
means the volume of the unit cell. The diffusion
coefficient D introduced in above section is related
by

&((= h (&p(/r&e). (3.3)

First, we try to derive the Lindhard expression
(l. 2) for the diffusion coefficient due to phonon
excitation from our exact expression (3.1). When
we consider the one-phonon excitation, the Debye-
Waller factor e "'" is expanded up to the second
power for M(q) =- —,

'
pihqh, and we obtain

(
4PL PL 1

~ ~ 2

16 2 2 V
~ ~LVg Vg+hL

eel 1

x/q~+ (q+ h, )' —hg
1 BF
F BED

(2. 11) Xe' L' L~ K +q g+
Vg

where

F= f" P&PidPi, Pi, =P,4..
From Eqs. (2. 5a) and (2. 11), the damping part
nd, of dechanneling rate o is obtained:

1 dS(E, )

E S(Eg) de (2. 12)

In this and the following sections, we calculate
the local diffusion coefficients introduced in Sec.
II, from the general expression derived by
Ohtsuki, "

2

E q'(S(q, q+ h, )e'"i'i dq,hz 4
L

(3. 1)
where S(q, q+ hi) is the inelastic scattering factor
with Umklapp process corresponding to the two-
dimensional reciprocal-lattice vector h, . For con-
venience sake, momentum transfer bp from the
initial rnornentum KK, =P, is written as h q on the
right-hand side of Eq. (3. 1). For phonon excita-
tions, S(q, q+ hi) is given as'h

1
S(q, q+ hi) = vp~, h

cell

(
&((hg& e &((h&-&((h+hg&

)

The longitudinal- and the transverse-energy losses
are included in Eq. (2. 12). Equation (2. 12) shows
that the contribution of the damping effects becomes
remarkable at low-energy regions (see Sec. V).

III. DIFFUSION COEFFICIENTS FOR PHONON
EXCITATION S

(3. 4)
If we assume that the phonon scattering is de-

scribed only on the plane perpendicular to the
channeling axis, we have

(
2 2 P ~ 2~ -.-E q, (q(+q( h, )V; V;,,„

cell " A

L LQ K q Q + dq
r

(3. 5)
where q is the scattering vector on the plane and

Vs means the two-dimensional component (q, =0)
of the scattering factor:

(3.5)

If we consider the continuum potential to be'
IO

V(r, ) =E V; e ('(( ",
CL

(3. 7)

it is easy to show that the expression (3. 5) coin-
cides with the Lindhard expression (1.2).

However, we have to point out that some approx-
imations assumed above in deriving the Lindhard
expression are not so good. Back scatterings by
many phonon excitations are also important ~

Now we show that another approximation gives
a reasonable expression for the diffusion coef-
ficient due to many phonon excitations. We do not
expand the Debye-Wailer factor, which means that
we consider many-phonon excitations, and we
neglect the second term in Eq. (3.2). This as-
sumption is valid only if the incident energy of
ions is much larger and Iql » Ih, I. Thus we ob-
tain for axial cases



3120 M. KITAGAWA AND Y. H. OHTSUKI

aP,' 1 1 e-4(+) el hg'rg
4~c

~centi

~

aE 'I

xs IK.+ql -K.+ ldq&, ]

(s. 8)

1.0—

& 05

L
n

2
Y:

where (Eppes)~h, is the diffusion coefficient in
random case given by Bohr, '

(
QP~~ 8gZ~~Z~~g4Pf

2 n ~

random &g
(s. 8)

0.3

~i
C2CP

0.5

and P(r, ) is the distribution function of the atom in
thermal motion at the (x,y) plane,

P(y, ) =5~ e ""'e'" 'h= -tl exp
pi p~

(s. 10)
In the above,

d.P(y)= ,"„ exp— (3. 12)

where p„means the root-mean-square amplitude of
the lattice vibration orthogonal to the channeling
plane, and d, is the distance between channeling
planes.

0.7-

0.5—

0.3-

0.1-
3'K

0
gEz) c Ez~c

FIG. 1. Comparison of yn and yn~ as a function of E~
for 1.5-MeV ~H+ in the Ge (100) axis.

L, =—ln 1.29
i+ a

and Ma and Z~ are the mass and the atomic number
of the atom.

The expression (3. 8) means that the momentum
deviation is caused by Rutherford scatterings at
atoms located in the thermal distribution.

Diffusion coefficients for the planar case are
also derived from Eq. (3. 1) with same assumptions
taking into account h, = (0, h„),

(np„'/~) = (~'/~), P(y), (3. 11)

where P(y) is the distribution function of the atom
at y from the channeling plane,

FIG. 2. Temperature dependence of yn and y„ for 1.5-
MeV '8' in the Ge (100) axis.

It is noted that for planar case, D„„becomes
zero in the theory used by Campisano et al. ,

' but
in our theory, we have D„(y, E,) e 0.

Numerical calculations of diffusion coefficients
due to the many phonon excitations for axial case
performed by use of the local diffusion coeffi-
cients, Eq. (3.8),

D-(&., &,)=& .~ y. ,

where

c'a' i' 2E,= exp — 3 exp E g
—1

pi Egkc J

(3.13)

IV. ELECTRONIC EXCITATIONS

It is important to consider the plasmon excita-
tion when we calculate diffusion coefficients, be-
sides the one- electron excitations. Although the
angular spread corresponding to K, (K, being the
cutoff wave number of the plasmon) is very small
compared with that of Rutherford scattering, the
transition probability for plasmon excitations is
very large. Then, we have to consider the plas-
mon excitation in the calculation of the diffusion
coefficient.

A. Plasmon Excitations

When we take the electron-gas model, plasmon
excitations are homogeneous. Then, we need not
distinguish the axial and planar cases.

In random-phase approximation of plasmon ex-
citation, S(q, q+h) =S(q, q)t)h, h in Eq. (3.1) is de-

In Fig. 1 we plot y„as the function of E„compared
with the Lindhard's factor y„of the one-phonon
excitation, for 1.5-MeV 'H' in Ge It is evident
that factors y„and y„are coincident at small E,
region, but not at larger region of E,.

We also show in Fig. 2 the temperature depen-
dence of y„and y„at the same condition, as a func-
tion of pic a .
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rived as

(4. 1)

x(E fjg(~ ) E fjg(tl ~ )f (Utl()
ieJ

where z(q„q, ) is the complex dielectric constant
for the electron gas. Inserting Eq. (4. 1) with

tw~ being the plasmon energy, we obtain

K2 ~ ln c ~ +]

(4. 2)

xe'hr'ra, +q -K,+ dq. 4. 8Sv,

For the high-energy case, the second term in

Eq. (4. 7) and Eq. (4. 8), f&&(q+h~)f&&(q), is also
neglected, as in the case of phonon excitation. In
this case, Eqs. (4. 7) and (4. 8) are written, for the
axial case,

(
&Pi 2

(( Z 5m (fgVI VghJg((hg)5Z Vg cel 1 " i "l

When we consider the high-energy case

v', » ((dp/K, )',

we may derive

(4. 3)

xe "~ '~5 K, +q —Kg+ dq,
g

and for the planar case
(4. 9)

(
bP~ z,e Rap JP,

2v,
(4. 4)

ap'„1 2

4~ V
KK f(h)

Z Ve cell" j hr

Since &u~-n„' z and ft, = 0.47',' ICr n„' '-(n, is the
valence electron density), (bp J~z) is proportional
to nt( 8. Thus, it is roughly valid that (~Jhz) is
proportional to n„. At the end of this section, we
compare Eq. (4. 4) with that of one-electron ex-
citation.

xe'r'r5 K +q -K + dq.Sv,
(4. 10)

If the h, dependence of the scattering factor
v;,h, is neglected in Eqs. (4. 9) and (4. 10), we ob-
tain, for example, for the axial case

B. One-E1ectron Excitation

Core and valence electrons are also excited by
ion motion independently (not collective as the

plasmon). In this case, S(q, q+h~) in Eq. (3. 1) is
written"

+Ps 4' e
L

and for the planar case

Sp'r 4mz2, e4

(4. 11)

(4. 12)

1
((~h~ Z f(((hg) —2 f(g(q+h()fjg(q)

cell &sJ

x5 K, +q —K, +, 4. 5
Svg

where f&(q) is defined by the wave function (p, (K)
of the atomic electrons

f (q)- f AP(&) z "0 (&)d& (4. 8)

(
bp~ 1

V V

eel 1 + hg

x r f„(hl Z f,(q+h, (fj, (,q)—)foJ

Then diffusion coefficients in our case obtained
as, for the axial case,

10

~02

10

plasmon

and for the planar case

K, + q —K, + dq,Svg

2
grvq V

r

(4. 7)

~ ~ ~ ( }

0.5

(A)
l, p

FIG. 3. Relative contributions of many-phonon, plas-
mon, and one-electron excitations to diffusion coefficients
0/M~)D» as a function of the distance r~ from the string
for 1.5-MeV lH+ in the Ge (100) axis at 293'K.
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TABLE I. Dechanneling rate for 1.5-MeV O', D',
and He+ ions in the Ge (100) axis at room temperature
in units of 10 eV . O. ~t and 0.& mean the experimental
value of the dechanneling rate and Morita s quasiempiri-
cal result, respectively (Ref. 5). zd means the damp-
ing part of dechanneling rate.

2D+

4He+

5.4+ 0.2

2. 9+ 0. 1

0. 84+ 0. 04

5. 90

3.22

1.97 ~He ~

0. 99 (He2+)

5.60

2. 82

1.23 (He')
0. 30 (He ')

since

4Ee»~I.
(aP'J m)„„K&o, (4. 13)

where E~ is the Fermi energy and E~-h~~ in
usual metals.

Using the electron density in the atom by the
Moliere formula, numerical calculations of Eqs.
(3. 8), (4. 4), and (4. 11) are performed for 1.8-
MeV 'H' in the Ge (100) axis and shown in Fig. 3.
As is shown in Eq. (4. 13), the plasmon diffusion
coefficient is of the same order with the one-elec-
tron diffusion coefficient at larger r, . It is worth
noting that the plasmon diffusion coefficient is not
proportional to the stopping power due to the plas-
mon excitation.

V. CONCLUDING REMARKS

A new type dechanneling theory was developed
by constructing the Fokker- Planck equation. A
damping term and a new term in addition to the

Q Z f(, (h, )e'"&'& =n(r, ),
cell

and so on. In the quasielastic approximation, Eq.
(4. 11) coincides with the I indhard expression [Eq.
(1.3)l.

Here we compare the plasmon diffusion coeffi-
cient [Eq. (4. 4)] with the one-electron diffusion
coefficient [Eq. (4. 11)]:

usual diffusion equation appear in the Fokker-
Planck equation, which are not neglected in gen-
eral. The Fokker- Planck equation includes the
local stopping power and the local diffusion coeffi-
cients.

Making use of the general expression of the
local diffusion coefficient given by Ohtsuki, we cal-
culated the many-phonon excitation, the one-
electron excitation, and the plasmon excitation.
Simple expressions of the diffusion coefficients of
Lindhard were confirmed critically with the under-
standing that Lindhard's expressions are rough.
However, we have to point out that our simple
analytical, expressions for many-phonon excitations
[Eq. (3.8)] and the one-electron excitation [Eq.
(4. 11) or Eq. (4. 12)] are also rough estimations,
though the expression due to the plasmon excita-
tion [Eq. (4. 4)] is exact. It is serious that we
neglected the h, dependence of the scattering fac-
tor e~,&. Exact calculations of diffusion coeffi-
cients due to phonon excitations [Eqs. (3. 1) and
(3.2)] and due to one-electron excitations [Eqs.
(4. I) and (4. 8)] are now in progress.

Equation (2. 12) shows that the contribution of
the damping effect is of the same order with the
experimental values of dechanneling rate', i. e. ,
the order of the experimental value of dechannel-
ing rate is about 10 -10 eV ' for 1.5-MeV 'H',
D', and 4He' in the Ge (100) channel. For ex-

ample, making comparison with the experiment
mentioned above, damping effects contribute about
'I% and 15% for the respective cases of 'H' and

D, and more remarkable for the case of He ion
(see Table I). In Table I, o„means Morita's
quasiempirical result, in which the damping ef-
fect is not taken into account. Therefore, at this
stage, we come to the conclusion that the damping
effect may not be neglected for dechanneling, es-
pecially where the ion-mass effect is concerned.
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