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The formal solution of the line-shape problem in terms of a memory function has been used to
illustrate the calculation of line shapes characteristic of both liquids and solids. A memory function is
associated with a corresponding free-inductionMecay (fid) curve and it is related to the behavior of a
local-field correlation function. Its relaxation time T &' varies from a relatively large value in solids
T ~ M, 'i, to a very short value in liquids T,*' + M, ' ', where M, = (h,co') is the second
moment of the absorption line. In spite of this wide range of decay times the functional form of a
memory function remains insensitive to the form of a line shape. This insensitivity may be exploited in
the calculation of line shapes. The method requires a knowledge of the qualitative form of a line shape
and the first few of its moments and is a compromise between a qualitative approach and a full
miscroscopic calculation of the relevant spin autocorrelaton function. Examples discussed include pair
line shapes in solids, line shapes during motional narrowing, exchange-narrowed line shapes in
paramagnetic MnF„and fid curves in CaF2.

I. INTRODUCTION

Since the pioneering work of Bloembergen, Pur-
cell, and Pound, the characteristic line shapes of
nuclear magnetic resonance have been recognized
to be the Lorentzian and Gaussian curves. " The
Lorentzian function is characteristic of narrow
absorption lines in liquids and describes the effect
of lifetime broadening on the states of an individual
spin interacting with the rapidly fluctuating mag-
netic field produced by its neighbors. ' More gen-
erally, this function is obtained as a solution of the
Bloch equations. The Gaussian shape, in con-
trast, is often representative of absorption lines
in solids, and it describes the distribution of static
dipolar fields at a nucleus in a solid. ' ' The gen-
eral linear-response formulation of magnetic reso-
nance absorption which, in principle, includes both
of these extreme cases was given by Kubo and
Tomita, who related an absorption line shape to
the Fourier transform of a corresponding time
autocorrelation function of the magnetization. It
was subsequently shown by Lowe and Norberg, '
using very general assumptions, that the time auto-
correlation function of the transverse magnetization
was equivalent to the free-induction decay (fid) or
Bloch decay obtained following a 90' rf pulse. They
also showed that the fid curve from a single crystal
of calcium fluoride was a damped oscillatory func-
tion of time, which emphasized the non-Gaussian
character of the corresponding line shape which
had already been partially assessed in Van Vleck's
calculation of the second and fourth moments, ' and
in the experimental work of Bruce. This result
stimulated further investigation into the detailed
NMR line shapes produced by dipolar interactions
in solids' which has led to a new formulation
of the line-shape problem that is equally valid for

motionally narrowed lines in liquids.
This formulation is based on a general relation

between an autocorrelation function and a certain
auxiliary function, the memory function. This
relationship has been established in various ways,
one of which is given in a paper, subsequently re-
ferred to as I, ' where a method due to Lado was
used to relate the fid and the line shape to the
memory function. The generality of this method
is reflected in the fact that the natural parameters
occurring in the formal solution for the line shape
are the moments of the absorption line, quantities
that are always defined.

The memory function enters line-shape theory as
a consequence of the mathematical formalism.
However, it is possible to show by qualitative
arguments that its decay characteristics are re-
lated to those of a correlation function of the local
field. In this respect it is similar to the correla-
tion function occurring in the stochastic line-shape
theory of Anderson and Weiss, although it is more
general. Thus, the memory function in solids has
a decay time much greater than that associated with
nonviscous liquids, as will be shown in Sec. III.

One practical application of this approach which
is described in this paper is the calculation of line
shapes from a knowledge of the qualitative form of
the absorption line shape and its first few moments.
This kind of calculation represents a compromise
between a qualitative approach and a full micro-
scopic calculation of the relevant spin correlation
function. Moreover, since the lower-order mo-
ments can often be calculated exactly, they are the
optimum parameters to use in adjusting a qualita-
tive form of either a memory function or a line
shape. As discussed in I and Sec. III of this paper,
the form of the memory function is relatively in-
sensitive to the form of the line shape, or, putting

3081



3082 G. W. PARKER AND F. LADO

it another way, the fid or line shape is less sensi-
tive to approximations made to the memory function
than to similar approximations made directly to the
fid curve. Therefore, it is better to use the limited
information that is available to obtain an approxi-
mate memory function, from which a fid may be
calculated, than to use the same information to ob-
tain an approximate fid curve directly. For exam-
ple, it will be shown that a memory function of the
same functional form can be used to calculate broad
lines representative of identical spins on a rigid
lattice as well as to obtain the Lorentzian line which
these same spins would produce if they were in
rapid, random relative motion.

II. FORMALISM FOR SYMMETRIC LINE SHAPES

As shown in I, a line shape in the linear-response
approximation is always expressible as the Fourier
transform of a particular autocorrelation function
of the transverse magnetization. According to a
theorem of Lowe and Norberg, when certain high-
temperature and high-field conditions are satisfied,
as they usually are, this autocorrelation function
is equal to the fid function. We assume in this
paper that these conditions obtain. In addition,
since we are only concerned with symmetric line
shapes, we have specialized the results of I to this
situation.

Evaluation of a time autocorrelation function may
always be related to an initial value problem for
the physical system of interest. In I, this problem
was reformulated and reduced to a set of linear,
coupled, first-order equations of motion whose
formal solution was given in terms of Laplace
transforms. The relation that obtains between the
transforms of the fid function G(t) and its associated
memory function K(t) is

z+ K(z)

zC(z), zK(z)-O as z-0

-G(0), K(0) as z-~.
The decay of G and E from their initial values is
generally not exponential but can nevertheless be
characterized, somewhat arbitrarily, by time con-
stants T& and T~*, respectively. The relative
magnitudes of these decay times as well as their
absolute values are determined by the character
of the spin-lattice system, as shown in Sec. III.

A line shape is given by Fourier transformation
of G(f), and for symmetric line shapes this rela-
tion is

G(b, &o) = — cos(n &ot) G(t) dt,
1
7T 0

(6)

where ~& =+ —+„~0locating the center of the
resonance line. In I, it was shown that (1) and (6)
imply the general result

where

K'(&v) = f cos(hurt)K(t) dt,
(6)

K "(b&a) = f sin(hei)K(i) dt.
0

Formulas (7) and (8) give an alternative approach
to the calculation of the line shape once the mem-
ory function is given which may be more convenient
than either (1) or (2).

The moments of C are defined by the relation

f „«o'"G(«u) d(&u&)
f".&(~~)d(~~)

These moments may, in principle, be used to cal-
culate the line shape from the moment expansion.
The inverse of the transformation (6) gives

In this notation we have, for example,

G(z)= J e «G(t)dt.

By Laplace inversion, Eq. (1) becomes

(2)

G(t) = J cos(nu)t) G(&(u). (10)

Consequently, assuming the existence of the mo-
ments, expansion of the cosine gives

t

t K(t —f )G(t ) dt .
dt

The memory function thus relates the rate of
change of G at one time to values of C at earlier
times. Its interpretation will be discussed in Sec.
III. Both G(t) and K(f) are even functions of t
which should satisfy the physical requirement that

G(f), K(f)- 0 as t-~ .
Furthermore, they have finite initial values G(0)
and K(0). The limiting properties of the Laplace
transform (2) then give the corresponding limits

G(t) =G(0) [1 —Mzt /2(+Mgf /4! —~ ~ ]

=G(0) 2 (-1)"M f "/(2n)l .
n=0

Although this expansion is convergent it is im-
practical for all but the shortest times, since only
the first few moments are presumed known. As
application to calcium fluoride and other broad line
systems has shown, however, a resummation or
regrouping of its terms, can give good results for
most of an observed decay. ' '' For example, the
Abragam function,
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12~2 sm(Pt)
(ttt)

has been shown to give a good representation of the
fid data from calcium fluoride when the constants
a and p are matched to MF and M, using (11).'"
An expansion similar to (ll) is obtained for K(t)
by combining (3) and (ll). Thus we obtain

K(t) =K(0)[l -Mmt /2! +M~t /4t —~ ~ ~ ]

age the hyperfine interaction between nuclei and
electrons. The resulting exchange narrowed line
shape is also Lorentzian. Since the first few mo-
ments of this resonance line are known' we will
use them to assess the moments associated with
the memory function in the domain of extreme
narrowing. For the F" resonance in MnFF, M, /M2
= 0. 5 & 10 and Me /M2 = 1 && 10, so that from (13)
we get

where

=K(0) Z (-1)"M 2t F/(2n)l,
n~0

(12)

K(0) = M2, Mp ™2(M4/M2—1),

M4 =M2(M8/M~ —2M'/Mp+1),

M8 = M/MS /M2 —2M' /M2

+(3 -M4/Ma)M4/MF -1]. (13)

This moment expansion forms the basis for ob-
taining approximate forms for K(t) just as (11) has
been used to determine approximate forms for
G(t).

We now consider an application of this formula-
tion to two extreme systems, rigid-lattice solids
and nonviscous liquids, in order to demonstrate
the insensitivity of the memory function to the form
of the line shape.

For solids such as calcium fluoride the absorp-
tion line is determined by dipolar interactions be-
tween spina, which can be regarded as residing on

a rigid lattice. The second and fourth Van Vleck
moments have been calculated and they give M, /Mz
=2 for all three principal orientations of the crys-
tal axes with respect to the external field. The
small value of this ratio, whose minimum value is
1, is consistent with the fact that the observed
line is broad and falls off rather abruptly to zero.
Indeed it would seem by inspection to be some-
where between a Gaussian line, M, /MF = 3, and a
rectangular line, M, /M2- l. 8. The sixth-moment
ratio would therefore be between its value for a
Gaussian line, M, /M2=15, and that for a rectan-
gular line, M6/Mz ——3. 9. Actually this moment
ratio is close to the value Ms /M2 = 8 for [100] crys-
tal orientation. ~'~ Using these ratios in (13) we ob-
tain

(M4/Mp)c F = 3.
Now, in nonviscous liquids, motional averaging
reduces the linewidth to a smaQ fraction of its
rigid-lattice value. In this domain the Bloch equa-
tions are expected to hold, in which case the line
shape is Lorentzian. A similar narrowing effect
occurs on the nuclear resonance line in a crystal
of paramagnetic MnF2 because of strong exchange
interactions between electron spins which aver-

In this part we consider a hypothetical system of
identical spin-~ particles experiencing their mutual
dipole-dipole interactions, which may be subject
to motional averaging depending on the tempera-
ture. We further consider variations in the spatial
density of the nuclei, which can likewise have a
significant effect on the line shape. Expressed in
the language of the moments, these variations in
density and temperature allow the moment ratio
M4 /M', to take on its full range of values

1&M4/M~& ~.
In spite of this wide range of values, it was shown
at the end of the last section that a good approxima-
tion to the memory-function moment ratio would be
M4/Mz~- 3. This suggests that we choose a Gauss-
ian memory function,

- 22
i6(t) =K(0) e (14)

The parameters K(0) and n are obtained from (12)
and (13) as

K(0) = M2, n = z M2(M4 /MF —1) . (15)

Having chosen this form for K(t) it remains to cal-
culate line shapes for our hypothetical system and
to consider their variation with density and tern-
perature as reflected in the variation of M2 and M4.
The assumption (14) allows a complete line shape
to be determined from only these two moments,
because it fixes the relation of all the higher mo-
ments to these two lower moments.

The line-shape formula corresponding to (14) is
obtained most simply from (7) since the integrals
(8) may be evaluated" to give

2 2
K '(A&a) = (M2 /2o. ) v w e

The value of this ratio is typical of exchange-nar-
rowed lines in other crystals and it is not much
different from that obtained for CaF2 even though
the ratio M4/M3 has varied by a. large factor. This
shows that the memory function is relatively in-
sensitive to the form of the line shape.

III. LINE-SHAPE CALCULATIONS

1
A. Line Shapes for a System of Spin-; Particles
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X"(«)=iMz/n)(«/2o. )M(z z'« /4a )e ~"

(16)
where M(a; b; z) is the confluent hypergeometric
function. The limiting forms of K" are

z («) « for I« I' 2a

ff'"(&~)-1/« for I«l»2c'.
The line shape for I4~ t«2e is therefore a Lorentz-

0 .5 1.0 1.5
FIG. 1. Absorption line shapes for Gaussian memory

function with M4/M~ = 1.20 (dashed curve) and M4/M~
=1.40 (solid curve). GQ, co) in units of Mz~ is plotted as
a function of Eco/M~ and is normalized to unity.

ian curve, centered at ~(d =0, with a half-width at
half-maximum, 6(d, given by

%a = (vM /2) ~(M /M —1) iz
I
M4/M —2

I

If the over-all shape is to be described as Lorentz-
ian it is necessary that the condition I 4(d l«2n
hold for I«I Mz~', which implies from (15) that
M4/Mz»1 as expected. We then have, from (7),

G(0) 5(o
G(& )=

(17)
» = (v/2)'"M'"/M'" M /Mz'» 1,
Even when (17) is valid the line shape far into the

-x2
wings of the line decays as e "/x', where x=&~/
2a and t4& l»2a. This asymptoticform is consis-
tent with the existence of the moments. If the ratio
M4/Mz is not large then the line shape is quite dif-
ferent from (17).

We have calculated a number of line shapes using
(16) for different values of M4/M~ to illustrate
three extreme limiting situations. These are il-
lustrated ia Figs. 1-4 pnd are the pair limit, the
solid limit, and the I orentzian limit. The line
shapes in these figures are plotted as functions of
«u/Mz~ for &&a ~0, and their numerical values are
in units of M,', as they are all normalized to
unity, i.e. ,

J G(&(u) d(«) = 1.

Each of these line shapes will be considered in
turn for increasing values of the fourth-moment
ratio.

For well-separated, identically oriented pairs
of spin-~ nuclei on a rigid lattice, Van Vleck's mo-
ments give

4-

.2-

0 I

0 2 4 6 8 10
FIG. 2. Line shape for Gaussian memory function

with M4/M&= 1.75 (dashed curve) and the M&-M4 line shape
(solid curve) compared with an experimental line shape
from gypsum (circles). 0 in units of M~

~ is plotted as
a function of ddt in gauss.

0 I I I

0 .5 1.0 1.5 2.0 2.5
FIG. 3. Absorption line shapes for Gaussian memory

function with M4/Mg = 2 (dashed curve) and M4/Mg = 3
(solid curve). C(6(d) in units of Mq is plotted as a func-1/2 .

tion of b,co/M& and is normalized to unity.
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M, = (9y'p'/4r8)(1 —3 cos'e)~, M4/M22 ~1.

In these formulas r= irI is the distance between
spins in a pair, 8 is the angle between r and the
external field, and the nuclear moment is p = y(~h).
The line shape is a pair of narrow lines on either
side of &u& = 0." In the limit M, /M2- 1 these lines
approach a pair of delta functions located at
= +M&~, so that Mm„/(M~)"= 1 for all n. Using these
moments we may sum both moment series (11}and

(12) to obtain K(f}= M2 and G(t) = G(0) co(sMz~ f).
Actually, there will always be some residual width
6(d to these lines which will determine the decay
time Tz of G(t) according to the usual relation hu
=1/T~. The initial cosine oscillation of G(t) will
be damped out so that, in particular, a finite value
will result for the area under this curve; i.e. ,
fo G(t)dt will be finite. From (2), this area is just
G(0), which is related by (3) to the area under K(t)
as follows:

G(0) = G(o)/K(o) . (16)

= —M G(t')dt'
dt 0

and therefore

G(t)=G(O) cos(M,"'f), O& f&7.

Furthermore, we have

M-'~'« ~ «5(d-'= T*.2 2 ~

This last condition follows from the observation
that a relatively large number of oscillations of
G(t) must occur in the time r if the lines are nar-
row so that 6(d «M2 . In this pais limit we have a
slow decay of both K(t) and G(t), i.e. ,

1~ Tg pTQg ))M 1/2
2 2 2

The Gaussian memory function (14) becomes a
slowly decaying function when M4/Mf, = 1, and it is
thus able to represent this situation as well as
those described at the end of Sec. II. Other accept-
able forms of K(t) would give equally good results
for short times, i.e. , t& ~, but they would in gen-
eral produce different results for longer times.
This is typical of the kind of approach we are de-
scribing. That is, given accurate values of some
lower-order moments and the qualitative form of
the line shape, we obtain a good approximation to
the initial decay of G(t). The behavior of G(t) for
long times, which determines the form of G(hv)
for small 4', depends strongly on the values of

Since K(0) is finite, K(t) must also decay to zero
and its time constant will be denoted by T2*. We
thus have some time ~, where w& T2*, during which

K(t) =K(0) = M2, 0& t & v .
lt follows from (3}that during this interval

higher-order moments which are only approximate-
ly "evaluated" by the particular function chosen to
approximate K(t).

We may now calculate a detailed line shape using
(16) and values of M, and M4, which are presumed
to be known. In the case of spin pairs on a rigid
lattice there will be contributions to both moments
from interpair interactions which could be calcu-
lated using Van Vleck's moment formulas. As the
spin pairs are brought together the moment ratio
M4/Mz increases and the effect on the line shape
is shown in Fig. 1, where this ratio has been in-
creased from 1.20 to 1.40. The location of the
peaks shifts to larger values of I n &u1 as M4/Ma
increases. This shift is accompanied by a decrease
in peak height as each component line broadens in
accordance with stronger interpair interactions.

As spin pairs are brought closer together these
component lines continue to broaden. For exam-
ple, water molecules in a crystal of gypsum pro-
duce an experimental pair line shape ' having M2
= 25. 4 G, M4 = 1130 G', and M4 /M2 = 1.75 ' at that
orientation for which all pairs are equivalent and
maximum splitting between peaks is obtained.
Using these experimental moments we have cal-
culated a line shape from (7) and (16) which is
shown in Fig. 2 together with the "M2-M4" line
shape calculated by Powles. ' Both shapes are
qualitatively correct, '" the largest discrepancy
between them and experiment occurring near 4+
=0. The memory-function line shape is more

2.5 ;

I

0 .5 1.0 1.5
FIG. 4. Absorption line shapes for Gaussian memory

function with M4/M2 ——100 (dashed curve) and M4/M2 = 10
(solid curve). t"(6(d) in units of M2 is plotted as a func-
tion of 6~/M~& and is normalized to unity. The circles
are calculated from a Lorentzian curve.
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W* —«G for t» TdG
2 dt 2

It then follows from (3) that

(21)

—= —G(t} (t
K(t-t')dt'

dt J0

= —G(() $ K(('(d(

The solution is

sharply peaked than the M2-M~ line shape, but its
peak-to-peak splitting of 11.4 G is in better agree-
ment with the experimental value of 11.9 G ' than
the 10.6-G splitting given by the M2-M4 line shape.
If a better approximation was desired it could be
constructed using M&. For example, the Gaussian
memory function could be regarded as the first
term of a cumulant expansion or a Gram-Charlier
series. ' ' The first correction term in either
case could be calculated once M& was known. This
is one way in which more details of the spin-spin
interactions could be built into the line shape.

Bringing spin pairs together eventually destroys
the pair concept. When the spins become more or
less uniformly distributed in space the resonance
line becomes a single broad line as is observed
from calcium fluoride. For the Gaussian memory
function the transition from a pair shape to a single
line occurs when M, /Mz=2. 85. Line shapes on
either side of this transition are plotted in Fig. 3,
i.e. , for M4 /Mz -—2. 0 and M4/Mz = 3. 0. The line
shape for M~ /Mz = 3. 0 is not Gaussian but is more
"flat topped" than a Gaussian, and it is actually
more nearly like the line shapes observed from
calcium fluoride than is the Gaussian shape. These
flat-topped line shapes correspond by Fourier
transformation to fids which oscillate as they decay
to zero as is also observed Qua. litatively this
situation will be described as the solid limit and it
is characterized by

5~ =T+=T++=M
2 2 2

The transition from a rigid-lattice solid to a non-
viscous liquid corresponds, in terms of the mo-
ments, to an increase in M4/Mz from about 3 to
values much larger than this. The transition from
M4/Mz ——10 to M4/Mz ——100, as given by the Gaussian
memory function, is shown in Fig. 4. A Lorentzian
line is obtained as already indicated in (1V). The
large value of the fourth-moment ratio also gives
a rapid decay of K(t) according to (14) and (15}.

A more general argument, independent of the
specific functional form of K(t), may be given for
this Lorentzian limit. We assume that K(t) decays
rapidly and monotonically to zero in a time T2*
«M~'~, in which case it is reasonable to assume
further that

so that T&»M2 . This also follows directly from
the relation for T, in (22). The Lorentzian limit
is thus characterized by the relations

~1 Tg ))M~1/2 &) Tgg (23)

When these conditions are satisfied we obtain solu-
tions corresponding to those given by the Bloch
equations. We then have T2 = T2 and

1
5(g= —=

~l K(t)dt.
T2

(24)

In summary, we have shown how the insensitivity
of the memory function to the form of a line shape
may be exploited to obtain good qualitative agree-
ment with certain experimental line shapes over a
wide range of conditions. We have distinguished
three limiting situations: the pair limit, Eq. (19};
the solid limit, Eq. (20); and the Lorentzian limit,
Eq. (23). In order to compare them we note that
M2 will have approximately the same numerical
value in all three limits. In the pair limit the
dipolar fields within the spin pair are typically
about 1 G in magnitude. In the solid limit, M, has
a somewhat larger value because more spins con-
tribute, but it is still of the same order of magni-
tude. Finally in the motional narrowing transition
M2 is unchanged from its value in the solid limit.
Thus the magnitude of Tf~ decreases as M4/M&
increases.

This decay time is related to the decay time of a
local-field correlation function. First consider the
Lorentzian limit. In this limit one has a correla-
tion time 7', given by

5(u=Mzr„rgb, 'i'«] . (25)

Comparison of (25) and (23) shows that Tf~ -T,.
Now ~, is associated with fluctuations in the local
field produced by lattice motion. In particular, it
represents the decay time of a local-field correla-
tion function which is of short duration owing to the
rapid and random relative atomic motion. There
is thus a correlation between T2* and the decay
time of a local-field correlation function. This
correlation also holds in the other two limiting
cases. In the solid limit the decay of a local-field
correlation function occurs owing to spin fluctua-
tions which can occur in the absence of lattice fluc-
tuations. The frequency of these fluctuations is of

G(t)= G(0)exp[-t f K(t)dt]=G(0)e ' rz, t»Tz~~.
0

(22)

This solution is consistent with the assumption (21)
as well as the line-shape formula (17). Now, from
(18), the nonoscillatory behavior of K(t) and G(t),
and their initial values G(0)=l and K(0)=Mz, we
have



CALCULATION OF NMR LINE SHAPES USING THE. . . 3087

TABLE I. Experimental and theoretical linewidths
for F resonance in paramagnetic MnF2, RbMnF3, and
KMnF3.

TABLE II. Theoretical values of square root of the
second moment and fourth root of the fourth moment for
calciumfluoride [G. W. Canters and C. S. Johnson, Jr. ,
J. Mag. Res. 6, 1 (1972)].

Exptl. (G)
&~g (G)
&cu2 (G)

MnF2

37.2+ 1
27. 5
34 4

RbMnF3

19.7 + 1
13.2
16.5

KMnF3

19.5+1
12.6
15.8

[100]
[111]

3.570
1.480

4.310
l.837

2.125
2.373

11.13
26. 85

Orientation M (6) M (G) M /M M (@sec)

J. E. Gulley, D. Hone, D. J. Scalapino, and B. G.
Silbernagel, Phys. Rev. B 1, 1020 (1970).

the order of M2~ and this is a measure of the dura-
tion of a local-field correlation function in this
situation. By the proposed association we would
have Tf~-Mz', which is in agreement with (20).
Finally, in the pair limit one has a local field de-
termined mainly by one neighboring spin. How-
ever, this single interaction does not produce a
randomly fluctuating local field and, therefore,
cannot cause relaxation. The necessary fluctua-
tions are produced by interpair interactions which

supply a spectrum of local fields much narrower
than that provided in the solid limit. Thus T2**

» M3't' in accordance with (19).

B. Exchange Narrowing in Paramagnetic MnF~, RbMnF3, and
KMnF3

The F resonance line in crystals of paramag-
netic MnF„RbMnF3, and KMnF3 are strongly nar-
rowed by the electron-electron exchange interaction
which averages the large hyperfine interaction be-
tween nuclei and electrons. The absorption line is
Lorentzian and the experimental linewidths have
been measured and are listed in Table I. ' In addi-
tion, the moments M2, M4, and Mshave been cal-
culated. ' Using these moments we find that for
all three crystals

M4/M2 = 10, M4/Mq = 4.

ry for a Gaussian local-field correlation function.
It is compared with experimental data in Table I,
where it is seen to give a value for 6(d which is too
small. A larger linewidth would be obtained by
choosing a memory function which decays more
slowly than the Gaussian memory function and
which therefore has a larger value of the ratio
M4/Mz'. A simple function satisfying these re-
quirements is

K(t) =K(0)sech(at)-2K(0) e ™',at»1.
For this function M4/Mz —5. The parameters are
obtained using (13) and are

K(0) = M~

= Mq(M4 /M2 - 1) .
From (24} we obtain

5&@2= (w/2) MP /M4~ = l. 25 «o& .

Values of &co~ are listed in Table I.
These two examples illustrate the method as ap-

plied to these crystals. A detailed analysis re-
quires an examination of the long-time behavior of
the memory function as suggested by the preceding
results. Such an analysis has led to the result that
at long times certain space- and time-dependent

The large value of M, /Mm shows that extreme nar-
rowing conditions obtain. The memory function,
whatever its specific form, will have a very short
value of T,**and the Lorentzian limit applies. The
correct line shape is thus predicted and it remains
to calculate the linewidths which may be obtained
from (24) once a specific memory function has been
chosen.

One possible choice would be the Gaussian mem-
ory function. Even though it has M,'/Mz~-3 it
should not be too bad an approximation. Using (14)
and (24} we obtain the same linewidth as given by
(17},

5& = (w/2)' 'M'&/M'

4-

3-

.2- G

'0 5

This linewidth is the same as that obtained by Gul-
ley et al. using another approach. It is also the
linewidth obtained from the Anderson-%'eiss theo-

FIG. 5. Absorption line shape for Gaussian memory
function with theoretical calcium fluoride second and
fourth moments for [100] orientation. 6 in units of M2
is plotted as a function of ddt in Gauss.
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FIG. 6, fid curve calculated with Gaussian-damped

Bessel-function memory function using theoretical M2
and M4 and adjusting M6 and Ms to the data of Barnaal and
Lowe (open circles) for [100]orientation of calcium fluo-
ride. G(t) is normalized to unity at t= 0 and the units of
t are microseconds.

spin correlation functions in MnFz satisfy a diffu-
sion equation which gives a much less rapid decay
than would be suggested by the first few moments. '
Thus, again it is seen that extrapolation of the
short-time behavior of K(t) to long times gives
qualitative if not quantitative agreement with ex-
periment, but it may ignore certain features that
only manifest themselves at long times.

C. Calcium Fluoride Line Shapes

Nuclei in crystals of calcium fluoride can be re-
garded as residing on a rigid simple cubic lattice.
These nuclei interact through their mutual diyole-
dipole coupling, which gives a Gaussian line shape
when this interaction is approximated by the classi-
cal local-field picture. The Gaussian shaye is
only a rough approximation to the observed line
shapes, which are more nearly rectangular, par-
ticularly for [100] crystal orientation. Consequent-
ly, the associated fid curves" exhibit damped os-
cillations, these oscillations being more pronounced

for [100] orientation. The moments Mz and M,
have been calculated from Van Vleck's formulas
and are given in Table D. The difficult algebraic
calculations for the sixth moment have recently
been carried out and even the eight-moment for-
mula can be obtained by using special computer
techniques. For our purposes, however, it is
sufficient to use the approximate value for the
sixth moment, which gives the result that

(M4/M2 )c~ =3 (26)

4-

This ratio is not sensitive to crystal orientation.
Again, in view of (26), the Gaussian memory

function is a natural first choice. This assumption
and the moment values in Table II completely de-
termine a line shape which may be calculated from
(7) and (16). For [100] orientation we obtain the
absorption line shown in Fig. 5. This curve still
exhibits some of the character of the pair limit
since M4/M&=2; the transition to a flat-topped
line occurs when M4/M&= 2. 65 for the Gaussian
memory function. The experimental line shape
[Fig. 13(a)] is not peaked. We conclude that the
Gaussian memory function is not consistent with
both the observed line shape and its first two even
moments. '

One approach to obtaining a more accurate de-
scription of K(t) is to use the relation (3) to cal-
culate it from the experimental data for G(t). This
calculation was carried out for the [100]orientation
using for G(t) a fit of the Abragam function to the

Orientation

[100]
[111]

Me/M2 M 8~~2 M4/ M2

6.15 21.9 2.29
8.15 35.8 2.14

1.00
1.15

TABLE III. Sixth and eighth moments expressed as
ratios to second moment and related parameters deter-
mined for calcium fluoride by fit of fid curve to data of
Barnaal and Lowe.

0 20 40 60 80
FIG. 7. fid curve calculated with Gaussian-damped

Bessel-function memory function using theoretical M2
and M4 and adjusting M& and Ma to the data of Barnaal
and Lowe (open circles) for [111]orientation of calcium
fluoride. G(t) is normalized to unity at t= 0 and the units
of t are microseconds.
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FIG. 8. Plot of the natural logarithm of the absolute
value of the peaks of the normalized fid data of Lowe,
Bruce, Kessemeier, and Gara (open circles) as a function
of time in microseconds. A straight line is drawn through
all but the first of these values.
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FIG. 10. fid curve of Fig. 6 at long times together

with the data of Barnaal and Lowe (open circles) and of
Lowe, Bruce, Kessemeier, and Gara (closed circles).
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data of Barnaal and Lowe (BL).' The numerical
analysis was done following a method used by Berne
and Harp. The result is a memory function that
is quite similar in shape to its corresponding fid
curve except that it decays somewhat more rapidly
to zero. In particular it exhibits some oscillation
as it decays. For this reason we tried to fit the
fid data using a memory function similar to the
Abragam function. Its general form is

K(t) =K(0) e ' A„(Pf) 'J„(Pt),
(27)

A„= 2"I'(v+ 1) .

Here v is the order of the Bessel function J„(z) and
1(z) is the gamma function. This form is suggested
by the Neuman expansion theorem for decay
curves. " The parameters are determined by the
moments in (13) as follows:

K(0}=Mz, Ma-2a + p (2v+2) ',
M 142n +6m P (v+1) '+3P [4(v+1)(v+2}]

Mz—- 120n +90m P (v+1)

+ 45a'P [2(v+ 1)(v + 2)] '

+ 15@8(v+ 1)(v+ 2)(v + 3)] ' . (28)

These parameters were obtained using theoret1cal
values of Mz and M~ (Table II) and by adjusting M,
and M, until optimum agreement was obtained with
the data of BL.

The line-shape formulas (8) cannot be evaluated
analytically for the function (26). We therefore
used (3) to calculate G(t) directly from K(t). The
numerical method gave G(t) at 600 time points
whose spacing was 0. 025M, ' . A line shape was
calculated from (6) using a modification of Filon's
rule. " This procedure was tested using the func-
tion given for this purpose by Berne and Harp. 4

Accurate values of 6 were obtained for both long
and short times. As a second independent test the
method just described was used to calculate a line
shape for the Gaussian memory function which was
then compared with that curve obtained directly
from (7) and (16). These results were also con-
sistent.

Calculated fid curves for [100] and [111]orienta-
tions, subsequently referred to as G,~, are shown
in Figs. 6 and 7 together with the data of BL to
which they were fitted. Moment values and related
parameters obtained by this procedure are given in
Table III. They are consistent with those calculated
from Bruce's data and Abragam's function. 3

TABLE IV. Parameters in the long-time form of cal-
cium fluoride fid curve.

FIG. 9. fid curve of Fig. 6 (dashed curve) and the fid
curve (open circles) obtained by fitting it to the long-time
form suggested for calcium fluoride fid curves. G(t)
is normalized to unity at t= 0 and the units of t are micro-
seconds.

Orientation

[100]
[111]

a (cal. )

(psec 1)

0.058
0.034

a (exptl. )

(p,sec 1)

0.037
0.022

~/b (cal. )

(@sec)

21.2

48

&/b (exptl. )

(p,sec)

21 ~ 8
44
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.012-
G(t)=e ' ' " t~ T~. (29)
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At longer times, however, the data of LBKG shows
that"

G(t) =de "cos(bt+c), t & Tf . (3o)

For example, in Fig. 8 is plotted values of lnl G~ I,
where G~ is the experimental value of the fid curve
at one of its peaks. This curve is a straight line
whose slope gives a value for the parameter a in
(29). The parameter b is obtained from the period-

I I I I I I I I I

SO 100 120 140 160 1.0

FIG. ll. Long-time fid curve calculated with Gaussian-
damped Bessel-function memory function using moment
parameters somewhat different from those used to ob-
tain Figs. 6 and 7. The data of Lowe, Bruce, Kesse-
meier, and Gara is also shown (open circles). G(t) is
normalized to unity at t = 0 and the units of t are micro-
seconds.

.5-5

'0

Measurements on CaF~ made at low temperatures
by Lowe, Bruce, Kessemeier, and Gara (LBKG)"
have shown that the long-time portion of a decay
curve has a form qualitatively different from that
obtained at short times, i.e. , for the interval of
time covered by the data of BL, Figs. 6 and V. A
good approximation for short times is obtained by
using the Abragam function

1.5

1.0

.2 0

-.20 20 40 60 80
FIG. 12. fid curve of Fig. 7 (solid curve) and its

associated memory function (dashed curve). G(t) is
normalized to unity at t= 0 and EC(t) is given in units of
M2. The units time are microseconds.

FIG. 13. (a) Calcium Quoride absorption line shape
for [100] orientation calculated as the Fourier transform
of the fid curve in Fig. 6 and Bruce's data {circles).
Both line shapes were separately normalized to the same
area and they are plotted as a function of ddI expressed
in gauss. (b) Calcuim Quoride absorption line shape for
[ill] orientation calculated as the Fourier transform of
the fid curve in Fig. 7 and Bruce's data (circles). Both
line shapes were separately normalized to the same area
and they are plotted as a function of btI expressed in
gauss.
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icity exhibited by the data. Results of this data
analysis for [100] and [111]orientations are given
in Table IV.

Now, in contrast to the Abragam function (28),
G~, exhibits the correct qualitative long-time be-
havior. For example, for [100] orientation we ob-
tain

G„,=0. 75e 0'058' cos(wt/21. 2 —0. 47'), f ~30 psec.
(31)

This function is plotted in Fig. 9 together with
points representing G„,. The onset of this asymp-
totic behavior occurs at t =30 psec for [100] orien-
tation. The a and b parameters in (30) were ob-
tained in the same fashion as the experimental a
and b parameters. Both are listed in Table IV.
Comparison of these results show that the calcu-
lated fid curve decays too rapidly. This is also
shown in Fig. 10, where G„, is plotted together
with the data of BL and LBKG. Even though a(cal. )
is too large there is good agreement between
b(cal. ) and b(exptl. ). Since b represents some
average beat frequency which also occurs in (28)
this is perhaps not surprising. If the moments are

varied somewhat G„y can be forced to give a
smaller decay constant as shown in Fig. 11. A
necessary consequence of this, however, is that
b(cal. ) now becomes too large and the agreement
with the data of BL becomes less satisfactory.

In Fig. 12 is shown the [111]memory function
and its associated fid curve, both normalized to
unity for purposes of comparison. These curves
are quite similar, the main difference being that
K(t) decays somewhat more rapidly than G(t).

In Figs. 13(a) and 13(b) are plotted the [100] and

[111]line shapes obtained by Fourier transforma-
tion of G„,. They are compared to Bruce's data.
The largest difference between his data and these
line shapes occurs for the [111]orientation. The
G„, line shape is more sharply peaked than the
experimental one, which may be partly due to a
small misalignment of his crystal. Calcium fluo-
ride line shapes are most sensitive to crystal
alignment near [111]orientation, where any devia-
tion from this alignment produces a broadening of
the line. This interpretation is consistent with the
fact that the Fourier transform of Bruce's data de-
cays to zero more rapidly than the [111]data of BL.
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