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Elastic Constants of Dilute Mo-Re Alloys: A Second-Neighbor Model
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The effects of a relatively high concentration of point defects on the elastic properties of a bcc crystal
in the Elliott-Taylor approximation have been studied by using a defect perturbation model extending
up to second neighbors. Numerical calculations have been performed for two experimentally studied
Mo-Re (7 and 7.4%) alloys. It is observed that the changes in the second-neighbor force constants are
very small and the perturbation may well be described by a nearest-neighbor defect model. The results
obtained in the Elliott-Taylor approximation are seen to be very near to those obtained in the
lowest-order concentration theory.

In earlier papers, the authors have used the low-
concentration Green's-function theory to study the
elastic properties of doped cesium halides' and
dilute Mo-Re alloys (hereafter referred to as I)
after employing a nearest-neighbor perturbation
model. In transition metals, two types of inter-
actions are considered to be important: (a) the
short-range exchange interaction, which may be
significant up to some neighbors, and (b) the Cou-
1ombic interaction between the positive heavy ions
and the free electrons. However, it has been ob-
served that in transition metals, the elastic con-
stants are mainly determined by short-range ex-
change interaction. ' Both the molybdenum and
rhenium contain incompletely filled d shells and
form transition-metal alloys. The short-range
interaction between the positive ions is assumed
to be important up to next-nearest neighbors. If
a rhenium atom is substituted at a lattice site in

molybdenum metal, the perturbation may well ex-
tend up to second neighbors of the impurity. Thus,
a perturbation model which incorporates also the
interactions beyond the first neighbors may be
more realistic.

In the present Note, we have considered a sec-
ond-neighbor perturbation model for the defect to
determine the effects of a low concentration of
randomly distributed point defects on the bulk
elastic constants of crystals of bcc structure in the
framework of Elliott and Taylor's approximation.
The theoretical formalism is similar to I. The
elastic constants of the perfect and the imperfect
lattice are related by

C„=C„+(4c/3a)(A+ 2B),

C12= C12+ (*/3a)8 —D), (l)
0C„=C„+2D/a,

where

A= (X,+X,+(( —g) ' '(g„"„(0)+g'„' (0) —2g„" (())]),

and

I

(x', + x, + (( —c) ' '-
(g" (D) +g" (0) + 2 g" (0)]),

D =M(E1+2gE1), +E1g }„.0.

Here c denotes the fractional concentration of
impurity in the crystal, a is the lattice parame-
ter, and X, = nn1(]1'1= np1) is the change in the cen-
tral (noncentral) force constants for first neigh-
bors, whereas X2= b, n2 stands for the change in the
second-neighbor central force constant. In these
expressions, DA&(0) and D2 (0) are the resonance
denominators in the A1 and E~ irreducible represen-
tations and are of the form

(0) l + [~lgA16(0) +~2gA]g(0)] + M2
~ —C 11 (l —c)2X1Xg

x (gA'„(0) gA„(0) —(gA'„(0)]') (s)

D, (O)= l+ ' (] 1'g,"(0)+]2g222(0)]+

&&4'z' «)g2 «& (g'z'(0)]')-
where M is the mass of the host-lattice atom and
g„'~(0) are the elements of the Green's-function ma-
trix g„(0}at (d= 0 and are given by

gA1 ( } (g1 2g4+g5+2g6 g5+ 2g6 g 0+ 2g10)(ga 0)
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gA~( ) (gl+ gs g11)(I(a0&

g~&(0) = 2(ga+2gs gts+2gis)~*o ~

gg (0) = (gs 2g4+gs ge gv ge ga+ 2gso)~-0~

gz ( ) (gl 2gB g114 0&

g~g (o) 2(g2 g3 g1$+ 2g15)&aa0 '

(4)

The Z~~ are the matrix elements of the self-
energy projected in I'+, space given by

Er„(z)=cpF„(~') [I+(I c)t-J (z)p~„(~')j ',

where I is the unit matrix, and p~+(&g ) and
(z) have the explicit forms

(v 2)(k, —k', )

(v'2) (Xi —Xi) 2xi+Xi 0

8's+ 28'4+8'5 8'v

E9 —28'io
$p (Z) =

—(&2)(gs -gs)

(/8) (gs g~6)

—(&2)(g6 ga)-

Ei -8 s+Ee -Xv+8'e+89

2(ga+gs gw+g&5)

-(«)(z -((,.) )
2(ga+gs gta+gts)

+ 2Ee Em

(6)

with complex squared frequency z= co +2i&p' in the
limit g'- 0, and X&= bP& as the change in second-
neighbor noncentral force constant. The various
Green's functions gj-g&e have been defined by Ram
and Agrawal' in one of their recent papers.

The expressions for nearest-neighbor pertur-
bation are easily determined by assuming Xz and

~z equal to zero. One can also obtain the results
for lowest order in concentration by replacing
1 —cby1.

In order to perform the numerical computations,
the results of the lattice dynamics of molybdenum
(discussed in I) are utilized to evaluate the six new

Green's functions I'E(I. (21) of I] appearing in the
present calculation. A set of four force-constant-
change parameters (&„X,', X~, and X~) is deter-
mined using the three relations for the elastic con-
stants given by Eqs. (1) and the experimentally
measured elastic constants' for the Mo-Re alloys
(7 and 7.4 at. %%upRe) . Thee evalue soI &»&,', &3,
and Xz are presented in Table I along with the cor-
responding force constants in pure molybdenum.
Davidson and Brotzen' have also evaluated the force
constant changes in Mo-Re alloys after utilizing the
distributed perturbation model of Niu and Shimizu. "
In this model, the force constants between the host-

TABLE I. Force-constant changes incurred by the substitution of a rhenium atom in a molybdenum lattice in a
localized perturbation model and the distributed perturbation model in units of 10 g sec+. The force constants for pure
crystal have been obtained by using the data of elastic constants (Ref. 10) and the zone-boundary frequency ~z = 4. 147
&& 10' sec ' in the ($, $, $) direction.

Changes in
force

constants

lowest-order
concentration

theory

Elliott and
Taylor's
approx.

Localized perturbation model
Second-neighbor perturbation First-neighbor perturbation

model model
lowest-order
concentration

theory

Distributed
perturbation

model

Niu-Shimizu
model (Ref. 11)

X2'

2.753

-0.957

—0.102

—0.089

2.721

—0.968

—0.094

-0.084

2 625

—1.053

2.605

—1.057

0.328

—0.038

—0.083

a~ g'irst-neighbor central force constant) = 8.229 x 10 g sec

P~ first-neighbor noncentral force constant) =1.806 x 10 g sec 2

0.2 (second-neighbor central force constant) = 3.387 x 10 g sec

P2 (second-neighbor noncentral force constant) =-2.224 x 10 g sec
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host atoms and those between host-impurity atoms
are taken to be similar. In order to have a com-
parison, we present their results in Table I.

From Table I, we observe that the changes in the
next-neighbor force constants are too small. In

fact, their magnitudes are only of the order of 3-
4%. The results obtained earlier on the basis of a
nearest-neighbor perturbation model are not altered
much, although there are slight alterations in the
force constant changes. These values for the
changes in the central and noncentral force con-
stants are supported by lattice specific-heat data'
of Mo-Re alloys recently analyzed by Tiwari and
Agrawal. '3 These authors have obtained good agree-
ment between theory and experiment after using
similar values for X& and X.

& in the nearest-neigh-
bor perturbation model. The present values are in
complete disagreement with those obtained by David-
son and Brotzen, who have seen very small changes
in the nearest-neighbor force constants but a com-
paratively appreciable change in the second-neigh-
bor central force constant.

The replacement of a molybdenum atom by a
rhenium atom will increase the electron-per-atom
ratio of the crystal because the electronic con-
figurations of Mo and Re atoms are 4d 58' and
5d 6s, respectively. As pointed out earlier,
since the short-range interaction mainly deter-
mines the magnitudes of the elastic constants, the
long-range Coulombic interaction, because of the
increased electron-per-atom ratio, will not induce
significant changes in the elastic constants of an

alloy. The important role of the short-range inter-
action led Zener' to assume an antiferromagnetic
arrangement of the ions in molybdenum and its
alloys. In this arrangement an antiparallel spin
alignment is assumed for nearest neighbors, where-
as a parallel spin alignment is taken for next-near-
est neighbors. The exchange energy arises only
because of the interactions of d shells of next-
nearest neighbors; consequently, an attractive in-
teraction will be seen between nearest neighbors,
while a repulsive interaction will be observed be-
tween the next-nearest neighbors. It means that the
nature of interactions should be totaQy different
for the nearest and the next-nearest neighbors.
The values of the perturbation parameters obtained
in the present model support this contention. How-
ever, we have found very small changes in the next-
nearest-neighbor interactions around rhenium in
the Mo matrix.

Further, we note that the results obtained in
Elliott and Taylor's approximation are very simi-
lar to those obtained in the lowest concentration
approximation. The differences in the evaluated
force constants in two approximations are within 5%.
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