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The nearly exponential frequency dependence of the infrared-absorption coefficient P recent-
ly observed in 15 crystals up to several times the reststrahl frequency is explained in terms
of multiphonon-absorption processes. The central-limit theorem is used to reduce the multi-
phonon contribution to a simple closed form. The theoretical estimates for the magnitude of
the absorption coefficient, with no adjustable parameters, are also in good agreement with
experiment. The temperature dependence of P at a fixed frequency is shown to be considerably
weaker than P- 1"~, where n is the number of created phonons. Higher-order processes in
the perturbation expansion are shown to be negligible for small n, to be comparable to that
of the lowest-order, single-vertex terms for n = 5, and to dominate for large n in a typical
case. Difference processes, in which some thermally excited phonons are annihilated, are
shown to be negligible with respect to the summation processes in the nearly exponential re-
gion. An explanation involving finite phonon lifetimes is proposed to explain the fact that the
alkali halides show less structure in the P-co curves than do the semiconductor crystals.

I. INTRODUCTION

The intensity I of infrared radiation propagating
through a solid typically decays according to Beer's
law, I=ID e ~', where P is defined as the optical-
absorption coefficient. Extensive experimental
and theoretical studies have been conducted on the
absorption due to phonons in insulating or semi-
conducting crystals. References 1-4 represent
some recent reviews on this topic. The main in-
terest has been focused on the two-phonon region
where P» 1 cm ', and particularly on the structure
of the frequency dependence that determines the
critical points of the phonon spectra. The avail-
ability of high-power infrared lasers has shifted
attention to higher-order phonon processes, where
P«1 cm '. Not only the positions of the multi-
phonon peaks are of interest, but also the magni-
tude of P is of great importance now that high in-
tensities are available.

It has been observed ' "' ' that for frequencies
& greater than several times' the reststrahl fre-
quency +&, the optical-absorption coefficient var-
ies nearly exponentially with frequency,

p ~ ~~A4g

for a number of crystals including LiF, NaF, NaCl,
KC1, KBr, MgFg, CaFg, BaF2, SrFg, MgO, Al203,
S10z, T10z, BaTiO„and SrTi+. This is true for
P 10 cm ' and co&2'&, roughly. In NaC1 at room
temperature, for instance, P decreases nearly
exponentially for over four orders of magnitude as
the frequency increases from 2. 2'& to 5. 8coz, as
shown in Fig. 1.

At first sight, the nearly exponential behavior
might suggest the form P- e "" '~ . However, the
room-temperature values of the coefficient A in
(1.1) differ by factors of 2-4 from the value of
h/ke T. Furthermore, the temperature dependence'
of I3, though not extensively studied to date, ap-
pears to be less strong than e ""'& .

In this paper, an investigation of the optical ab-
sorption by multiphonon processes is presented.
It is shown that the sum of n-phonon summation
processes is approximately exponentially decreas-
ing with increasing frequency over the frequency
range of interest, i.e. about h)& to Vw&, typically.
As illustrated in Fig. 2(a), we consider the n-
yhonon summation process in which the photon is
absorbed by the crystal through the virtual exci-
tation of the fundamental reststrahlen mode which
finally emits n phonons. In other words, the
electromagnetic field drives the fundamental mode
(off resonance since &g & &uz), whose relaxation time
is determined by the sum of all possible processes
of splitting into n normal modes of lattice vibra-
tions. The Lax-Burstein-Born higher-order di-
pole-moment mechanism is not considered ex-
plicitly, although most of the analysis still applies
to that case.

By energy conservation, the energy Are of the
photon absorbed is equal to the sum of the energies
of the n final-state phonons. It follows that the
n-phonon summation process cannot contribute to
P when co &n(d„, where (d„ is the greatest fre-
quency of the phonon spectrum. For cu«n~„, the
contribution P„of the n-phonon summation process
to P is small because the low frequencies of the
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the explicit evaluation of P„ is described, and com-
parison of theory with experiment is made. In
Sec. VII, a summary of all the assumptions and
approximations that have gone into the theory is
given, and the relation of a computer-calculation
program to the present results is discussed.

II. ANHARMONIC CONTRIBUTION TO ABSORPTION
COEFFICIENT

The infrared radiation perturbs the insulating
crystal by excitation of the dipole moment of the
crystal by the oscillating electric field. The ab-
sorption coefficient is simply related to the imag-
inary part of the electric susceptibility by

P((O) = 4W)(T(rO)(O/n„C,

IO-4

QJ /0) f

FIG. 1. Experimental frequency dependence of the in-
frared absorption coefficient P for ÃaCl after Horrigan
and Deutsch (+, 0 ) Ref. 7(a), Smartet al. (- ~ -) Ref.
7(c) and Genzel (-) Ref. 7(d).

where c is the speed of light and n„ is the refrac-
tive index at frequency (d. The susceptibility, in
turn, is just the linear response of the dipole mo-
ment. " In an anharmonic crystal, the dipole
moment can be expanded in powers of the ionic
displacements. ~ For infrared-active crystals,
the leading nonzero term is linear in the ionic dis-
placements. The nonlinear terms (the dominant
mechanism for infrared absorption in such non-
infrared-active crystals as diamond ) are probably
small in polar crystals, especially in alkali ha-
lides, ' ' and shall be neglected in this work.
However, there are contrary conclusions. "

Then, the absorption coefficient is given by the

final-state phonons greatly restrict the amount of
phase space available. Thus, P„must peak at a
frequency not far below n(d„. As n increases, the
peak shifts to higher frequencies and decreases in

height since higher-order phonon processes in-
volve weaker coupling coefficients. The sum of
the P„ then has a frequency dependence nearly ex-
ponential in the experimental frequency range.
This behavior of the P„and the sum of the P„ is
demonstrated explicitly in Sec. VI.

A preliminary account of these results has been
published. Subsequent investigations are dis-
cussed in Sec. II. The exponential frequency de-
pendence of the absorption was first suggested by
Rupprecht to be due to n-phonon processes, al-
though he did not investigate the theory in detail.

In Sec. II, formal expressions for the contribu-
tion to P due to multiphonon processes are given.
A practical approximation for the anharmonic co-
efficient is chosen. In Sec. III, an asymptotic ap-
proximation for evaluation of the n-phonon contri-
bution is developed. In Sec. IV, confluence phonon
processes are shown to be unimportant in the near-
ly exponential region. In Sec. V, all possible pro-
cesses that convert the fundamental phonon to n
phonons are examined, and the contributions of
vertex corrections are estimated. In Sec. VI,

(b)

(c)

PHOTON PHONON

n-phonon summation and confluence processes.
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imaginary part of the Green's function of the fun-
damental mode, '

4vNe~ &ou&F(ur)

cm„n„n ((o' —(o,) + [(o,r((o)]
(2. 2)

where N is the number of unit cells, 0 is the vol-
ume of the crystal, e* is the Born effective charge,
m„ is the reduced mass of the two ions in the unit
cell, and I' is the energy relaxation frequency of
the fundamental mode (equal to twice the I' in R.
A. Cowley's notation' ). The real part of the
phonon self-energy is understood to have been in-
cluded in producing the renormalized reststrahl
frequency (d&, and its frequency dependence is
neglected in Eq. (2.2). A simple classical model
of a harmonic oscillator (the fundamental lattice
mode) driven by the applied electric field gives
(2. 2}, but with sr~i" replaced by ~F in the numer-
ator and denominator. 1

The contribution I „ from the n-phonon summation
processes to I' can be calculated by applying'6 the
standard perturbation-theory result that the prob-
ability per unit time of a transition between two
states is 2v/k times the product of the square of
the matrix element and the energy-conserving 5
function, giving

1'„((o)=~(n+1)'n( 2
I A(fQ, " Q„)8 ~1'"~n

x 4 q Q co — (d+ n (2. 3)

where Q& is the phonon mode with wave vector q&

and branch 5&, 6 is the modified Kronecker 5
which is unity when the argument is zero or a re-
ciprocal-lattice vector and zero otherwise, and

with

~ n~+1
&~1 nu+ 1

(2.4)

n& =n(Q&) = 1/(e" os~"r —1}

n„= 1/(e "r —1)

and

&ur = ke T/h

(2. s)

(2. s)

(2. V)

A Q Aqb aqb+ a gp (2. 0)

Furthermore, A(fQj" Q„) denotes the renormal-
ized (n+ 1}-phonon vertex, represented by the cir-
cle in Fig. 2(a), and is the sum of all possible
(n+1)-phonon vertices. The simplest one is the un-
renormalized vertex V(f Q~

'"Q„) from the anhar-
monic Hamiltonian given by

714' 1

K~&=Z" Z V(Q~"'Q~t)a Zqs Ao '"Ao
1 ~n41 /~1

(2. s)
where

with a and a being the phonon creation and annihi-
lation operators normalized to unit cornrnutators,
as usual. This simple vertex is represented dia-
grammatically in Fig. 2(b). Other more compli-
cated processes are examined in Sec. V, where we
derive an approximate form for the total vertex

A(fQx'- Q.}=A.V(fQx" Q.} ~ (2. 10)

To obtain a reasonable approximation for the
anharmonic coefficients, let us confine our atten-
tion to diatomic polar crystals with cubic symme-
try, especially NaC1- structure crystals. The
model interaction potential ' 7 between ions is
composed of a Coulomb potential and a nearest-
neighbor overlap exchange repulsion of the form

y(r)=ce ' (2. 11)

where a is the equilibrium nearest-neighbor dis-
tance. The Coulomb interaction is used only in
determining the constants C and p in Eq. (2. 11)
from the equilibrium condition and the value of the
bulk modulus, B, yielding

C=3a Be ~p /(1 —2p) (2. 12)

In the anharmonic coefficients, only the derivatives
of the repulsive potential (2. 11) are retained.
Since p is of the order of 0. 1 for NaCl, the deriva-
tives of the Coulomb potential are smaller than the
corresponding ones of the repulsive potential for
orders up to at least n-=10. Had we used an in-
verse power law for the repulsive potential, this
would be true to any order. This model, including
the neglect of the Coulomb potential in the anhar-
monic terms, has been used previously~ with much
success.

The anharmonic coefficients can be obtained in a
straightforward calculation from this nearest-
neighbor exchange repulsion potential. '~ The mth-
order coefficient V(Q&". Q ) involves derivatives
of p(r) up to order m. From the exponential form
(2. 11}, it is clear that

laP' '(a)/P'" '(a)l -10 (2. 13)

Thus, it is a good approximation to retain only the
highest-order derivative. Using these results and
assuming central forces yield

V(Q, - Q.)=—,y'"'(a)Z ll&„(Q,)
2m! ~1y 1

" 2Nm~ rap&

(2. 14)
where

U„(Q&)=ft„[w, o(m /m )' w o e' ' &], (2. 15)

and m& and m& denote the smaller and larger ionic
masses, respectively. The positions of nearest
neighbors measured from the lighter ion are x„,
and &„ is the unit vector in the same direction.
The polarization vector w& is defined in terms of
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the ionic displacement u„ from the equilibrium
position x„by the relation' '"

u„=K (I/2Nm, 4lo) e l~ AQwgo
Q

(a. is}

with 7 denoting the ion type. For the fundamental
mode y

U„(y) = «„ iu~(m&/m, )"', (a. Iv)

with m„= (m & +m& ) . From E(l. (2. 11), we obtain
the mth derivative

(m)( )
3+a p

3 2

(1- 2p)(- pa)
(a. ia)

Substituting the approximate expression (2. 14)
for the anharmonic coefficient into E(I. (2. 3) for
I'„, we obtain, by using E(l. (2.2), the contribution
of the n-phonon summation process to the optical
absorption in the form

p =(-'v)'('lf(d' D (1 —e "~"r)((d'n[) '

(~mxDe) An Fn ~ (2. 19)

D =(av) ~ [svp/(I —2p)]

D, =i/2p a m&(d,

(a. ao)

The frequency & „, introduced for later use,
cancels out in E&l. (2. 19).

The factor Z„contains the dynamical information
of the n-phonon absorption and is given by

8 6

z„=Z Z («„u[~)(«„"N[~)N
"

yn1 yen1

x~U„(q, )U„*.(q, )

For crystals of NaC1 structure, syrnrnetry ' en-
sures that Z„and, therefore, P„are independent of
the direction of zo&. Let us choose k& to be along
the positive «axis. Then, E(I. (2. 21) becomes

z„=az„, +2(-1)"'z„
where

(2. 22)

x g W, (q, ) o~
(oQ)

(2. 23)

%e have used the approximation for high frequency
(~'» (([~~+ I'~) and introduced the following groups
of constants:

E e~ a&uI

I'cm„n„(ds, '

and, with Re and Im denoting real and imaginary
parts, respectively,

W, (Q) = [Re U,(Q)] a [ImU, (Q)] (a. 24)

In passing, note that the evaluation of the sums
in (2. 23) is trivial if the density of states g((d) is
approximated by the Einstein model

g((d) = S((d —(de)

and the angle dependence of W, (Q) is neglected:
W, (Q}= W, . It will be shown later that W,"» W.".
Then (2. 23) and (2, 19}give directly

p EA'„( . g, )
8 Q, ((', [n(td ) ~ (g)"

x 6((d —n(dz) (a. as)

where E= (av)~~ E-(0 +,. According to (2. 25), the
spectrum is approximated by a series of 5 func-
tions, which is, of course, not realistic. Even though
such a model is not of significant practical value,
it does crudely approximate some of the features
of the more realistic model discussed below. For
example, plotting the coefficients of the 5 functions
in (2. 25), or formally replacing the 5 functions by
line-shape functions of finite width, gives a nearly
exponential decrease with increasing frequency.
In Ref. 19(b), the result (2. 25) was rederived using
the simpler model of a one-dimensional lattice
with the Einstein approximation and a simpler in-
teraction potential that neglects the angle depen-
dence [our factor W, (Q)] from the outset, and an
independent- molecule model was considered. Use
of this simpler interaction potential gives unrea-
sonably large values of A„, which causes notice-
able deviation from an exponential frequency de-
pendence. ' ' '

Mills and Maradudin' ' independently used a
single- frequency anharmonic- molecule- type lattice
to study various types of interaction potentials,
effects of impurities, and high-temperature effects.
Bendow, Ying, and Yukon' ' have used a different
mathematical method that sorts with partially
summed terms. The method is potentially power-
ful, but to date they have recovered only our terms
without the vertex correction. Since the validity
of the perturbation expansion is justified by show-
ing that all diagrams not included in the result are
negligible, it is expected that new methods of cal-
culation should give equivalent results. For ex-
ample, the factor e ~ resulting from vertices with
phonon loops'+~' [A+oS, AoA&[.A&[.S, etc. , where
S is the simple vertex and the A.Q are defined in
(2. 9)] is well approximated by 1 since the phonon-
loop terms are negligible with respect to simple
vertices (see Sec. V}.
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III. ASYMPTOTIC APPROXIMATION FOR ABSORPTION
BY LARGE NUMBER OF PHONONS

Equation (2. 19) gives the contribution to the ab-
sorption coefficient by the n-phonon summation
process. It contains the factor Z„given by Eqs.
(2. 22)-(2. 24) which involves n-fold Brillouin-zone
sums. Although these are not beyond the means
of modern computing capabilities for n in the ex-
perimental range of 2-8, we are still interested
in analytical approximations that will give us gen-
eral properties of P which appear to be shared by
a rather large number of crystals. The method of
evaluation used in this section is correct in the
large-n limit.

Forn ~2 we canneglect the quasi-momentum-con-
servation restriction in the sums given by Eq.
(2. 23). We shall justify this later in this section.
First note that if the angle dependence of W, (Q& )
is neglected, the summand in (2. 23) is a function
of phonon frequencies co& only. Then, replacing
the sums over t3!& by integrals over d(do&g((dp ),
where g(~QJ) is the phonon density of states, re-
duces (2. 23) to the form

3„= 3 „y(,,)- 13,('(,„)3( —f »)fs1

to which the central-limit theorem applies directly.
Here f ((do ) = 6K ~W, (!3!~)(no + 1)g((do )/(do 3 where
the normalization constant 6N ' arises since g is
normalized to unity.

Equation (2. 23) can be cast into this central-
limit- theorem form without neglecting the angle
dependence of W, (Q&) as follows: We introduce
two functions which are kindred to the phonon prop-
agator s

o,(l') = ((d,/Nc(„) 5W, (~3!)[(no+ I)/(do]5(L —(do),
Q (3.1)

where

u~= ~ ~-'2 W, (q)(n, + I}/~, (3.2)

are constants for normalizing the integrals of o,(f)
over f to unity.

The n-fold sums in Eq. (2. 23} can be written as
n-dimensional integrals,

d!:~o,(l'&) "n

(dntx ]

d(„»(3„)3 —i ). 3(3.3(
)~1

These convolution integrals are well known in sta-
tistics. For n- ~, the integral tends to a Gaussian
(the central-limit theorem),

n

where n2, are defined in Eq. (3.2), and

(3. 6)

(o(„(d,)'= f dr. o, (t')C' (-o.„ur,)' (3. 6)

For small n, it is possible to improve Eq. (3.4)
with an asymptotic series. 0 A particular series
in terms of Hermite polynomials has been used by
Sjolander'2 to evaluate the multiphonon background
in neutron scatterings in a harmonic crystal.

It is obvious from Eq. (2. 24) that (22. , as de-
fined by Eq. (3. 2), is less than o.(3,. The estimates
discussed in Sec. IV show that no is about one-
third to one-half of (22„at most. Since Z2, - ((2~)"
according to (3.4), Z„becomes negligible com-
pared with Z~ for large n. Therefore, from Eqs.
(2. 19), (2. 22), and (3.4), the absorption coeffi-
cient has the explicit form

4
(dms 1

( D )n!i2
o(2,(n + 1) (o n"'n!

)2

Zn(o2, (o „)~

By virtue of the central-limit theorem, the multi-
ple sum over Q, ", Q„has been reduced to sums
over a single phonon coordinate Q„as given by
Eqs. (3.2), (3.5), and (3.6).

The neglect of momentum conservation appears
to be physically reasonable since, for larger and
larger n, the restriction on phase space becomes
less and less important. However, if we wish not
to neglect the momentum conservation in Eq. (2. 2),
we can extend the foregoing procedure by treating
the summations over q& in the same manner as the
integrals over f,. Thus, we introduce the func-
tions o, (q, P) similar to Eq. (3.1), except omitting
the sum over q. Equation (3.3) becomes not only
multiple integrals over f&, but also over q with
four 5 functions, one for the frequency and three
for the wave vectors. The convolution integral is
evaluated in the same way by means of the central-
limit theorem. The integrals over q contribute
a factor which is a lattice sum of Gaussians of the
form e" *~ and is, therefore, approximately unity
for large n. We arrive at the same answer as
Eq. (3.4), thereby justifying the neglect of momen-
tum conservation.

IV. CONFLUENCE PROCESSES

In the preceding calculation of the multiphonon
absorption of light, only a particular type of
phonon processes, called the n-phonon summation
processes and illustrated in Fig. 2(a), was con-
sidered. We have neglected the confluence pro-
cesses, illustrated in Fig. 2(c}. Instead of creating
n phonons after the annihilation of the fundamental
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(o) (b)

(c)

/
/ L

FIG. 3. Various kinds of vertices.

Now we consider all possible processes that con-
tribute to the (n+1)th-order vertex A(f Q~."Q„) and
estimate the vertex correction factor A„, defined
by Eg. (2. 10). Standard perturbation theory can be
applied in a straightforward way to all the higher-
order terms. For example, for n = 3, the diagram
in Fig. 4(b) below has one intermediate state. The
contribution from this diagram is easily calculated,
but it must be remembered that this diagram repre-
sents four diagrams when the arrow is added to the
intermediate-state phonon. (There are two time
orderings of the two vertices, and the arrow can
go in either direction, corresponding to a at and

phonon, m phonons are absorbed, and n- m phonons
are created.

A confluence process involving n phonons (some
of which are created and some annihilated) is gov-
erned by the same vertex as the n-phonon summa-
tion process. The contribution to the absorption
coefficient of all confluence processes and the sum-
mation process is easily obtained by replacing
5 (t' lop) by 5(f —coq) —5(f + ~o) and n(- &uo) by
—[n(ufo)+ 1] in (3.1). The cross-product terms in
(3.3) containing m factors of —5(f+ roe) and n —m
factors of 5(f —&oo) correspond to the confluence
process with m thermally excited phonons absorbed,
as shown in Fig. 2(c). Applying the central-limit
theorem to this term yields a Gaussian peaked at
(n —m)a&, &o, —mP&, ~ instead of na&, &o, where

P„ is defined by Eq. (3. 5) with the new o, (f). This
contribution will be masked by the summation pro-
cess of n —2m phonons which peaks at about the
same frequency but has greater strength, being an
anharmonic process of lower order.

V. VERTEX CORRECTIONS

ata, in each time ordering. ) This procedure has
been carried out for a number of low-order dia-
grams, "and the results agree with those pre-
sented below.

Since the number of diagrams increases rapidly
as n increases, this method becomes tedious and
time consuming when applied to larger values of n.
The following method is more convenient. First,
all the self-energy corrections, such as those il-
lustrated in Fig. 3(a), are taken to be accounted
for byusing the measured phonon frequencies, i. e. ,
they are included in the corresponding "skeleton"
diagram [Fig. 3(b)]. The lifetime of the intermedi-
ate- and final-state phonons is taken to be infinite.

There are two types of vertices: (i) the irreduci-
ble ones that cannot be rent asunder by cutting a
single phonon line, such as those in Fig. 3(c), and
(ii) the reducible ones that can be separated by
cutting a single line, such as those in Fig. 3(d).

In the sum of all irreducible vertices of the
same number of external phonon lines, the simple
vertex dominates. %e follow Van Hove in order-
ing the anharmonic terms in the Hamiltonian,
V(Q&" Q„), with e", where e is the small param-
eter given by the ratio of the root-mean-square
displacement of the ions to the nearest-neighbor
distance. The value of e is less than 0.05 in alkali
halides. A complex irreducible vertex must be of
higher order in & than the simple vertex with the
same number of external lines, since cutting a
phonon line will produce one vertex with a larger
number of external lines. For example, . the sim-
ple vertex in Fig. 3(c) is O(e ), but all the other
irreducible vertices in Fig. 3(c) are O(4 ).

00. the other hand, a reducible vertex composed
of simple irreducible vertices is of the same order
in & as the simple vertex with the same number of
external lines. For example, the first diagram in
Fig. 3(d) is O(e'). A reducible vertex that contains
one or more complex irreducible vertices is again
negligible. Therefore, for the total vertex contri-
bution, we need only sum the simple vertex and the
reducible vertices which are composed of simple
vertices only.

To illustrate the procedure of obtaining the ver-
tex renormalization to the n-phonon summation
process, the simplest nontrivial vertex correction,
namely, A~, is first calculated. The two vertex
terms that contribute to the three-phonon absorp-
tion are given in Figs. 4(a) and 4(b). The ratio of
the latter to the simple vertex is

(3i)2 4t~ V(fQsQ4)D(Q4 4)V(Q4QiQ2) 3 t V(fQ&QaQ4) ~

Qg

(5. 1)
The two factors of 3} represent the number of
ways' ' ' the phonon states are attached to the
limbs of each vertex in Fig. 4(b). The divisor 2)
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(b)

and

~ = y"'2
~

U, (q4)
~

2D(q„ f~.,)(N/2m&~, )/d& .
bg

(5. 8)

Then, the ratio of the two vertices [Eq. (5. 2)]
becomes 3'(, and the vertex renormalization fac-
tor is

~3= 1+3') ~ (5. 8)

FIG. 4. Three-phonon summation processes.

represents the fact that interchanging the labels
on phonon lines 1 and 2 again produces the same
terfn. The factor 4l is the number of ways the
four-phonon vertex in Fig. 4(a) can be labeled,
and the divisor 31 is the overcounting factor gen-
erated by rearranging the labels among lines 1,
2, and 3 in Fig. 4(a). The factor D(Q4, t'4) repre-
sents the Green's function for the intermediate
phonon line~2' in Fig. 4(b).

By using the form (2. 14) for the anharmonic co-
efficient and keeping only one term in the sum over
nearest neighbors for both the numerator and the
denominator of the ratio (5. 1), we obtain the ratio

Estimates of d~ and $ are provided in Sec. VI. It
is easy to verify that (5. 9) correctly accounts for
all the three-phonon absorption processes shown
in Fig. 4(c).

The reasoning used in this simple example can
be applied to the general case to deduce the rules
for writing down the renormalization factor for n-
phonon absorption. The simplest term in the total
vertex is the simple (n+ 1)-phonon vertex with one
of the phonons being the fundamental mode driven
at the optical frequency, as depicted by Fig. 5(a).
A typical reducible vertex is formed by joining a
number of irreducible vertices of lower order
such that there is only one phonon line connecting
any pair of irreducible vertices. Some examples
are shown in Figs. 5(b)-5(d).

If a vertex contains m internal lines, then its
ratio to the simple vertex [Fig. 5(a)] contains a
factor $, with t' defined by Eq. (5. 8). Thus,

(5.10)

2

—,4,"'Z2
~

U,(q, )~ D(q„l,) .
21 '

y4 2m&cdQ
(5. 2)

with the coefficient S„obtained as follows. Draw
all topologically distinct reducible vertices with m

The factorial that represents the number of ways
the states in each vertex are labeled cancels neatly
the factorial in the anharmonic coefficient (2. 14),
leaving the counting factor in front of (5.2). This
factor is just the ratio of the number of ways of
rearranging the labels of the equivalent outgoing
phonon lines of Fig. 4(a) to the corresponding
number for Fig. 4(b).

The factor fII) comes from the fact that

(~
(2) )2/~ (4)

@
(2) (5. 3)

by virtue of Eq. (2.18). The momentum and fre-
quency of the intermediate-phonon Green's function
are given by

q4= q~+qz (5.4)

and

(c)

(b)

~a= (dy- 3= x+(da=2(d~x

for the frequencies of interest. Let

Q
= VMfft

d, =1(u' D(q„ l&u, )/2(oo, = (l' —v') ',

(5. 5)

(5. 8)

(5. V)

0-2
-I

«)
FIG. 5. n-phonon absorption vertices. The number n

in a circle denotes a simple vertex with g external lines.
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4d3 6d2

3 6 4 5 5 4 6 3

6ds l5 dg 20 45 l5 d2

30 dpd5 IS d2d4 60 d2 45

60 45d5 60 d245 90 d2 dg

12d2d3

FIG. 6. Four-phonon absorption vertices. The only
external line shown is the fundamental mode.

60 d2 d5 45 d2

IO 45

60 454~

internal lines and n+1 external lines, one of which
is the fundamental phonon driven at frequency n& „.
Each diagram contributes to S„aterm of the
form

l20 45 4445

3 3 4 3

180d2 dyd5

60 d2 d 344

90d2 dy
2

60 4245
2

I80d2 45
2

I80 d2 4544

I80 d2 d545

C d d) "dg (5. 11)
90 d2 45 l5d2 60 d2 4545 45 d2 dg

2

where C„" is the ratio of nl to the number of ways
of rearranging the states of the n outgoing phonon
lines that do not change the reducible vertex. The
factors of d, come from the intermediate phonon
lines, l being determined by energy conservation,
assuming that all outgoing phonon lines have fre-
quency +

For example, the vertices with one internal line,
as in Fig. 5(b), give

n j.

S„=Z —d (5.12)
fftg g m

and Fig. 5(e) contributes to S„ the term

(n I /2 I )d2d3" d„q (5. 13)

Armed with the general rules, we can calculate
the contribution of any vertex. Figures 6-8 show
the relevant vertices for four- to six-phonon ab-
sorption, respectively, and the corresponding con-
tributions to S„

3 5 4 4 5 3

3 3 3 3 3

360 d2 45dgd5 I80 d2 45 dg
2 9042 4

I80 d2 4545
2 45 d2 443 90 d2 d4d5

2

FIG. 8. Six-phonon absorption vertices.

From the considerations in Sec. VI the factor v

in Eq. (5. 6) is 0. 5 or less; thus (5.7) gives

d =l2 . (5. 14)

Therefore, the vertex correction factors are

A~=1, A = 1+0.75$,

A4 = 1+ 1.9444$ + 0. 5208$

A5= 1+3.9236/+ 2. 6563$ +0.3711$

A6 = 1 + 7. 1497$ + 9.2682$ + 3.2511$ + 0.2806$ .
(5. 15)

544 IO 45 IOd2 VI. FREQUENCY AND TEMPERATURE DEPENDENCE
OF ABSORPTION COEFFICIENT

30 d2 dg
2

l5 d2 2045 44

30 d2 45 30 4243

60 d245d4 30 d2 45
2

FIG. 7. Five-phonon absorption vertices.

It is straightforward to evaluate p„given by Eq.
(3. 7) with the n's given by the Brillouin-zone sums.
We shall confine ourselves to two rough estimates
of the a' s.

For a linear-chain model with two atoms per
unit cell, all with equal masses, it is possible to
evaluate explicitly the a's in the low- and high-
temperature limits. Table I shows the results for
the a's with w, chosen to be the top of the phonon

spectrum. This simple model illustrates nicely
all the important features that follow from Eq. (3.7).
As a function of frequency, the absorption coef-
ficient P„due to the n-phonon-summation-process
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TABLE I. Values of parameters from the diatomic-
chain model with equal masses.

Low T
High T

8/~
4(dr/~m»

Ck(4. Q24. Qp

4m 0.223 8/3x
2/7r I, ~7f'Z/4' ) -4/7r ] 0

Similarly, for the optical branch at the same wave
vector,

(6. 2)

For the optical modes near the zone center, U„(q}
is given by Eq. (2. 17). For the acoustical modes
near the zone center, l U, (q)l is nearly zero.

As a rough approximation, I U„(q) l
' will be set

equal to zero for &u &f&u „where f& 1 and where
it is not negligible, and I U, (q) I will be approxi-
mated by an average of the three known expres-
sions (2. 17), (6. 1), and (6. 2); thus,

~

U, (q)~ '=z(I m+, /m )6(&~ fe~,), (6 3)

where e is the unit step function. In the average,
we have replaced (x ~ fv&o} by —,', which is the value
for the (1, 1, 1) zone-boundary mode and is also the
angular average of cos e. The remaining factor is
the average of 1, m&/m&, and m&/m„.

The estimates of the a's are then, from (3. 1},
(3.2), (3.5), (3.6), and (6.3), with the usual ap-
proximation of the sum over q by 6)0"drug(&o),

no, = +, (1+m&/m&)((n+ 1)e/(u) ur, (6.4)

a,.= ((n+ 1)e)/((n+ 1)e/~) & (6. 5)

peaks near na&, w, which is about —,
'

n(d „, Thus,
the total absorption coefficient, which is the sum
of all P„with n-2, is dominated at a particular
frequency by the nearest-n-phonon summation pro-
cess. The frequency dependence of P in the range
2(d „-8& „is, therefore, approximately exponential
since the strength of the peak in P„as a function
of n is approximately exponential. The small val-
ues of ao confirm the validity of neglecting Z„ in
E&I. (3.7). As the temperature is raised, the
strength of the peak in P„ increases, the position
of the peak is shifted toward the lower frequency,
and the width is either narrowed or broadened, de-
pending on the temperature dependence of thephonon
frequencies. Thus, P increases with temperature,
but less rapidly than T" ' at high temperatures.

Now we give a more realistic estimate for NaCl-
structure crystals. There are several wave vec-
tors for which the explicit expression of l U, (q) l

can be written down. For the acoustic branch at
the zone boundary in the (1, 1, 1) direction, the
light-mass ions stand still, and the heavy ions
move in the direction zo&, say. Then,

~
U, (q)~'=(x cS&oPm&/m& . (6. 1)

n~ = [((n+ 1)eu)j((n+1)e/ur)u&, ] —o!z, , (6.6)

where n is the Bose-Einstein distribution factor,

(Ae) = f d&u g((o)&(~}e(u) f(u-„) (6. 7)

and g(&u) is the phonon density of states normalized
to unity. Similar estimates give

Qo & Lt~/(I+ m&, m&) (6. 8)

n((a) + 1 = (ur/(u+ (6. 10)

Then, the averages in Egs. (6.4)-(6. 6) are easily
evaluated.

The value of f will be chosen as f=-,', correspond-
ing to the assumption that, for —,

' of the modes ( —,
' of

the acoustical modes), W, (q) is negligible. In
Table II, we list the data of NaC1 along with the
values of the a's at room temperature correspond-
ing to &ur/~ „=1.03 for NaC1.

To estimate the magnitude of the vertex correc-
tion, we need to know the contribution of the inter-
mediate phonon in the form of $ given by Eq. (5.8).
In the process depicted by Fig. 4(b), the interme-
diate phonon splits into two phonons Q~ and Q»
which were taken at frequency co, i.e. , in the
optical branches. This is reasonable since the

Noel

Q)
LLI

I-
M

o

CO

LLI
O

~(IO~' RADiSEC)

FIG. 9. Phonon density of states in NaCl and the Debye
approximation.

The density of states, shown as the solid curve
in Fig. 9, is approximated by the Debye model,

g(&u)= (~ /(o, )e(& -~) (6. 9)

sketched as the dashed curve in Fig. 9. The value
of (d „is taken as the Debye cutoff frequency in
(6.9). In the high-temperature limit,
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I02
Na Cl

TABLE II. Values of parameters for NaCl at room
temperature.

4. 639 0.757 0.145

p=l/9. 05, a=2. 82 A,
cof=3.09 x10 sec
n„=1.50 (formally for all (d),

B= 2.44»0 ~ dyn/cm
co~=3. 85 x10 sec

=3.82x10 3 g,
m =5. 89x10+~ g

io-4

FIG. 10. Theoretical estimates of p„at room temper-
ature for NaCl. Experimental points from Fig. 1 are
shown for comparison.

high-frequency side of the Gaussian P„(v) curves
contribute to P=@„, as seen in Fig. 10. By a
quasiselection rule, Q4 must be an acoustic mode,
the largest contribution of which will be at the edge
of the Brillouin zone. Thus, we take

using Eq. (6. 1). The frequency of the highest
acoustic mode is taken to be g& „with g'=0. 5, and
the factor (s&e /q&u ) approximately simulates the
effect of the polarization for the long-wavelength
acoustic modes. Substituting Eq. (6. 11) into Eq.
(5. 8), averaging over the possible modes of Q4,
and summing over three branches, we obtain an
estimate of $:

$ =3/ '/5m~&v, =0.18 (6. 12)

Substituting this value into Eq. (5. 15) yields the
following estimates for the vertex-renormalization
factors:

Am = 1. A~ = (1+0. 142) = 1.30.

FIG. 11. Phonon self-energy terms of order e2.

A4= (1+0.388) = 1.83. A5=(1+0. 844) =3.40;
y

A8 ——(1+1.72) = 7.38 (6. iS)

We note that, from Eqs. (5. 1) and (5. 2), the ver-
tex ratio can be shown to be equal to the ratio of
the real parts of the self-energy terms given by
Figs. 11(a) and 11(b) at zero temperature and fre-
quency 2w, . From R. A. Cowley's calculation~3
for KBr, our estimate of $ appears to be somewhat
too large.

The multiphonon absorption calculated from (3. 7)
using the values of parameters from Eq. (6. 13)
and Table H is shown in Fig. 10, where the individ-
ual P„are plotted as light curves and the sum of
the P„ is plotted as the heavy curve. The agree-
ment is rather good in view of the crude approxi-
mations used to estimate the n's. It should be
noted that no parameters have been adjusted in the
theoretical result.

By adjusting iwo parameters in Eq. (3, 7), such
as K and D, (keeping the o.'s at f= —,'), the experi-
mental data can be fitted to within the scatter of the
data. In fact, by changing only the value of the
single-interaction strength parameter 1/p from
9.0 to 12, the dashed curve in Fig. 10 is obtained.
This larger value could be partly explained by the
fact that the higher-order anharmonic coefficients
are much more sensitive to the shape of the poten-
tial curve than the quadratic terms from which the
value of p is determined. Errors introduced by
the approximations and uncertainties in the values
of the parameters used also could account for the
difference, of course.

The near-exponential frequency dependence is
evident in Fig. 10. The vertex correction, which is
included in Fig. 10, slightly improves the agree-
men& with the experimental result. Without this
correction, the p2-p5 curves would be shifted down

by factors of 1, 1.3, 1.9, and 3.4, respectively.
The n-phonon regions, marked on Fig, 10, do not

correspond to n&o~ & ~ & (n+ 1)&uz, to n&o~ «a
&(n+1)~, or to n&o«& «u & (n+1)~«&, as is often
assumed in the literature. In fact, the n-phonon
regions shift as the temperature changes, as dis-
cussed below.

The n= 2 central-limit curve is included in Fig.
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10 even though its accuracy is not expected to be
good. The two-phonon structure is lost, of course,
in approximating pz by a Gaussian, and the peak
does not occur at (d =~&.

The temperature dependence of g at a given fre-
quency in the nearly exponential region is consider-
ably weaker ~ than that of the simple expression

P„(T)/P„(0)=(1 e -"r)(1-e"""r) - T" '
(6, 14)

obtained formally from the occupation-number fac-
tor (2.4) by setting all &q = &/n. The approximation
p„- T" ' in (6. 14) is valid in the high-temperature
limit, and n has been assumed to be independent of
temperature in the past. The T dependence of p re-
sults from the temperature dependence of the pa-
rameters a, e~, and, particularly, the phonon fre-
quencies &e and from the explicit temperature de-
pendence of ~0., ~„, and ~~,.

The following example of NaC1 at 300 K and 10.6
p,m illustrates the strong deviation from the fre-
quently quoted result P- T" '. The value of the
slope (T/P)dP/dT of 6 as a function T on a log-log
plot can be estimated from Eq, (3.V)~ Using I= 5.5
from Fig. 10 and the following approximate expres-
sions for the temperature dependence of the param-
eters, ~e' ~ &ue=&ueo(1 —3.8xl0 ~T), a=ao(1-4. 4
x10 ~T), and e~=ef(1 —1.06x10 4T), we find

——=2 5
T dP
pdT (6.15)

which is considerably smaller than n —1 = 4.5. The
Born-Mayer-potential parameters C and p& pa in
(2. 11)are essentially temperature independent, be-
ing electronic in nature. In particular, Eq. (2 ~ 12)
should not be used to ascribe a temperature depen-
dence to pr from measured values of B(T) and a(T)~

The temperature dependence of B arises from an-
harmonic and volume effects, not from a T depen-
dence of pz.

A weakening of the temperature dependence such
as that in (6.15) is apparent in the data of Harring-
ton and Hass, Barker, Kaiser and co-workers, s

and Denham and co-workers. Finally, it is men-
tioned that in a material, possibly a zinc-blende-
structure crystal, in which the position of a given
multiphonon peak can be traced as a function of tem-
perature, the temperature dependence should be
quite different from that of g at a given frequency.
A detailed presentation of the temperature depen-
dence of p will be given elsewhere.

The p -~ curves of the alkali halides and alkaline
earths show less structure than those of the semi-
conductor materials. It is plausible that the great-
er anharmonicity of the NaC1-structure crystals
could give rise to such short lifetimes of the zone-
boundary phonons that the fine structure in the den-
sity of states is essentially eliminated.

The lifetime of the fundamental phonon is
short, "' and the lifetimes of the zone-boundary
phonons should be even shorter since the selection
rules and quasi-selection rules do not apply to the
zone-boundary modes (with nonzero wave vectors).
A value of relative linewidth 21'/~ of the order of
0.3 for the zone-boundary phonons at resonance
should be sufficient, and this value is reasonable in
view of the value of 2I'/&g = 0.07 for the fundamen-
tal mode in NaC1 and the fact that 2Z/&o is expected
to be larger at the zone boundaries. Furthermore,
as n becomes larger, more convolutions are in-
volved [see Eq. (3.3)], and each convolution tends
to smooth out any fine structure in the density of
states.

This explanation is consistent with the experi. —

mental results which show that the two-phonon
peaks are wider in the alkali halides than in the
semiconductor materials, that I'- T~ at the funda-
mental resonance in NaC1 (implying that the two-
phonon contribution is small at resonance), and that
the two-phonon peaks have been observed in NaC1
even though I - T~ at resonance. A careful study
of the temperature dependence of the two-phonon
summation peaks could show an increase in the
widths of the peaks as T is raised from 77 K to the
highest practical temperature of the solid. Such
increases are apparent in the small amount of ex-
isting data. ~e As the temperature is reduced below
room temperature, additional multiphonon peaks
could appear in higher-I regions where P(v) is rel-
atively smooth at room temperature. Of the three
existing known cases (for CaF~, BaF&, and SrF3 at
VV and 300 K), 3' two show a small additional peak
at 77 K that is absent at 300 K.

It should be emphasized that the two-phonon
peaks are associated with peaks in the appropriate
density of states and are not resonance lines.
Thus, an extrapolation of g(&o) from the reststrahl
region should not be subtracted from p at higher
frequencies to obtain the multiphonon contribution,
as is sometimes done in the literature. An alter-
nate, though unlikely, explanation of the lack of
structure is that the raw-phonon density of states
shows little structure.

VII. ASSUMPTIONS AND APPROXIMATIONS

The assumptions and approximations made in the
previous sections are now summarized: (i) The
photon-phonon coupling is given by the leading di-
pole term, and the Lax-Burstein-Born rnechanismo
is neglected. (ii) For the anharmonic forces, only
the nearest-neighbor Born-Mayer repulsion tenn is
included and is further approximated. (iii) The life-
times of the intermediate- and final-state phonons
are assumed to be infinite. (iv) The central-limit
theorem is used to reduce the n-fold multiple sum
in (2 ~ 3) to a Gaussian whose parameters a are
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given by single sums, although it is possible to im-
prove the asymptotic approximation. (v) Rough
estimates were given for the various Brillouin-zone
sums over the phonon coordinates for the coeffi-
cients o's. All of these approximations except (i)
were shown to be reasonable. The perturbation ap-
proach used is justified by showing that all dia-
grams not included in the results are negligible.
Concerning (i), the long-standing question of the im-
portance of the Lax-Burstein-Born mechanism in
NaC1-structure materials remains unanswered.
The mechanism is quite simple to include formally;
estimating the strengths of vertices has been the
problem.

Our calculation gives good agreement with ex-
perimental results for the frequency dependence of
the optical absorption and demonstrates the general
nature of this dependence for crystals with tetrahe-
dral symmetry. The estimates listed in (v) above

enable us to see explicitly the nature of our results.
Some of the estimates must be regarded as tenta-
tive. However, these approximations are not es-
sential to our theory. We plan to perform both the
multiple sums in (2 ~ 21) for n = 2-6 and the single-
phonon sums in E|ls. (3.2), (3.5), (3.6), and (5 ~ 6)
by computer. This will enable us to examine more
rigorously the validity of the other approximations,
especially (iv). The computer results for the mul-
tiple sums in (2, 21) should provide greater accura-
cy in the small-n regions, say n= 2 and 3, where
the central-limit results are less accurate, and
should afford a good test of the approximations
in the region of n=4-6. The temperature
and frequency dependence of P for a number of
crystals will be included in the computer pro-
gram, which is being performed in collabora-
tion with A. Karo of the Lawrence Livermore
Laboratory.
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