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Electric Fields and Currents due to Excess Charges and Dipoles in lyso&ators
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A general treatment is given of the relationship between internal and external parameters for a
charged dielectric in a plane-parallel geometry. The charges induced on the electrodes by surface
charges, volume charges, oriented dipoles in the dielectric, and an applied voltage are calculated for
contacting or noncontacting electrodes. The fields outside and inside the sample are also calculated.
Similarly, the external current is related to the internal conduction and depolarization currents. An
analogy is developed between the current flowing through the system in shortwircuit conditions and the
time derivative of the applied voltage that cancels the external current. Because of its relation to the
motion of carriers in the dielectric, the motion of the zero-field plane is investigated under very general
conditions.

I. INTRODUCTION

Renewed interest in research on electrically
charged dielectrics, or electrets, has made it nec-
essary to use various methods for charge' 4 and
current measurements. They all exhibit a com-
mon feature: The measured variables are external
ones. The charge densities are evaluated from the
electric field outside the sample: The currents in
the electret, due to the liberation of trapped
charges or frozen-in dipoles, are computed from
the current measured in an external circuit.

In this paper, we shall derive general relations
between the internal parameters and the externally
measurable variables. The static fields inside and
outside the dielectric sample will be calculated
first; then the current in an external circuit will be
related to the conduction and depolarization cur-
rents in the sample, and to the variation of the ap-
plied voltage. The direction of charge-carrier
drift depends on the position of the zero-field plane
in the dielectric sample: for this reason, a gen-
eral relation between the motion of the zero-field
plane and the external current will finally be de-
rived,

P(z) being the slow polarization, so that we define
the induction in the dielectric by

Ds(z) = & sEs(z)+ P(z) .
The charge distribution induces image charges a,
and o, on two electrodes g and b, separated from
the sample by two gas layers 1 and 3, of thickness
d& and ds and permittivity &z. A static voltage V is
applied to the electrodes, one of them, a for in-
stance, being grounded. The cases in which one
electrode, or both of them, are in intimate contact
with the sample, are particular cases of the pre-
vious one. In all of the following calculations, we
assume that end effects are negligible, and that all
variables depend on z only. The electric fields
E& and E3 in layers 1 and 3 are therefore uniform,
and the field Es(z) in the sample is related to the
charge density by Poisson's equation:

SDs(z)
( )8

II. STATIC FIELDS

A. Induction Charges (3)
'2'3

%e assume that the dielectric sample, of thick-
ness d~, exhibits, as shown on Fig. 1, a volume
charge density p(z), two surface charge densities
o, and &xs, and a volume polarization P (z) due to
dipole orientation. The latter term expresses two
phenomena: the usual "fast" response of the di-
electric, which is characterized by a short relax-
ation time r (r «1 sec), and the "slow" response
(r» 1 sec), which results in the so-called hetero-
charge of the electret. The following calculations
will be carried out by describing the fast response
by the infinite-frequency dielectric constant ~~,

O.-

~ ~

FIG. 1. Charged dielectric (2) with two gas layers (1)
and (3).
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For z=0 and z=d2, the latter equation can be writ-
ten as

—&gEg+Dz(0) = og,

z,ES-D, (d, )=o, .

The superposition of these two equilibrium states
yields

L(o,/zg) = Vo- V ~ (5)

V, is the equivalent voltage of the electret. It is
the voltage that must be applied to the capacitor in
order to cancel the surface charges on electrode u.
Relation (5) is valid whether the electrodes are in
contact with the sample or not, with the appropri-
ate changes in the definition of L. The voltage Vo

may be calculated from Eqs. (1)-(4), making use
of the fact that the quantity gz [/ p(N) dg]dz may
be integrated by parts:

The necessary boundary conditions are given by the
applied voltage V

V = —Egdg —f+ Ez(z)dz —Ezds . (4)
0

Suppose first that the dielectric sample is not
charged; the surface charge o, is due to the applied
voltage only, and is easily found to be given by

Lo, /z, = —V,

where

dg + (&g/&z)(fz+ dg ~

Suppose now that the sample is charged, and that
the electrodes are short circuited; the charges on
the electrodes are determined by the charge densi-
ties on the sample and the geometry of the system:
We may define a voltage Vo by

sample, (z) is the mean penetration depth of these
charges. On the contrary, if the dielectric exhib-
its several nonoverlapping distributions of charges,
then (z) may be split into several terms (zg, (zz),
etc. , each of which is the mean position of one of
the charge distributions. A typical case is that of
an electret charged positively on one side and neg-
atively on the other side, under near-surface trap-
ping conditions. Relation (6) is similar to that de-
rived by other authors for a nonpolar substance
[P(z) = 0]. When one of the electrodes is in contact
with the sample (for instance, if it has been evap-
orated on the dielectric), two possibilities arise:

(i) The dielectric under investigation has not
been charged on the metallized side. Such is the
case if the sample is charged by discharge in the
air gap separating the electrode from the sample.
Then the equivalent voltage is obtained from rela-
tion (6) by making the gap thickness and the corre-
sponding surface charge zero.

(ii) The sample has been charged before evapo-
rating the electrode, or, after being metallized, by
charge bombardment and injection. Then Vo re-
mains unchanged if electrode a is in contact with
the dielectric, and, if electrode 5 is in contact with
the sample, becomes

&I-Q&(( de ( J' ()
S &2 g2 0,

If both sides are metallized, the latter relation
still holds. In all cases, the induction charge on
electrode 5 is the opposite of the sum of the induc-
tion charge on e and the total charge trapped in the
sample:

L(g, /z, ) = V- V, —(L/z, ) (o, +o, +Q/S).

B. External Fields

f"[f;p(a)du]dz=d, f, 'p(z)dz f"zp(z-)dz.

The first term on the right-hand side of the latter
relation is proportional to the total volume charge;
the second term involves the dipole moment of the
distribution. When gas layers 1 and 3 are present,
the equivalent voltage is found to be given by

d —(z) dz Q d2 + ~ ~o'
f2 6'i S

—+~ op+ — P(z)dz. (6)d2 d 1 42

E'2 ci 62 Q

Q is the total volume charge and S is the area of
the sample. The quantity (z) is defined as

(z& = f 'z zp(z) dz/ f 'z p(z ) dz .
When the injected charges are of one polarity, and
are continuously distributed in one region of the

In the general case, the external field created by
the electret is related to the induction charge on
electrode c by

so that

LEi= Vo- V.
This relation holds only if there is a gap between

electrode g and the sample.
Similarly, if electrode 5 is separated from the

sample, the resulting field in layer 3 is

LES= Vo- V+ (L/&i) (&rg ~ +Qz/+S) .
Consequently the equivalent voltage of the electret

is the voltage that must be applied to the capacitor
in order to cancel the field in gap 1. This property
is used as a method of measuring surface charge
densities. i
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C. Internal Fields

The knowledge of the internal field is essential for
the study of stimulated currents, for it determines
the direction of drift of the free charges. Figure 2
shows two examples of field distributions.

(a) The sample exhibits a surface density o, and
a uniform negative volume density p to a depth a.

(b) The sample exhibits a surface density o1, a
uniform negative volume density p to a depth g, and
a uniform positive volume density p' to a depth a'.

The value of Ez(z) obviously depends on the ap-
plied voltage: A variation of V results in a verti-
cal translation of the curves. Consequently, for
suitable values of the applied voltage, one or sev-
eral zero-field planes or domains will exist; in
such a case, some of the released charges will
drift towards the nearer electrode, others towards
the further one. The influence of the zero-field
plane has been investigated in one particular case
by other authors' ' and will be derived in a gen-
eral way in Sec. III.

III. STIMULATED CONDUCTION AND DEPOLARIZATION
CURRENTS

A. General Relations

We assume that a conduction current j(z, t) exists,
resulting from the drift of released charges in the

electric field due to the space charge and to the ap-
plied voltage. The volume polarization P(z, f) is
also assumed to vary because of the liberation of
frozen- in dipoles.

Assuming air gaps 1 and 3 to be perfectly insu-
lating, and electrodes a and b to be perfectly con-
ducting, the conservation of the total current is
expressed by

( )
dE1(t) .

( )
&Dz(z, t) dE(((t) (8}

where J(t) is the current flowing in the external
circuit, and Dz(z, t) the induction in the sample as
previously defined. Integrating relation (8) over
the whole thickness of the sample and using rela-
tion (4), one obtains

dg. ((zsP(z, t) dV
'j(z, t) «+ ' « —zp—

z(((, ( I'((*,((a. f"'~ ' ~), (10)

(9)
This relation is still valid if one gas layer, or both
of them, has zero thickness. It does not depend on
the nature of the contact-Ohmic or blocking —be-
tween the electrodes and the samples. When both
electrodes are in contact with the dielectric plate
and are short-circuited (which is a very usual ex-
perimental situation), then

E2

(pq ~E, Vo V

82 L

~~ ~
'4 . ~o-v

f2 L

In the general case, the third term in relation (9}
just means that a current flows in the external
circuit when the ayplied voltage varies, which re-
sults in a variation of the field E, outside the elec-
tret; this field also varies because the distribution
of charges and the dipole orientation are changed.
Consequently, the applied voltage may be varied
so as to cancel the change in Ej due to the internal
currents; in such a case, the variation of V must
be an image of the charge flow and depolarization
in the dielectric. It will also result in canceling
the external current, since the displacement cur-
rent in layer 1 is zero. Relation (9) leads to

E2
~cr j~ Vo-V~s +a

~G v~w

L

P v if t
+f'a'

),td" "" "'d. ,gp fg p

which, as expected, is very similar to relation (10).
It shows that the measurement of V in such con-
ditions may give the same information as the mea-
surement of J between shorted electrodes. If the
sample does not exhibit any heterocharge, then the
external current is

0 d2' d2

61 / d2 dV
j(z, t) « —z, ~L&ai p

FIG. 2. Example of field distributions in the dielectric. and
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-gy- j d~'j(z, t)dz .
-et - ~-o &a p

B. Determination of Mean Penetration Depth

A method for measuring the penetration depth of
injected charges has already been proposed. ~z It
is based on the comparison between the induction
charge and the total charge released in a stimulated
discharge of the dielectric, that is,

q= f,"Z(t)dt.

We have seen that J(t) and [sv/st]~ Oar. e equivalent.
We will derive the mean penetration depth of the
charges in terms of the latter quantity. One has

dt = v(-) —v(o).
g p

The current flowing in the sample is related to the
evolution of the space charge by the equation of
charge conservation:

&j(z, t) sp(z, t)
ez &t

If we assume that the sample is purely homo-
charged, we can make use of relation (ll), which
leads to

V(~) —V(0) =— j(0, t) dt — — d—td, ". d, "-s q(t)
&a p

'
&a o~t

, ( -~ (((t(( (t))) „,
&a o et 8

The first term may be interpreted either as the
total charge flowing from the electret into electrode
a, if the latter makes an Ohmic contact with the
sample, or as the variation of the surface charge
o~[if the electrode is separated from the sample,
then j(0, t) =da(/dt].

Assuming that one type of charge only is pres-
ent in the sample, and that the electric field and
the trapping conditions are such that all the
charges will drift towards electrode a, and reach
it, then

Q(0) =S(& /d ) [V(0) —V( ) —V(&(0)]

and

v(-) —v(o)
'v( )- v(o}+ v, (o)

To derive these relations, an additional assump-
tion has to be made, namely, that the initial
charge is essentially a volume charge. If the sur-
face charge is not negligible, or if the existence
of a zero-field plane prevents some of the charges
from drifting towards electrode a, the above ex-
pressions are approximate and yield only an upper
limit of the mean penetration depth.

C. Motion of Zero-Field Plane

z(t) ( t) (13)

Substituting relation (12) into (13) gives

J(t) =j(z, t) 'p(-zo, t)+
~ et' d~ ~

('sp(s, t)
dt

The last term is related to the conduction current
by

d((=j(z„ t)- j(z, t),r
's p(s, t)

8p

and consequently

J(t)=j(z, t)- p(zo, t)
dt

This relation is valid whether the electrodes are in
contact with the sample or not, whether a voltage
is applied or not, and whether heterocharges are
present or not.

If we further assume that the diffusion current
is negligible as compared to the conduction cur-
rent, then

Z(t)=- ' p(z„t) .
dt

It can be easily shown that, if several zero-field
planes are present, the latter relation is valid for
all of them.

When a stimulated discharge is performed under
short-circuit conditions, the zero-field plane lies
approximately half-way in the charge distribution,
so that approximately equal quantities of charges
drift in bvo opposite directions. Under slow retrap-
ping conditions, both electrodes are reached by the
charges, so that the external current is not mea-
surable; consequently, stimulated discharges can
give information under fast retrapping conditions
only 13

Qn the contrary, if the stimulated discharge is
made at constant E&, the external current is zero,
so that the zero-field plane does not move; since
its initial position depends on the applied voltage,
the latter may be so chosen as to make most of the

We are assuming now that the applied voltage is
such that one (or several} zero-field plane exists.
We will consider, for simplicity, the case of
one zero-field plane of abscissa zp(t),

E,(z,)= o.
After Poisson's equation, the internal displace-
ment at any plane z may be expressed as

Dz(z, t) = f p(z, t) dz . (13)

The continuity equation relates the external current
to the conduction and displacement currents:
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charges drift towards the nearer electrode, and
this condition will be automatically maintained
throughout the discharge. Consequently, mea-
surements can be made in all trapping conditions.

IV. CONCLUSION

General relations between internal and external
variables have been derived for charged dielec-
trics. The charges induced on nearby electrodes
have been related to the charge densities in the
sample and to the applied field with contacting or
noncontacting electrodes; a general definition of
the equivalent voltage of the electret has been
given. Similarly, the current flowing in the exter-
nal circuit has been related to the conduction and
depolarization currents, and to the applied volt-

age, with contacting or noncontacting electrodes.
These relations, and the subsequent ones, are
valid if the conduction current is due to the space
charge only, or if it is also due to Ohmic conduc-
tion. An analogy has been developed between the
current flowing through the system in short-circuit
conditions and the time derivative of the voltage
that must be applied to the system to maintain the
external field constant. The possibility of mea-
suring the mean penetration depth of the charges
using this analogy has been outlined. Finally, the
external current has been related to the motion of
the zero-field plane by a simple, general relation,
showing that the zero-field plane does not move
during a zero-external-current discharge, which
conveys much versatility to the method.
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