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Electronic States and Optical Properties in Cubic Ice

G. Pastori Parravicini and L. Resca

(Received 20 October 1972)

The electronic states of completely polarized cubic ice are studied using as an expansion set the Bloch
sums formed with water molecular orbitals. A complete symmetry analysis appropriate for the
nonsymmorphic group of cubic ice is given for a simplified model. The band structure of cubic ice is
obtained at high-symmetry points and high-symmetry lines of the Brillouin zone. The calculated energy gap
of 7.8 eV is in good agreement with experimental data and corresponds to a critical point of type Mo at
k = 0. The critical points of type M, occurring at the point L of the Brillouin zone are interpreted as
responsible for the strong peak in the ultraviolet optical constants at 8.7 eV. The broad absorption band at
higher energy (- 15 eV) is interpreted as due to transitions from valence bands derived from lone-pair
orbitals to the lowest excited bands.

I. INTRODUCTION

Numerous theoretical and experimental studies
on the physical properties of ice have been made in
the past few years. Recent experimental and the-
oretical work is reviewed in Refs. 1 and 2. In
particular, the optical constants of ice have been
studied by a number of authors both in the infrared
region and in the ultraviolet region near the fun-
damental absorption edge. The investigation of the
optical constants has been extended up to about
25 eV by means of electron-energy-loss tech-
niques. The use of synchrotron radiation as alight
source makes it possible to extend even further
the investigation, and some preliminary experi-
ments have already been attempted. The knowl-
edge of the band structure of ice crystals is basic
for an understanding of the optical properties above
the energy gap and constitutes the main purpose
of this paper.

Ice can crystallize in a large number of struc-
tures. Any ice crystal is formed by water mole-
cules located in such a way to satisfy the hypotheses
of Pauling' that (i) the molecules of HaO are intact
in ice and (ii) along the direction O-O there is one
and only one hydrogen atom, closer to one or the
other of the two oxygen atoms. Thus n a given
ice structure the oxygen positions are fixed, while
the hydrogen positions are random, provided they
satisfy the hypotheses of Pauling.

In cubic ice (CI) the sublattice of the oxygen
atoms is the same as the fcc diamond structure.
Every oxygen is surrounded by four nearest-neigh-
bor oxygens in a tetrahedral configuration and
there are two oxygens in the unit cell. In the oxy-
gen sublattice the site symmetry around an oxygen
position is T~, the point group is 0„=T~x(E, I), and
the space group is not symmorphic because the in-
version symmetry I is associated with the frac-
tional translation which exchanges the two oxygens
in the unit cell. If we now consider the fact that

the hydrogen atoms make two of the four 0-Odirec-
tions different from the other two we immediately
have that the maximum site symmetry of cubic ice
crystals is the subgroup C~„of T„and its maximum
point-group symmetry is the subgroup C~„of 0„,
with a nonsymmorphic space group.

In CI two nearest-neighbor water molecules can
take three different relative orientations, because
of the tetrahedral coordination of the oxygen atoms
and the random distribution of the hydrogen atoms.
According to the statistical model of Pauling, each
of these three relative orientations occurs with the
same probability. In order to construct a mean-
ingful and simple model for obtaining the band
structure of ice, we take advantage of the fact that
the general electron density distribution for the
water molecule is practically spherically sym-
metric around the oxygen, which is the typical
case for the 0-H interaction. In such a physical
situation we expect that the overlap between two
electron clouds centered on two nearest-neighbor
molecules is approximately the same whatever
relative orientation of the two molecules is consid-
ered. Also the overlap between the electron cloud
of a given molecule and the electron cloud of its
nearest-neighbor molecule multiplied by the molec-
ular potential (which is not spherically symmetric
because of the proton contributions) does not depend
on the three possible relative orientations. The
overlap integrals and potential integrals just de-
scribed determine the electronic states in ice;
since they are independent from the relative molec-
ular orientations, we assume, for convenience,
that the two molecules in the unit cell. are lined up
with parallel axes. We will further discuss
quantitatively this assumption in Sec. IV.

In a previous work, ' we noticed that the partic-
ular relative orientation in which the axes of the
two molecules per unit cell are lined up preserves
fcc translational symmetry and gives a periodic
structure, which we call cubic-ice model structure
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(CIMS), to which the powerful methods of elec-
tronic-state calculations can be applied. The CIMS
has a nonsymmorphic space group with point group
C4„and constitutes the maximum-symmetry model
for CI. We will now study the electronic states
using the molecular tight-binding approach along
lines similar to those briefly outlined in our pre-
vious work. ' Incidentally, we notice that CIMS
should occur in the ferroelectric phase of cubic
ice" or upon application of a sufficiently strong
electric field while crystals are being made, as
suggested by Onaka'; however, these two points
have not yet been confirmed.

In Sec. II the symmetry analysis of the cubic-ice
model structure is performed by applying proce-
dures appropriate for nonsymmorphic groups. In
Sec. III the procedure adopted for calculation of
the electronic states is given. Section IV contains
the results and the interpretation of the first ab-
sorption bands in the ultraviolet region. Section V
contains the conclusions.

C

S

41 I

FIG. 1. Schematic representations of the cubic-ice
model structure. The oxygen positions are represented
with black circles. The hydrogens of the two molecules
per unit cell are also shown.

II. SYMMETRY ANALYSIS OF CUBIC-ICE MODEL
STRUCTURE

The symmetry group of H~O molecule is C~„.
This group consists of the identity F., the rotation
C& by n around the Line bisecting the H-0-H angle,
the reflection 0„ in the plane containing the twofold
axis and normal to the plane of the molecule, the
reflection o„(often indicated in the literature with

o„) in the plane of the molecule. In Table I the ir-
reducible representations of the group C2„are re-
ported for convenience. We see that basis func-
tions of type A, (A, ) are even (odd) under both re-
flections o„and o~, while basis functions of type
B, (B2) are even (odd) under o„(o„)and odd (even)
under o„(o„).

The CIMS described in the Introduction is sche-
matically shown in Fig. 1, where for simplicity
only the four hydrogens in the unit cell have been
indicated. The other hydrogens are located in such
a way to form water molecules with the twofold axis
parallel to the x axis. The translational symmetry
of CIMS is fcc, with fundamental vectors

The four hydrogens are in the positions

1H 4 aO(p& p& p)
1

5,.=-",(p, —p, —p),
54„= sap(p+2, —p+ 2, p+2),
54„= 4 ao(p+ 2, p+ 2, —p+ 2),

(2. 2)

where P = Q. 7 corresponds to an 0-H separation of
1.83 a.u. as in free water'3 and to a H-0 separa-
tion of the hydrogen bond of 3.36 a. u. It is im-
mediately noted that

f5' 5iol
I az 5iol

r, = —', ao(1, 1,0),
with ao= 6. 35 A at the temperature of 138 K. With
the choice of axes of Fig. 1, the two oxygens per
unit cell are in the positions

5go= (0, 0, 0),
(2. 2)

5qo ——4 ao(l, 1, 1) .

7; = a ao (0, 1,1),
rz = g ao(1, 0, 1), (2. 1)

=
f sa —5 o

f

=
f
54s- 52o

f

TABLE I. Irreducible representations of the symmetry
group C2„.

so that the first water molecule in the unit cell is
constituted by the oxygen 54o and the hydrogens 5~„
and 54s, while the second molecule in the unit cell
is constituted by the oxygen 6~& and the hydrogens
6~ and 6~. The smallest H-H distance is

Group C2ti

Ag

A2
B)
B2

C2

1
1

—1

1
—1

1
=f5~-&4-5~sf =4 24'u '

the next smallest H-H distance is i 52++7., —5,s)
= 5. 52 a. u. The smallest O-O distance is
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TABLE II. Symmetry operations of the cubic-ice
model structure. The symmetry operations are indicated
using standard notations. For instance, I62~, indicates
the rotation by 27t/2 along the axis, whose director co-
sines are in the ratio 0:1:1, followed by inversion. For
convenience, the coordinate transformations are also
given.

Symmetry
operations

(E io}

Q,.I o}

f52~ I 0}

(m,„, , I 0}

Coordinate
transformations

Symmetry
operations

Q4. ~R

Qn2„ I f}

Coordinate
transformations

x+ gap
1

1x+ gap

1 — 1z+ gao &+ gao

z+gao I+gap

x+ gap y + gap z+ 4ap
1 1 1

1 1 — 1x+ gap y + gap z+ &ap

k

I ~ao stol I ao r& No I I
~ao —ra ~to

I

P

I
~ao ra 10I

Because of Eq. (2. 1), the Brillouin zone cor-
responding to CIMS is the usual truncated octahe-
dron shown in Fig. 2. Since the point-symmetry
group C4„of CIMS is not a cubic group, the sym-
metry properties of the energy as a function of k
in the Brillouin zone are completely different from
those of cubic crystals with fcc structure. In par-
ticular we notice that the line k„ is not equivalent
to the lines k„k, in CIMS. For convenience, the
symmetry operations of the group C4„are indicated
in Table II. The space group is not symmorphic
since half of the symmetry operations of C4„are
associated with the fractional translation P= —,

'
sa

(1, 1, 1)= fTao —Iiqo, which exchanges the two mole-
cules among themselves.

At the center of the Brillouin zone and along the
line k, the crystal states are classified according
to the irreducible representations of the group C4„.
The irreducible representations at ~, P, and X
are reported in Table III. We notice explicitly the
importance of the phase factor e "P, whose ap-
pearance is due to the fact that the group is not

symmorphic. ' Because of this phase factor the

FIG. 2. Brillouin zone, symmetry points, and symme-
try lines of the cubic-ice model structure.

representations X&, X2 and X,', X2 are degenerate
by time-reversal symmetry, as can be seen by ap-
plying Herring's test. " All crystal states are thus
doubly degenerate at the point X.

Along the line k„ that is equivalent to k, but not
to k„, the symmetry operations are {El pj and

{I5a,1t), and we indicate with q, and qa the even and
the odd representation.

At the point Y I k = (2 v/sa) (0, 1, 0, ) I the symmetry
operations which leave k unchanged are {El 0),
{I)a,lpj, {I&a„lf), {Ioa,lf j. To obtain in this case
the irreducible representations, we notice that for
k= (2a/aa)(0, 1,0) and r„=ngTg+naTa+naTa 8
-=e'""~'"3' takes either the value 1 or —1 when the
sum n&+n3 is even or odd, respectively. We col-
lect all the translations in the two sets, which we
indicate by {EI 0}and {EI 1) corresponding to the
value 1 or —1 of e'"' ". Then we consider a new

group whose elements are reported in Table IV and

TABLE III. Irreducible representations at the point b. , along the line p, and at the point X of the Brillouin zone. The
phase factor e ''P equals 1 at the point b. and equals -i at the point X. The representations X&, X2' and X&', X2 are de-
generate by time-reversal symmetry.

Point b,
k= (0, 0, 0)

b,2'

Line p
k = (27(./a()) (p, 0, 0)

pi

P2'

pi'

P2

Point X
k= (2~/a, ) (1, O, O) (E lo)

1

(5 „10j
(~„lf )
(s4„'I f)

e-f rP/2

«i fp/2

e-i ffP/2

'1 tp/2

(Iba„ I f)
(I~,.I f)
e-j rP/2

e-5 gP/2

e-f rP/2

e-4 rp/2

(In, I o)
(Ia „10$

1
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TABLE IV. Irreducible representation at the point Y
of the Brillouin zone.

][ *int.

Yi 2 -2 0

Point Y 9,.[0}
k= (21'/a0)(0, 1, 0) (E I 0} (E I 1} (52„]1}

$52, I f} $62 If)
$6~„l f +1) {152'If+1)

0 0

whose multiplication rule is the inner product of
two sets. From all the irreducible representations
of the new group one must consider only those ap-
propriate to Bloch functions of vector k. The two-
dimensional irreducible representation so obtained
is reported in Table IV. At the point Y all crystal
states are thus doubly degenerate.

Along the line l [k= (2s/aa)(l, f, f), 0&i &1] and at
the point L [k=(2v/ao)(1, 1,1)] the symmetry oper-
ations are (E I 0}and (f5a„, I 0}, and we indicate with
f, (L, ) and ls(Ls) the even and the odd representa-
tions, respectively.

To complete our symmetry analysis we give in
Table V the allowed optical transitions between ir-
reducible representations at high-symmetry points
of the Brillouin zone. The allowed optical transi-
tions at the line p and at the point X are the same
as in ~. The allowed optical transitions at the line
l and at the point L are the same as in q.

III. CALCULATION OF THE ELECTRONIC STATES

A. Molecular Orbitals of Water

In order to avoid possible confusion let us first
clearly define the internal frame of a water mole-
cule as follows: The origin of the internal frame
is chosen in 0, y„t is perpendicular to the water
molecule plane, z&,t lies in the plane of the mole-
cule and bisects the H-0-H concave angle, xi,t is
in the plane of the molecule and is perpendicular to
y„, and s„, (Fig. 3). The molecular orbitals of
water have been computed by a number of au-
thors. ' '~ For our purpose, we choose an expan-
sion of molecular orbitals in the so-called minimal
set' constituted by the Slater-type functions 1s,
2s, 2+, 2p„, 2$, centered on the oxygen atom, and
two 1s Slater-type functions centered on the hydro-
gen atoms. The molecular orbitals are written as

int.
X

H (2) H (0)

FIG. 3. Internal reference frame for the water mole-
cule.

v

q, (r)=Z a) ~,(r d„),— (3. 1)

~(2f,);
and two orbitals of type B~,

fps(2p o)+ g[ ~(ls») —y~(lsas)1 .

(3. 3)

(3.4)

From the values of the coefficients of Table VI, we

where the coefficients a& and the exponents of the
Slater-type functions g„are obtained from self-
consistent calculations for the free molecule. In
Table VI we report the coefficients az, the expo-
nentials and the centers d of the Slater-type wave
functions y„and the corresponding molecular
eigenvalues. ~ The ground-state configuration is
thus

8 )'(A )'(~ )'(A )'(& )'

The symmetry of the molecular orbitals is such
that there are four orbitals of symmetry A& of the
type

ay&(iso)+ by~(2so)+ cy4(2&so)

+d [pq(ls„&) + rp, (ls„s)]; (3.2)

one orbital of type B„

TABLE V. Allowed optical transitions in the dipole approximation. We have indicated
separately the case in which light is polarized parallel or perpendicular to the fourfold axis.

Initial states

Final states with e parallel to
the fourfold axis

Final states with e perpendi-
cular to the fourfold axis

b) b 1' A2 b2'

&s &s &s

Y,
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TABLE VI. Minimal set expansion of the molecular orbitals of water in the intrinsic reference frame. Energies are
in rydbergs and distance in Bohr radii (after Ref. 16).

Ei = —41.112

E2= -2. 570

E3 = —1.249

E4= - 0. 932

E5 = -0.805

E6———0. 154

E7 = -0. 007

A(

A(

A( $4

&s

A( t/re

Center
Expt. coefficient

Slater-type functions

d( = (1.431, 0, —1.109)
1.27

cp& (ls'H )

—0. 0036

0. 1516

—0. 4235

—0 ~ 2646

0 ~ 8102

0. 8465

d2=0
7. 66

P2 {1SO)

0. 9968

d3= 0
2. 25

P3(2 so)

d4=0
2. 21

y4(2p )

0. 0152 —0. 0032

d)=0
2. 21

q, (2p )

0

0 0 0 0

0. 1218 —0. 8841 0. 7392 0

0 0 0 —0. 9876

—0. 2219 0. 8426 —0. 1320 0

—0. 6241

—0. 0934 0. 5160 0 ~ 7870 0

d6= 0
2. 21

d7 = (- 1.431, 0, —1.109)
1.27

+7 (1SH2)

—0. 0036

0. 1516

0.4235

—0. 2646

0. 8102

—0. 8465

can also notice that the orbital g, is basically the
1s state of the oxygen atom; 7t)~ is a bonding corn-
bination of the 2s oxygen state both with ((&4(2P o)
and with 9&((ls s()+ ((&z(ls &n); g, is a bonding com-
bination of e&5(2p„o) and 4&((isa() —(((&7(lssz); (l&4 is a
lone pair essentially formed with ~(2so) and
((&, (2p,o) states, the electron density being mainly
in the z axis away from the hydrogens; g~ is the
((&6(2p,o) orbital and is another lone-pair orbital
with electron density away from the plane of the
molecule. The excited states 7t), and g, are anti-
bonding orbitals with electron density mainly cen-
tered on the hydrogen atoms.

We wish to remark that the values of the energies
E~ and E, of Table VI have been obtained by in-
cluding the exchange and Coulomb interaction of the
excited orbital with the hole left in the molecule,
since we will be interested in optical transitions. '
The first molecular excitations in the Hartree-
Fock approximation with the minimal set expan-
sion are

that constitute our basic reference frame. We
have for molecule I

x„„—z &(2 (y+ z),
y„, = 2 W2(y —z),
z~~= —x y

for molecule II

x„,= —,"W2( —y+z),

y(n(
——z & 2 ( y+ z), (3.6)

B. Electronic States in Ice

Zint X ~

When the basic reference frame x, y, z is used,
the coefficients of Table VI are to be changed in
agreement with (3. 5) and are reported in Table
VII. Notice that the symmetry of the orbitals B,
and B~ of the second molecule are exchanged be-
cause the representations A&, A~, B„B2are re-
ferred to the first molecule in the unit cell.

E,-E,=0. 651 Ry=8. 85 eV,

E, —E4=0. VV8 Ry=10, 58 eV,

E, —E,= 0. V98 Ry = 10.85 eV .
(3. 5)

(3.7)

As indicated in Fig. 1 we have two molecules
per unit cell, and the basic molecular orbitals are

q( ((&)rP a((&y (r d((&)

Other calculations of the excited-state energies
using a basis larger than the minimal one and dif-
ferent configurations are in agreement to within a
few percent with (3. 5). '7 From a physical point of
view this agreement is not surprising because the
first molecular excitations in water correspond to
a transfer of an electron from a 2p oxygen state to
a 1s hydrogen state, which are both included in
the minimal set. For reasons of simplicity we
will thus describe the ice electronic states start-
ing from the minimal-set molecular orbitals of
Table VI.

It is convenient to write explicitly the relation-
ship between the internal frame of the two mole-
cules per unit cell of Fig. 1 and the x, y, z axes

where i=1, 2 labels the molecules, j=1, . . . , V

labels the molecular orbitals in ascending order
of energy, and cp are the appropriate Slater-type
functions expressed in our basic x, y, z coordinate
system as given in Table VG, where also the coef-
ficients aj( ' and the positions d"' are reported.
The number of molecular orbitals g~" &(r) is thus
14, because the minimal set has been adopted; the
number of electrons per unit cell is 20. Starting
from (3. 7) we form the 14 molecular Bloch sums
of vector k:
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l[(4&«&(k, r) ]H —E
f
4~" '(k, r))// =0, (3.9)

where H is the crystal Hamiltonian. This is an
extension of the standard tight-binding approach

N &„m=i
(3.8)

where N is the number of unit cells in the crystal.
At a general. k vector the crystal energies are ob-
tained as solutions of the determinantal equation

obtained with the use of molecular orbitals instead
of atomic orbitals. The use of the molecular Bloch
sums automatically implies an important step to-
ward self-consistency in treating atoms which
belong to the same molecule. '

Let us now discuss the evaluation of the matrix
elements of the determinant equation (3.9}. We
first consider the overlap matrix elements

S&&&j '(k) = (4~" '(k, r)
~

4»' '(k, r)),
which, because of Eq. (3. 8) yields

8)).' (k)= P 2 e" '"a&")),(& —d„"' —F) P Q 8"" )'„'))„.(r —t(," ' —&))vtN vN

= Z Z e" a' 'ay' '(P (r —d„"') ~%„.(r —d" '-r })
m&m =i

(3.10)

where the g;„has just cancelled the denominator
1/N. The matrix elements of the type
(g„(r —d"')

I ()&)„(r—d" ' —F)) decrease rapidly
with increasing the two-center distance )d's +'T„'

—d "'I; for our purpose it was sufficient to include
first-, second-, third-, and fourth-neighbor inter-
actions. Following the procedure of Slater and
Koster, ~0 the matrix elements (&)&) (r —d )

TABLE VII. Minimal set expansion of the molecular orbitals of the two water molecules
per unit cell in the basic reference frame of Fig. 1.

Ei(') =E,

E(1)—E
E(1) E3 3

E( )=E

EP&=E,

E(1)—E6 6

EZ"'=EZ

B2

y(1)

ic)
(1)

Center
Expt. coefficient
Slater functions

(1)di
1.27

Wi(»81)

a i i

a31

a41

a 61

a 71

(1)
d2

7. 66
y2(ls p)

a12

a22

a42

a62

a14a13

a23

a43

—a24

~22 a35

a63 —a 64

~12 a75

d3 d4
(1) (1)

2. 25 2.21 2. 21
W3(2sp) W4(2P. .p) W5( P„p)

0

(1)

2. 21

~2a75

d (1)

1.27
7(1sH2)

aiZ

a47

a77

do&=Q, (P, P, P); d&& &=d&'&=d&&'&=dP&=d6&'&=O; d&S&=-'a (P -P -P)

Center
Expt. coefficient
Slater functions

(2)di
1.27
(1sai)

d2
(2)

7. 66
(1sp)

(2) (2)
d3 d4

2. 25 2. 21
&(tt)3(2sp) f(t) 4(2s„p)

(2)
d5

2. 21
f(t)'5(2P„p)

d (2)
7

l. 27

7 (1SH2)

E(2) —E
E(2) E
E(') -E
E(')=E,
EP&=E,

E =E
E(2) E

y(2)

g(2)

y(2)

Ai

iI)
(2)

|t)
(2)

a31

a41

a6i

a42

a13

a23

a43

a63

—a14

-a24

—a44

a 64

-m2a„

-m2a„

~22 a„

m2a75

a17

a27

a37

a67

a77

d& =&}ao(P+2,-P+2,P+2); 12& &=dP&=&jp&=dP&=dea&=4ao(1, 1, 1); &(& = 88&0(P+2, P+2, -P+2)
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TABLE VIII. Values of the overlap and the kinetic-
energy integrals. The notations used are taken from
Ref. 20. The two-center distances are discussed in Sec.
II.

Two-center
distance

5. 52

4. 34

3.36

5.20

3.36

5.20

5, 20

5.20

3.36

5.20

5.20

Overlap
integrals

Sf (1sH 1sHo) = 0, 0221

$2(1sH 1sHo) = 0.0674

$3(1sH 2soo) = 0. 1167

S4(2sp 2spo') = 0, 0055

Ss(1sH 2ppcr) = —0. 1267

S6(2so 2PofJ) = —0.0088

$7(2po 2ppo) = —0.0135

Ss {2Po 2Po7f) —0.0017

$9(lsH 1spfy) = 0.0078

Sf Q (1sp 2pp o') = —0 .0002

$1f (1so 2sofy) = 0 0001

Kinetic-energy
integrals (in Ry)

Pi (1sH 1sHo) = —0.0122

P2(1sH

Pso sH

P, (2sp

Ps{1sH

1sHo) = —0 ~ 0236

2spcr) = —0. 0368

2soo) = —0.0098

2Ppo') = —0.0031

Ps{2so 2Pofy) =0 0135

P, (2po

P,{2po

2ppo) = 0. 0169

2pp1l') = 0, 0027

Ps(1sH 1spo) =-0.0065

Pio(iso 2Pofy) —0 0005

P11(iso 2sofy) = —0 0003

x lip .(r —d ' ' —r„') ) for all neighbors of a given
order have been expressed in terms of independent
integrals, which are reported in Table VIII. Thus,
using Table VGI for the independent integrals, ap-
plying the procedure of Slater and Koster, and
using Table VII for the coeffici.nts c&" and a&'.',
the overlap matrix elements S//' '[k) can be ex-
plicitly obtained.

A similar procedure has been applied to the cal-
culation of the kinetic-operator matrix elements:

P//" (k) = &~i"'(k, r) ly&2ml ~~"'(k, r)&

e'"'"o"'n'f" &9].(r —d.'")
v m,m=1s

x
l
P'/sml q .(r —d",' —F„)& . (s. 11)

The independent kinetic-energy integrals are also
reported in Table VIII.

The Hamiltonian matrix elements

(3.12)H, '," '(k) =&C,"'(k, r) lH le/!' (k, r)&

can easily be expressed in terms of S/i/", '(k) and

P//' '(k) if one neglects three-center integrals and
crystal field integrals. In Appendix A we justify
these approximations for our case, and we derive
the following expression for (3.12):

H// ~
' (k) = (E/ + E/. )S//J '(k) —P//e (k)

«.l—E/S». &~/"—(r)
l gism l ~," '(r)&1 .

(3. 13)
Using Eqs. (3. 10), (3.11), and (3.13), the matrix
elements of the determinant equation (3. 9) can ex-
plicitly be set up.

At high-symmetry points or lines the order of the
determinant equation (3.9) can be reduced by con-
sidering the symmetrized combinations of molec-
ular Bloch sums reported in Table IX.

In Table X we give the matrix elements of the
determinant equation (3.9) at the symmetry points
5, X, F, L and at the symmetry lines p, q, /.
From physical considerations (see energy sequence)
and from numerical. precision considerations (see
Sec. IV) we assume that the Bloch sums 4,"', Ciia'

interact only among themselves, giving two very

TABLE IX. Symmetrized combinations of molecular Bloch sums at the symmetry points b, , X, Y, L and at the sym-
metry lines p, q, l. For the two-dimensional representations partner functions are indicated with brackets. The phase
factor ei'~ equals 1 at the point b and equals+i at the point X.

Irreducible
representation

41 or p1 or X1

42' or p2' or X2'

b5 or p5 or X5

Symmetrized combinations of molecular Bloch sums

~12[@ (1)+ eirp/2@, (2)]. lll2[@,(1)+eitp/2@, (2)]. lll2 [@(1)+ eirp/2@, (2)), ~12[@,(1)+ irp/2@, (2)]

The symmetrized combinations are obtained from those of
41 or p1 or X1 by replacing the phase factor eir~ with —ei

@(1)
3 @,(2)

5
@(1)

?

@,(2)

2[@,(1)~ e«a/2@, (2)]. ~l2 [@,(1)+eira/2@, (2)] ~12 [@,(1) eira/2@, (2)] ~12 [@,(1)+ eira/2@, (2)].

2 [@]1)+&i@a/2e(2)]. ~12 [@0)+lira/2@(2)]. ~12 [@(1& lira/2@('i)]

The symmetrized combinations are obtained from those of
qi by replacing the phase factor ei'a with —ei a

Y1

l1 orL,
l2 or L2

@,(2). @,(1).

@,(2).

@,(2). @,(1 ).
2 & 3

@,(1). @,(2).
4 s 4

@,(1).
5

4, (2). @,(1).
5 ~ 6

4[, (2). C[, (1)
6 ~ ?

—4?(2)
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TABLE X. Matrix elements of the crystal Hamiltonian among the symmetrized combinations of Table IX.

Matrix
order Matrix elements

1x1

1X1

2x2

Pf (one core state)
M« = (2Ef —E)[1+0(2)ff+0(1)ffcos27]'p] -K{2)ff-K(1)ffcos27rp —E,

pf (one deep valence state)
M f f

= (2E2 —E)[1+0 (2)22+ 0 (1)22cos 27rp] -K (2)2&
-K(1)22cos 27['p —E2

pf (one valence state and one excited state)

Mff = (2E4-E)[1+0(2)44+ 0(1)44cos27[p] -K(2)44 -K(1)44cosy7lp —E4

M22 =

Mf2=

(2E6 —E)[1+0 (2)66+ 0(1)66cos &7rp] —K(2)66
-K(1)66cos 27['p —E6

M2, = (E4+ E6 —E)[0(2)46+ 0(1)46cos27[p] -K(2)46-K(1)46cos27]p

The matrix elements of the representation p2' are obtaioed from the matrix elements of the representation pf by replacing
cos27[.p with —cos 2'.

3x 3

p& (two doubly degenerate valence states and one doubly degenerate excited state)

Mff = (2E3-E)[1—0(2)33] +K(2)33 —E3., M22 = E5 —E

M33 (2E7 —E)[1 —0(2)77] + K(2)77 E7

M2f {E3 E5 E)[0(3)3 0(4)3& ' ] -K(3)3 -K(4)38

Mf3 M3f {E3+E7 E)[—0(2)37] +K(2)37

M23=M32= Ng+E7-E)[0(3)7+ 0(4)7e ] -K(3)7-K(4)7e

The matrix elements of the representations b,f, b,2', 6& and Xf, X2', X& are obtained from the matrix elements of the
representations pf, p2', p5 by replacing p with 0 and 1, respectively.

1x1

1X1

5x 5

qf (one core state)

M ff (2Ef —E)[1 + 0 (2)f fcos7[ q + 0 (1)ff cos~q] —K (2)ff cos7] q -K (1)ff cos~7[ q —Ef

qf (one deep valence state)
Mf f (2E2 —E)[1+ 0 (2)22cos7rq + 0 (1)2&cosssq] -K(2)22cossq -K (1)22cos+q —E2

qf (three valence states and two excited states)

Mf f
= (2E3 —E)[1 —0 (2)33cos7rq] +K(2)33

—E3

M22 = (2E4 —E)[1+O(2)44coswq+ 0{1)44cosq7rq] -K(2)44cos7['q -K(1)44cos~2q —E4

M33 Es —E; M44 = (2E6 —E) [1 + 0(2)66coszq + 0 (1)««s 222 q] —K(2)«cos7[ q —K (1)«cos-,'7] q —E6

M» ——(2E7 —E)[1 —0 (2)»coswq] + K(2)77cos7[ q -E,

Mf2 =M2f = {E3+E4 —E)[0{5)43isin7['q —0{6)43isin~7t'q] -K(5)43i sin7rq+K(6)43i sin&7[q

Mf3 =M3f = (E3+Ez —E)[0(3)3+0(4)3]cos2~q —[K(3)3+K(4)3]cos27rq

Mf 4 M4f {E3+ E6 —E)[0(5)63i sinn q + 0 (6)63i sin222 q] —K (5)63i sin7[ q —K(6)63 i sin 222 q

M f 5 M $f {E3 + E7
—E)[-0 (2 )37cos7lq] +K (2)37cos7[ q

M23 M32 {E4+ E5 E)[0(7)4i sin27[ q] -K{7)4isin~7[ q

M24 =M42 = {E4+E6 —E)[0(2)46cos7]'q+ 0(1)4,cos-,'7[q] -K(2)4,«s7['q -K(1)«cos-,'7]'q

M25 =M&& = {E4+E7 —E)[-0{5)47isin7['q —0(6)47i sin~2q]+K(5)47' sin7]'q+K(6)47i sin271q

M34 M43 = {E~+ E6 —E)[-0(7),i sin27[q] + K(7),i sin-,'7[ q.

M35 M53 (E5 + E, —E)[0(3),+ 0(4)» cosssq —[K(3),+K(4),]cos))sq

M4$ M54 N6 + E7 —E)[-0(5)67i sin7] q —0 (6)67i sin222 q] +K (5)67i sin7rq +K (6)67i sin27rq

Note: For q=o the above 5x 5 determinant is split in a determinant 3x 3 (b,
&

states)
and a determinant 2x 2 (bf states).

The matrix elements of the representation q2 are obtained from the matrix elements of the representation qf by replacing
sin222q and cos27iq with —sin222q and —cos22rq, respectively.

The matrix elements of the representation Yf are obtained either from the matrix elements of qf or from those of q2 by
putting q= 1.
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Matrix
order Matrix elements

2x 2

l& (two core states)

M&&
= (2E& —E)[1+0(2)&&cos«] -K(2)&icos« -E&

M22 = (2E) -E)[1+ 0 (2)«l -K (2)(g
-E(

M&2=M2&= (2E, -E)[0(1)«g(1+3e ')] -K(1)«g(1+3e ' )

The matrix elements of the representation l~ for the two deep valence states are obtained from those of the representation
lg for the two core states by replacing E, , 0(1)&&, 0(2)«, K(1),&, K(2)«with E2, 0(1)22, 0(2)22, K(1)22, K(2)22, respectively.

7X 7

Sx 3

l& {four valence states and three excited states)

Mf f (2E3 —E)[1—0 (2)33COS7I l] + K(2)33cosvt l E3

M22 = (2E4 —E)[1+0(2)44cosml] —K(2)44cos« —E4

M33 = (2E4 —E)[1+ 0(2)44] —K(2)44 —E4, M44 =E5 —E

M&5 = (2E6 —E)[1+0(2)6&cos«] -K(2)66cos« —E6

M66= (2E6-E)[1+0(2)66]-K(2)66-E6

Mvz = (2Ez —E)[1—0(2)zzcos«]+ K(2)zzcoszrl —Ev

Mf 2 M2f N3 E4 E)0(5)432i sin« —K(5)43 M2 sin«

Mf3 Mgf N3+ E4 E)0(6)432 (1 —e ")-K(6)432 (1 —e ")
M)4=M4g = {E3+Es-E)[0(3)ge "+0(4)3~(1+e ")]—[K(3)3e +K(4)3 p(1+ e ")]
M„=M,*, = {Z,+E, -E)0(5)63-,'i sin«-K(5)63 ~ sin«

M&6=Ma&= (E3+E6-E)0(6)632(1-e ') -K(6)632(1 —e ")
M)z =Mz f N3+ Ez —E)[-0(2)3zcos«] +K(2)3zcos«

M32 (2E4 E)[0(1)44 @(1+ 3e ")]—K(1)44 g(1 + 3e ")
M24=M42= (E4+E~ —E)[0(7)42(-1+e ' )] -K(7)4y(-1+ e )

M25 =M)2 = {E4+E6 —E)[0(2)46cos«] -K(2)4t,cos«

M26 =M~2 = (E4+ Ee —E)[0(1)46g(1+ Se )] -K(1)48g(1+ 3e ")
M2v Mv2 {E4+Ev E)[ 0(5)4v ~&' »n«] + K(5)4v ~g sin«; M34 =M43 0

M35 ™gg= {E4+ E6 —E)[0(1)48g(1 + Se' )] -K(1)46 g(1 + 3e ); M36 ™63M25

Msv =Mvs= {E4+Ez-E)[0(6)4v2(1 —e ")]-K(6)4v 2(1 —e ")
M4&

——Mz= (Es+E6-E)[0(7)62(-1+ctrl)] K(7)6~(-1+e tr)6 M46 M64 0

M4, =Mz4= Nz+Ev -E)[0(3)ve "+0(4)z 2(1+e ")]—[K(3)ve ' +K(4)zy(1+ e ")]
M~=M6)= (2E6-E)[0(1)66'(1+3e ")]-K(1)~6g(1+3e ")
Msv =Mvs= Ne+ Ez —E)[-0(5)gz m2' sin«]+ K(5)ev ~ sin«

Msz =M76 = N6+ Er —E)(O(64z k(1 —e~")] -K(6)sz k(1 —e ~~)

Note: for l = 0 the above 7 x 7 determinant is factorized in a determinant 3 x 3 Q, s states)
and two determinants 2 && 2 Q,

&
states and 52' states).

l2 (two valence states and one excited state)

Mf f (2E3 -E)[1-0 (2)33] +K(2)33 E3y M22 E5 E

M33= (2Ez -E)[1—0(2)zv]+K(2)vz Ez

Mf 2 M2f N5 + E5 —E)[0(8)3 + 0 (9)3e "]—[K(8)3+K(9)3e "]
M f3 M3$ {E3+Ev E)[ 0(2)3'v]+K(2)3v

M23 M32 N5 +Ez —E)[0(8),+ 0 (9)v e "]—[K(8)z +K(9)ze "]

The matrix elements of the representations L&, L2, are obtained from the matrix elements of the representations l&, l2

by putting l =1.
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TABLE X. (Continued).

Matrix
order Matrix elements

Meaning of the symbols used

0 (1);;= 8 a;& a&& S&+ 2(a;& a&&+ a&~ a;3) S3+ 4 a&3 a&& S4+ ~ %3 (a;& a&4+ a&& a;4)S5

+ Ta]4a)4S7+ 3 a;4a~4S8
4 8

O(2) ]g
= 2 a]g ay( Sg

O(3)& =2a&5S7, O(4)&= ~36a)f S5+ Ya)5$7+ 3a$5S~

O(5)
&&

= 4 a&& a&& S&

O(6)&&=4a;&a&3S2+ 2a;~a&& S3 —f/3a&4a&& S5 —~36 a&3a&5 Sz —~36 a&4a&&(S7 —S8)

O(7)( = —3336 anS$ g6 a(3$6+ ~~6 a)4(S7 —S8)
1

O(8); = 3v 6 a]) S5+a@S8

O(9)g= ~36 a;g S5+ -a]5S7+ Ta)5S8
5

K(1)o, K(2)o, . . .K(9)& are obtained from O(1);&, O(2)&&, . . .O(9); by replacing the overlap integrals S with the kinetic
energy integrals P.

low core states. We also assume that the Bloch
sums C2"', 42 ' interact only among themselves
giving two deep valence states. The remaining ten
Bloch sums @ @ " C) ) @,(2) @,(1)

C), (2) cy(l)
3 t 3 ~ 4 ~ 4 ~ 5 ~ 5 ~ 6

4 7 4 7 give six valence states and four ex-
cited states. ~8 Despite its length, Table X is ex-
plicitly reported because it is very useful to re-
obtain cubic-ice band structure in the case of an
improvement of the theoretical calculation of the
excited molecular orbitals and energies of water.
Table X is also very useful for pseudopotentials2'
or interpolation applications2 to obtain, for in-
stance, effective masses, density of states, oscil-
lator strengths, and dependence of the electronic
states on pressure.

IV. BAND STRUCTURE AND OPTICAL PROPERTIES

Starting from the self-consistent water-mole-
cule calculations of Table VI, and using Tables
VIII and X, the band structure of CIMS has been
calculated from the determinant equation (3.9).
No semiempirical adjustment to experimental data
has been made. The crystal energies have been
calculated beside the symmetry points 5, X, Y,
L in 50 points along each of the symmetry lines
p, q, l. The relevant crystal energies are re-
ported in Table XI and the band structure is shown
in Figs. 4 and 5.

We wish first to comment on the numerical pre-
cision of our results in CIMB. At every k vector,
we have neglected the interaction of the two core
states and the two deep valence states with the
other valence and excited states. This assump-
tion has been tested and justified at some selected
points of the Brillouin zone. The valence bands
have been computed both including and neglecting

their interactions with excited bands and are found
to be insensitive within less than 1/p to a similar
change. The reliability of the excited bands could
be checked only by adding new orbitals to the min-
imal set; however, the small effect that this has
in the free molecule gives confidence that also ex-
cited bands are meaningful.

We wish now to comment on the meaningfulness
of the adopted model. In CIMS the direction x and
the directions y, z are not equivalent because of
the fourfold axis of the group C4„. However, from
Figs. 4(b) and 5 we notice that the energy of an
electron with a given k vector is almost the same
when k is along the x direction (line P) or the y, z
directions (line q), the maximum difference being
0. 001, 0. 06, 0. 15, and 0. 29 eV for core bands,
deep valence bands, valence bands, and excited
bands, respectively. Thus, the energy bands of
CIMS are almost cubiclike. This fact is expected
in the case of a spherically symmetric distribution
of the electronic cloud in water molecules and con-
stitutes an a posteriori proof of the validity of such
an assumption. More generally, using the Slater
and Koster procedure, 20 we have tested this as-
sumption by comparing the expressions of the
overlap integrals, the kinetic-energy integrals,
and the Hamiltonian integrals between two nearest-
neighbor molecules in the three different relative
orientations. In these expressions, we have no-
ticed that the dominant contributions were indepen-
dent of the orientation; the small differences,
treated in a perturbation way, are estimated to
produce, at most, variation of the order of 0. 1 eV
in the energy-band levels. The basic physical as-
sumption of CIMS is thus justified.

From Fig. 4, we see that the fundamental edge
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occurs at k=O between the ~, val. ence state and the
b, 2 excited state, with an energy gap of 7. 8 eV.
The sequence of crystal states at k=0 is in sub-
stantial agreement with the previous results ob-
tained by us in a semiempirical. way.

It is interesting to compare the sequence of mo-
lecular states with the sequence of crystal states
at k= 0 (Fig. 4&. We notice that the degenerate
orbitals of symmetry B& (or Bg) of the first mole-
cule and BI {or B,) of the second molecule are still
degenerate and become the crystal state g. In-
stead the orbitals of symmetry A, interact to pro-
duce a considerable Davydov splitting into the
crystal states p, and +. From Table XI we see
that the splitting E(42) —E(h, ) equals —0. 14 eV for
the core states, 5. 14 eV for the deep valence
states, 1.03 eV for the valence states, and —1.92
eV for the excited states. The sign of the above
Davydov splittings and the reason for the relative
wide energy separation between the deep valence

states ~& and h2 can be understood from Table IX,
by observing that the combination —,

' K2 [4I"'+ 4'p'1
(deep valence state a, ) increases the electron den-
sity between the two molecules per unit cell in a
more effective way than e &2[4f"—CrI@1 (core
state dg) or & /2[4,"'+ 44 '] (valence state d,,) or
—,
'

y 2[CAN' —4e'2'] (excited state /), as can be seen
from the coefficients of Table VI and Fig. 1. Sim-
ilarly the combination —,

' v'2 [C~z' —C2 ] (deep va-
lence state 4z) decreases the electron density be-
tween the two molecules per unit cell in a more
effective way than 2 v 2[4,"'+4,'+] (core state 6,)
or g y2 [4,"' —44+'] {valence state dg) or —,y"2[CI"'
+ C~+'] (excited state ~).

We notice, at last, that the lone-pair molecular
orbitals that are loosely bound in the molecule give
the highest-energy valence states.

On the basis of the band structure of Fig. 4 we
can give an interpretation of some features of the
optical properties of CI. The experimental data
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FIG. 4. (a) Valence and excited bands of the cubic-ice model structure at the points 4, L, I., p, X. For convenience
the molecular-orbital energies are also reported. (b) Valence and excited bands of the cubic-ice model structure at
the points 6, p, X, q, F.
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i"ABLE XI. Values of the energy of the crystal states at the points b„X, Y, I .
Energies are in eV.

Core states

Deep valence
states

—559. 40
—559. 26

—37. 33
—32. 19

r, —559. 33
Xi —559.33

Xt -34 99
34 9 9' —34. 94

2

Li —559.36
Lg —559.29

Lg —36. 19
Lg —33.63

Valence
states

—10.58 Xs

by —17.06 Xg

bg —13.20 X(
b2' —12.17 Xz'

—17.05

—12.70
—12.70

—10.60

—17.18

—12.64

—10.72

L)
L2
L)
Lg
L2
L)

—17.18
—16.91
-12.97
-12.33
—10.96
—10.75

Excited
states

—2. 76
—0. 84

0, 09

X2'

Xg

Xg

—1.94
—1.94

0.12 P'(

—1.71

0. 38

L)
L)
L2
L,

—2. 29
—1.28
—0. 34

0.38

«Onaka et al. ' show a sharp edge in the opticai
constants at =8 eV. We interpret this threshold
as related to the critical point Mo, due to the tran-
sition at 7. 8 eV between the valence state and
the 5z excited state, which is allowed for light
polarized perpendicular to the fourfold axis (Table
5) in our simplified model. ~4 This assignment is
also supported by the fact that the fundamental ab-
sorption shifts to lower energy in water, 4 which is
consistent with the fact that the Davydov splitting
increases under pressure and shifts the A~ excited
state to lower energy.

The experimental data of Onaka show an unre-
solved absorption band, about 1 eV broad, around
8. 7 eV. At the point L of the Brillouin zone, the
joint density of states between the two lowest ex-
cited bands and the two highest valence bands has
two critical points of type M, with energies of 8. 5
and 8. 7 eV, and two critical points of type M~ with
energies of 9. 5 and 9.7 eV. We interpret the two
critical points M, as responsible for the strong
peak at 8. 7 eV in the far-ultraviolet spectrum.

At higher energies another broad and unresolved
absorption band centered around 15 eV has been
found by Daniels~ by means of electron-energy-
loss experiments. Transitions occurring from
valence bands derived from lone-pair orbitals to
excited bands seem responsible for such absorp-
tion bands; however, energy-loss experiments of
Danielss are not accurate enough to allow at this
stage an assignment of the critical points respon-
sible for the absorption, and further experimental
study would be desirable. We notice that the use
of synchrotron radiation light, already attempted,
and the determination of electron momentum dis-
tribution by means of inelastic scattering rays2e

are two powerful tools that could be applied for a
better understanding of the optical properties of ice
in the energy range above 10 eV.

V. CONCLUSIONS

Energy (eV')

33

A, A, -35—

-37—

g= +~ o,i,o) k=o k = e~
~~,0,0)

33

A A
-35—

-37—

V'-~M(q, q)) k=o
0

k =—1,0,08o

FIG. 5. Deep valence bands of the cubic-ice model
structure.

A reasonably simple model crystal structure with
translational symmetry is analyzed to interpret
the electronic states and the optical transitions in
cubic ice. The model, based on the physical cir-
cumstance that the electronic cloud in the water
molecule does not deviate too much from spherical
symmetry, could be extended to treat other hydro-
gen-bonded molecular crystals. The band structure
obtained in this paper has been proved useful for
establishing the correspondence between the water
molecular orbitals and the ice crystal states, for
the determination of the energy gap and for an in-
terpretation of the first absorption bands in the
far-ultraviolet spectrum. We think that the band
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APPENDIX A: EXPRESSION OF THE HAMILTONIAN
MATRIX ELEMENTS

We assume that the crystal potential V,(r} can
be written as the sum of water-molecule self-con-
sistent potentials V„(r) centered in the appropriate
crystal positions, i. e. ,

(AI)V, ( )=E Z V," '(r-7'. ).
f„&"-1,2

We notice that V„(r) is not required to be a local
operator. The purpose of this appendix is to de-
rive the expression for the Hamiltonian matrix
elements (3.12):

H»!'(k) = &c»" '(k, r)
I
p/2m+ v, (r)

I c,". '(k, r)&

= & e&""'&&!&"'(r) I!&'/2m
s&v

+ V, (r) I g,'l'(r —r„')& . (A2)

Let us first consider the matrix element

&q&"(r)I p' /m2+ v, (r)I &!&!'(r r„')&-
in the case the two molecular orbitals g&" and

g~"
' are centered on different molecules (i. e. ,

(A3)

structure obtained will prove useful to interpret
and to stimulate the application to ice crystals of
widely used and powerful techniques, such as
synchrotron- radiation optical properties, inelastic
scattering of x rays, and effect of pressure.
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either i &i or r„aO or both}. In the limit of a
strong binding, three-center integrals are negligi-
ble with respect to two-center integrals and we have

& q&o '(r)
I
p'/2m+ v, (r)

I g &&!'(r —r„')&

=&/&" (r)
~ p /2m+ V„"(r)

(A4)

&q,"&(r)jf'/2m+ v.(r) I q,'i'(r —r„')&

=&&!,"'(r)
I

f& /2m+ V~'(r)+ f&2/2m

+ V" '(r - r.') —8/2m
I t!,'l'(r - r„')&

= (E&+ E& }&4&"(r)
I 0&' '(r r.')&-

—&g&" '(r)
I p /2m I &&" '(r —r„}& . (A5)

Let us now consider the matrix elements of type
(A3) when 7'„=0 and i = i We have.

&~,"'(.) I
f'/2 .v, (-.}Iy,", (-.»

= &g&"(r)
I

f& /2m+ Vs '(r)+ V,'(r) I g'V(r)&

= E&'» + &q& "(~q
I V.'(r) I C,"'(r)), (A6)

where V, (r) is the sum of the potential of the mole-
cules of the crystal except the molecule (i) in the
unit cell. The term

(g,"'(r)
I v, '(r) I &!,"'(r)&

corresponds to the crystal field integrals27 in the
case of molecular crystals. To estimate (AV) we

have considered the quantity

(A7)

(A8)

which is the most important contribution to (A7).
The expression of I~~. is

Though the approximation of neglecting three-cen-
ter integrals is used in most tight-binding calcu-
lations, it has become possible to include multi-
center integrals if one adopts simp1e analytic forms
for the potential or the discrete variational
method by Ellis et al. Because of the remark-
able computational efforts in extending the above
methods28'29 to mol. ecular crystals and of the fact
that the overlap integrals of Table VIII are rea-
sonably small, we have adopted the two-center
approximation, summarized in Eq. (A4). We now

add and subtract the operator pm/2m in Eq. (A4),
and we obtain

7 2 2
(1) (1) Zoe e

I,).= ~~ a, a,.„
fn, n ~1

5 7 2
(2) (2) (1) (1)+ 2 P Z a,„a„a&„a&.„

/=1 h, k yn &n=i ri —r2

2

A, (r~ —d' ') 4& (r, —d, '„"}drr
1 ~4H'

»& (r —d ') y„(rq —g")y, (rz —dP') ~(r~ —d' ')d r, d rz (A10)

5 7

aI& a&a a& a& ~
~

- %„(rr —d„')4&„(r2-d„"')4},(r, —d„' ') p(rr -d„' ')dr, dr&, (All)
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where (A9) is the nuclear-charge Coulomb contri-
bution, (A10) is the electronic Coulomb contribu-
tion, and (A11) is the electronic exchange contri-
bution. From (A9}-(All} and Table VII the ma-
trix I&&. has been evaluated and is reported in
Table XII. From Table XII we notice that the
diagonal matrix elements are almost equal, while
off-diagonal matrix elements are about one order
of magnitude smaller. In the case the potential. of
the molecule centered in i in the unit cell could
be considered constant in the region of the other
molecule, I». would be proportional to the unit
matrix. Since the diagonal matrix elements are
almost equal, in discussing electronic transitions
we can neglect them because their only effect is a
rigid shift of the whole band structure. Equation
(A6) thus becomes

TABLE XII. Crystal field matrix between two nearest-
neighbor molecules. Matrix elements are in rydbergs.

III=0.0394 I12 0, 0001

I21= 0.0001

I31=0. 0007

I41 = —0.0003

I51=0

I22 = 0.0402

I32 = 0.0122

I42 = —0.0019

I52= 0

Ii 3
= 0.0007

I23 = 0.0122

I33 = 0.0394

I43 = —0.0026

I53 —0

I14 = —0. 0003

I24 = —0. 0019

I34 = —0. 0026

144 = 0.0359

I45= 0

II5=0

I25- o

I35= 0

I55 = 0.0377

—5:„05«~ [Eg 5a —&0 "'(r}
I
p'/2m14 'l'(r)&l .

(A13)
Expression (A2) becomes, using (A13),

The results (A5) and (A12) can be summarized in
the following expression:

&q,"'(r)
I
p'/2m+ V,(r) (q,'l'(r —r'„)&

Using (3. 10) and (3.11)we finally obtain

H"f '(k) = (E + E .)S&"' '(k) —P&&' '(k)

—5«. [E& 5&&. —&|t&"(r) I p /2m I g&' '(r))] .
(A15)
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