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Vibrational Edge Modes for Wedges with Arbitrary Interior Angles
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We present a theory of long-wavelength acoustic phonons localized at the apex of a variable-angle
semi-infinite wedge made up of an isotropic cubic elastic medium. Stress-free boundary conditions are
incorporated into the calculation by assuming position-dependent elastic constants. The equations of
motion are solved numerically by first performing a linear mapping of the wedge into a right-angle

wedge, and then expanding each displacement component in a double series of Laguerre functions.
When the Cauchy relation is satisfied and when the interior angle of the wedge is between 125' and
180', the speed of the lowest-frequency edge mode, which is of I, symmetry, is very nearly equal to
the speed of Rayleigh surface waves. For wedge angles less than 100', the speed of the
lowest-frequency edge mode, which is now of I', symmetry, decreases rapidly with angle and appears to
vanish in the limit as the angle approaches O'. For these acute angles, additional edge modes of I,
symmetry appear with speeds below the Rayleigh value.

I. INTRODUCTION

In a recent paper' a theory was presented of
acoustic waves which propagate along the edge of a
right-angle wedge of a cubic elastic medium, and
whose displacement amplitudes decay with increas-
ing distance into the medium from the edge. Such
waves were termed vibrational edge modes. For
the case of an isotropic elastic medium, whose
Lame constants obey the Poisson condition, the
speed of propagation of these modes was found to
be very slightly lower than that of Rayleigh surface
waves.

In this paper we extend the analysis of Ref. 1 to
the study of vibrational edge modes associated with
the edge of a cubic elastic wedge of arbitrary in-
terior angle, between 0' and 180', symmetrically
disposed with respect to a (110) plane.

After the work reported in this paper was sub-
stantially completed the authors received a pre-
print of a paper by Lagasse, Mason, and Ash, in
which theoretical and experimental results are
presented for the speeds of propagation of vibra-
tional edge modes on wedges of Duralumin 17S and
PZT4A of varying internal angles. The method of
calculation used by these authors, a variational
method capable of application to piezoelectric as
well as to nonpiezoelectric materials, is somewhat
different from that presented in this paper, which
at present has been applied only to nonpiezoelectric
materials. Consequently, the method developed
in this paper for obtaining the displacement field
and speed of a vibrational edge mode on a wedge of
arbitrary interior angle, which can be applied to
situations more complex than those considered
here, may have an interest independent of the re-
sults obtained by its use. Allowing for the differ-
ences in the materials considered, the results we
obtain are in agreement with those of Lagasse,

Mason, and Ash.
A theory of electrostatic edge modes on a dielec-

tric wedge of arbitrary interior angle has recently
been presented. '

II, THEORY

The elastic wedge which we study in this paper
is defined by the equations

x2 —mxi

xi —mxp

oa(X (op

with
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(lb)
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(see Fig. 1). The internal angle of the wedge is

(4)
Bttv XB Xv Bvv XB Xv

In these equations u (x, t) is the n Cartesian com-
ponent of the elastic displacement field at the point
x = (x„xz, x~) at the time t, and the (C 8„„(x)jare

and the wedge is symmetrically situated with re-
spect to the plane x, =x, . The choice m =0 (8 = 2m)

corresponds to the right-angle wedge studied in
Ref. 1; the choice m = —1 (8 = m) corresponds to a
semi-infinite solid bounded by the plane surface
x2= —x,; the choice m=1 (8=0) corresponds to the
degenerate case of an infinitely thin wedge, in fact
the plane x, = x2 for xi, x& &0. Thus, by varying the
constant m from +1 to —1, the internal angle of
the wedge can be varied continuously from 0 to m

rad.
The equations of motion for an elastic continuum

with position-dependent elastic constants are
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where the (C z„„}are the ordinary (position-in-
dependent) elastic constants of the medium con-
stituting the wedge, and 8(x) is the Heaviside unit
step function

8(x)=1 x~0

=0 x&0. (6)

It follows, therefore, that

—x,

8
C~~„„(x)= [-ma(x~ —mx, )8(x, —mxa)

1

+ a(x, —mx, )8(xp —mx, )]C ~,„,
8

C ~„„(x)=[6(x, —mx, )8(x, —mx, )Bx2

(»)

FIG. 1. Configuration of the elastic wedge showing
the wedge angle & and the equations of the bounding sur-
faces. The wedge is centered on the plane xf

C,~„„(x)= 0.8
0.

B'av

—ma(x, —mx, )8(x2 —mx, )]C,~„„,
(7b)
(Vc)

the elastic constants.
The position dependence of the elastic constants

of the wedge defined by Eqs. (1)-(2) is given by

C ~,„(x)= 8(x, —mx, }8(x,—mx, )C ~„„,

If we specialize immediately to the case of a
cubic crystal for which the cube axes coincide with
the coordinate axes, and take note of Eqs. (7), we
find that Eqs. (4) can be written explicitly as

BC)1 Bu1 BC44 81 BC12 Bu2 BC44 Bu2 BC12 Bu3 82u1 8'u, 82ui
pu) = + + + + + 11 2 +C44 +C44e, 8, 8, a, a, a, 8, 8, 8, 8, 8, ex', ax',

8 u2 8 u,+(Cf +C44} 8 8
+

8 (8a}
Xi X2 1 X3

~ . BC„ Bu, BC„ Bu, BC„Bu, BC„ Bu2 BC„ Bu,
pu2 = + + + +

x1 x2 BX2 x1 x1 X1 x2 8x2 Bx2 x3

BC44
pu3 =

Bx,

82 82u
+C44 ~ +C~~ ~ +C44 2 +(C„+C 4)

' + ', (8b
1 2 3 Bx)Bx2 Bx28x3

Bu, Bu3 BC, Bu, Bu, 8 u, 8 u, 8 u,
2 2 2 2 2

+ + + C44 g +C44 g +Cu p +(C$2+C44) +
X3 X) X2 X3 X ) 2 3 Bx)Bx3 Bx28x3

where we have used the contracted, Voigt, notation
for the elastic constants.

We now carry out the linear transformation

I

fined by (see Fig. 2)

0 g 0 -~~x3~~.

( = x) —mx2,

'g = —mx) + x2 .
(9a)

(9b)

With the aid of the relations

8 8 8 8 8 8
m

8 m +
Bx) 8$ Bq ' Bx2 8$ Bq ' (12)

This transformation maps the straight line x2= o.x)
into the straight line

n —m
(10)

In particular, the line x, = mx, is mapped into the
line g = 0, and the line xi = mx2 is mapped into the
line $ = 0. Consequently, if we introduce a Carte-
sian )ri plane, the wedge defined by Eqs. (1)-(2) is
mapped by Eq. (9) into the right-angle wedge de-

82 82 82 82
2

ex, 8)~ agari aq

82 82
2 8 82

= —m ~+(1+m } (
—

me E,

2 82 82 82
2 8)2 8(8 8 2

Eqs. (8) are transformed into

(13a)

(13b)

(13c)
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a 8 8 9
pu, = C„[-m5(4)) + 5($)] ——m —u, + C44[5([7) —m5(()] —m —+—u,

8 8 8 8 eu3c„[—™(s)s(()](- ——s, c„[s(q)— s(q)] —— s, ~ c„[—sss(q) s((}]
ex3

82 82 82 82u
+Cgf 5~2 2m&~S q-m

5&2 u, +C44 m 5~2
—2m 5]S +Sq2 ug+C44

82
2 9 8 eu3(c„~c„)(- s ~ (i ')

s —,(c„~c„)—— — ', ((ss)
ageg aq 8$ aq 8~3 '

a a 9 8
pu, = C4,[-m5([7) + 5($)] —m —+—u, + C,4[5(r[) —m5(&)] ——m —u,

a 8 8 9 au3+ C„[-m5([7) + 5(()] ——m —u, + C„[5(q)—m5($)] —m
5

+
S u, + C„[5([7)—m5($)]

8X3

82 82 82 8 8 9
")( s(''( ' ')s(s s ' "" " ' ' 's ' "'egeg ag 8$ 8 peg aq

8'u, 8 8 eu3+C» m
S~q

—2mS 5 +S 2 u2+C44 5, +(C,z+C44) -m&~+& &, (14b)
ageg ag 8X3 ej eg 8~3 '

pu, = C„[-m5(4)) +5($)] ' + C44[5([7) —m5($)] + C„[-m5(q) +5(g)] ——m —u,
eu1 eu2 8 8

8 8 eu2+C [5(rl) —m5(&)] —m —+—u +(C +C ) ——m — '+(C +C ) —m —+—44 3 12 44 8] aq 8~ 12 44

8 8 8 92 92 82 82
+C44 S~z

—2m 5.S +m
S z u4+C44 m S.z —2m 5„S +S 4 u3+C4$ S~q, (14c)8 $8'g 8'g

eject

eq

where we have set

u (x„x4, x,) =u, ($, q, x,) . (15)

In Eqs. (14) it must be understood that $ ~ 0 and ]7» 0.
Because the wedge is invariant against an arbitrary displacement parallel to the edge (i. e. , parallel to

the x, axis), we seek solutions of Eq. (14) of the form

u, ($, [7, x,) =u (f7))e"",3 '"'

When Eq. (16) is substituted into Eqs. (14) we find that the equations satisfied by the amplitude functions
{u ($, [7)) are

9 8—p(o'u, = C„[-m5([7)+ 5($)] —m —~u, +C44[5('0) —m5($)]
~

—m —+—

8 8 8 8+c„f s(s), s(s)I( —~——, c„[s(q) sss(ql] —— —u, ~ qc„[- s(s) s(()]-,

82 82 92 82 82 82
2

11 8(2
—2™8(8 +

8 2 u1+ 44 m e(2 2 e(e,+8 2 u1 —q C44u

82 82 82 8 8
~ (c„~c„)(- S, (i ~ ') — s, s, 'q(c„c„)—— —„((qs)e(eq eg 8$ eg

8 8 8 9—p(d' u2 = C,4[- m5([7)+ 5(g)] —m —+—u, + C42[5(q) —m5($)] ——m —u,

9 8 9 8
+ C«[- m5(]i) + 5($)) ——m —ua+ C«[5(ri) m5($)] ——m —+—u2+iqC, 4[5(q) —m5($)] u4

82 8' 8'— 2 92 82'("'")( s''(" ')ss s'"""sq' sqs
' 's'"'

a qadi eq 8( 8(eq eg

8 82 82 9 8
+ C„m 4 —2m + g u2 —q C44u2+ iq(C,~+ C44) —m —+—u (17b)8$ egeg eg 8$ eg
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—p(d '(23 =iqC44[- m5()7) + 5($)]u& + iqC44[5()i) —m5($)] u2+ C44[ —m5()7} + 5($}]——m —u~
2 8 9

8$ eg

8 9 9 8 8 8'«22(2)- '(2)f(- —~— 2(c ~ C ) —— — + X(c C ) -m—44 Bg 9~ 1 12 44 9~ 8~ 2

82 92 92 82 82 8'
+C44 2

—2m +m ~ u3+C44 m .2
—2m . + 2 u3 —q C„u3 . (17c)

a~ay eg eq eqaq aq

We finally introduce the changes of variables

& =x/q, r! =y/q,

and define new coefficient functions tu, (x, y)] by

2(2(( q) ug(x y) u2(5 q) up(x y) ~ u3( 3)7') u3(x y)

(18)

The purpose in making this last change in variables is to remove the dependence on the wave vector q from
the right-hand side of the equations and to make the equations totally real. Thus, we obtain

8 8 8 8—p ~ 6, = C„[5(x)—m5(y)] ——m —u, + C44[- m5(x) + 5( y) —m —+—u,
q

8 8 a e
~ c„fx(x)-»2(2)I(- ——,c„f- 2(*l 2(2)f —— —,c„fx(*)- 2(2)f,ay ey

+C1 2
—2m +~ 2 u1+C44 m 2

—2m + 2 u, —C44g,ex abbey ay e~ a~ay ay

92 92 82 a a(C„,C„){-,((»') —,x, (c„+c„)—ex 8gay By eg By

(d 8 9 8 8—p ~ u2 = C44[5(x) —m5( y)] —m —+
8 ig, + C,2[- m5(x) + 5( y)] ——m —

uq

8 8 9 9
+ C~,[5(x) - m5( y)] ——m —u2+ C„[-m5(x) + 5(y)] —m —+—u, + C„[-m5(x) + 5( y)] u2

ay 2 11 ax By

92 82 82 82 82
~ (C„C„)(-, (1 ') —m, , ~C„,—2

ex 9~ay By eg agcy By

8 82 a2 8 9+C„m
5

-2 -2m
a 8 +8 2 u2 —C44u~+(C, ~+C44) —m~ +—u3,B~ Bray By 8~ ay

Q7 8 8—p~ u, = -C,4[5(x) —m5(y)] u, —C„[m5(x)+5(y)]u, +C„[5(x)—m5(y)] ——m —u,
q

1 44

(20a,)

(20b}

8 9 8 a 9 9C„[— 2(x) 2(2)f (- ——,—(C„~C„) ——m —", —(C„~C„)

82 82 92 92 82 82
+C4& S, -2m&

&
+m'S z u3+C44 m

8 p 2m
8 S +5 e u3 C2gu3. (20c)e~ 8~ay ay Bx Bxay ey

From these equations + is seen to be linear in q.
To solve this system of equations we expand

u, (x, y) as

u (x, y) = Z Z a(2)q), (x)q), (y),
k=O SO

where

q), (x) =
~

k) = e "~' L,(x)/k!,

(21)

(22)

and L~(x) is the kth Laguerre polynomial. The func-
tions [q)~(x)) are orthonormal and complete in the
interval 0—x~~, and the presence of the factor
e ~ in their definition is convenient, since we are & = p(d /C44q (24)

looking for displacement amplitudes localized in
the vicinity of the apex of the wedge. Various prop-
erties of the functions {q),(x)j which are useful for
the present calculations are presented in Ref. l.

When the expansion (21) is substituted in E(ls.
(20), and the orthonormality of the (q)~(x)j is used,
the resulting equations for the expansion coeffi-
cients (a~(2) ) can be written in the form

3

& aI&'= Z~ Z&', . 'Je(m)a , '~, o(=1, 2, 3, (23)
8=1&, ~

where
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From Eq. (24) we see that 0 is the speed of
propagation of the edge mode in units such that
the value 0=1.0 corresponds to the speed of

the bulk transverse acoustic mode in the (100)
direction. The matrix elements (AI&,««'g(m)j are
given by

A'gz. «g(m) =(&(2 —A)5g«5&g+A5&g[min(i, k)+ «]+5g«[min( j, l)+~«] }
+ ggg(A+ 1)(- [«5g«+ 8(k i -—1)]—[«5»+8(L —j - 1)]+2[«5g«+ 8(k —i —1)][&5»+8(L —j —I)]].

+m (- «(A + 1)5g«5»+A5g«[min(L, j)+«]+ 5&g[min(i, k)+ «) ), (25a)

Aggi «g
g (m} = (B[«5~g + 8(l —j —I)] + [«5g«+ 8(k- i —1)] —(B+I)[ «5g«+ 8( k —i —1)][«5~g + 8(l —j —1)]j

+m(B+1)(-5«g(k+ «) —5g«(L+«)+5g«[«5~g+(l -j)8(l —j —I)]+5qg[ 5«g«+ (k —L)8(k —i —1)]]
+m (B[—'5 «+8(k —i —I)]+[-,'5gg+8(l —j —1)] -(B+1)[«5g«+8(k —g —1)][«5~g+8(l —j —I)]), (25b)

A', I'«gg(m) =5»(-B+(B+1)[«~5g«+8(k-i —1)]]+m5g«{B —(B+1)[ «»5+ (8 L—j —I)]], (25c)

Aggq '«gg (m) =. Agg I'. gg«(m), (25d)

A'v'. «'
g (m) = Ag I."g«(m), (25e)

AIg'!«'g(m) =Aggg
g,"i«(m). , (25f}

AIz «gg(m) =5»(1 —( B+1)[ «5g+«(8k—i —I)]]+m5 (g«-1 (+B+1)[ 5«» 8+(L -j —1)]), (»g)

Ag I (m«g) =Aug g«(ggg) (25h)

A'g& «, (m)={5;«5&g(A —«)+5g«[min(j, l)+«]+5»[min(i, k)+«]]
+ m (- 2[«5g«+ 8(k i —1-)] —2[«5» + 8(L —j —I)]+4[«5g«+ 8(k —i —1)][«5~g + 8(l —j —I)]]

+m (-—,'5g«5&g+5g«[min(j, l)+ «]+5»[min(i, k)+ «]] . (25i)

In writing these expressions we have used the no-
tation

a)
A = C, g /C44, B = C g« /C«4, (26)

B

XI

8(k)=1, k~0

=0, k&0.

For m = 0 the expressions given by Eqs. (25)
coincide with those obtained in Ref. 1.

The ma, trix AI&~««'g(m) is not symmetric, i.e. ,

AI j;«'r(m) g«A«'«g' ,',(m) . .

(27)

(28)

x,

FIG. 2. Effect of the mapping Eqs. (9) upon an acute-
angle wedge (a) and upon an obtuse-angle wedge (c) is
shown in the g$ space (b). The line segments OABC are
equivalent in all three diagrams.

2
—p~ .(», y) =Z z.,(», y), (», y),

which defines the differential operators {I, «(», y)].
implicitly, it can be shown straightforwardly that

(29}

The wedge defined by Eqs. (1) and (2) is invariant
under reflection in the plane x& = x& or, equivalently,
in the interchange of », and»z. From Eqs. (9) we
see that the interchange of x, and x2 is equivalent
to the interchange of $ and g}, and from Eq. (18)
this is equivalent to the interchange of x and y.
Thus, the wedge in the xy plane is invariant under
the operations of the point group C„whose ele-
ments are E, the identity, and 0, reflection in the
plane»=y. If we write Eqs. (20) in the form
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I', : u, (y, x) =u (x, y), I': u, (y, x) = -~(x, y),

u2( y x) u1(x y) u, (y, x)=-u, (x, y),
u, (y, x) = -u, (x, y) .

(31}
These conditions translate into the following con-
ditions on the coefficients (a',z~j in the expansions
(21):

u, (y, x) =u, (x, y),

( &) (~) (2) ( &) (3) (3)
Qy) = +Q]y, CJ] = +Q]~, g~t = +Qgg (32)

where the upper (lower) signs refer to displace-
ments belonging to I, (I'2).

Equations (32) were used to simplify the eigen-
value problem (23). The equations which were
solved in the present work are

& a', ~ =Z [B',&,'~, (m)a~,"+B',~", ~,(m) a,",' J,

&'a'„" =Z {BU",,', (m)a,",'+B'„',",,(m)a,",'.&,
tft

and a',
&

was obtained from a,z' by means of Eqs.
(32). The matrix elements (B',z,~~',(m}] appearing
in Eqs. (33) are

B&&,z&(m) =A(/ Qf(m) +A&&, &z(m),

Bo,z, (m)= ~[A,.&,z, (m)+A. &&,~(m)],

B'(js',', (m} = A. ],"~&,(m) +A'(~'„(m),

B~i~ai(m} = )[Any;ai(m) +A&f lk(m)]

these operators transform under the operations of
the group C, according to

L,~(S x„)=Z S,P'~„L„„(x„). (30)
Vu

In Eq. (30) S is the 3X3 real, orthogonal matrix
representation of an operation of the group C„and
x„ is the vector (x, y, 0). On the basis of the result
given by Eq. (30) we can immediately conclude,
using the same arguments as were employed in
Ref. 1, that the displacement fields belonging to
the two irreducible representations 1", and I ~ of
the group C, possess the properties

(21). For these calculations, all terms were re-
tained that satisfied the condition k+1 —P. For a
given value of the integer p, the dimensionality of
the matrix to be diagonalized is (p+1)(p+2)
&(p+1)(p+2). Even though the matrix is not sym-
metric, all of the eigenvalues were real for all
cases studied. For most of the calculations, the
parameters A and 8 were given the values of 3.0
and 1.0, respectively. This is the case for which
the elastic constants simultaneously satisfy the
isotropy condition C» -C» =2C«, and the Cauchy
relation C» =C«. For these values of A and B, the
value of ~ corresponding to Rayleigh surface
waves is fC = 2 ——', W3= 0. 345 299. The value 0'
= 1.0 corresponds to bulk transverse acoustic
waves.

In Fig. 3 we show the lowest ten eigenvalues as
functions of the integer p for a wedge whose apex
angle e = 45'. The value of A corresponding to
Rayleigh surface waves, 0„, is shown by a dotted
line. For the two modes whose frequencies fall
well below the Rayleigh value, the displacement
patterns are localized near the edge, and both are
termed vibrational edge modes. The eigenvalues
that fall below the Rayleigh value show good con-
vergence for values of P =10. This good conver-
gence of the lowest eigenvalues was found to hold
for all apex angles between 30 and 180'. It is of
particular interest to note that the frequencies of
modes having i', and I ~ symmetry for a wedge
whose apex angle is 45' are not interleaved, as is
the case for a right-angled wedge reported ear-
lier. '

Those modes whose eigenvalues are larger than
the Rayleigh value cannot be considered as corre-
sponding to real normal modes of the wedge. This
is because the expansion of the displacements in

0.9—
QR

0.8 —x

where, again, the upper (lower) signs refer to
modes having I', (I',) symmetry.

In addition to making it possible to solve for the
frequencies of modes of definite symmetry, the
use of Eqs. (33)-(34) in place of Eq. (23) results
in the reduction in the dimensionality of the ma-
trices to be diagonalized by a factor of one-third,
for the same number of terms in the expansions
(21).

III. RESULTS

0.7—

0.6—

0.4—
i I

4 5

e= 4@
A = 3.0
B=IO

r--
I

r -x-
2

I

IO

We have solved the set of Eqs. (33)-(34) by using
standard eigenvalue subroutines for nonsymmetric
matrices. The size of the matrix is determined
by the number of terms kept in the expansion Eq.

FIG. 3. Plot of the convergence of the lowest eigen-
values as a function of the integer p for a wedge of angle
8=45 . Qz is the eigenvalue appropriate to Rayleigh
surface modes.
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Eq. (21) implicitly contains a decaying exponential.
Hence, the sums in Eq. (21) must contain an infi-
nite number of terms to represent either surface
or bulk acoustic phonons, since these extend an
infinite distance away from the apex of the wedge.
For this reason, the calculation of the eigenvalues
for these modes does not converge as it does for
the lower-frequency modes. However, a variation-
al principle applies to this calculation, and the
eigenvalues for these higher-frequency modes are
upper limits to the actual values. Thus the modes
in Fig. 3 (and in Figs. 4 and 5) whose eigenvalue falls
above the Rayleigh value should be considered as
artifacts of the calculation. The situation here is
analogous to that encountered in solving for Ray-
leigh surface waves on a semi-infinite medium
wherein one obtains a cubic equation for the square
of the frequency. One of the three solutions cor-
responds to a speed smaller than the transverse
acoustic bulk phonon speed, and can be shown to be
related to a real, positive decay constant (the Ray-
leigh solution). The other two solutions, however,
correspond to speeds greater than the transverse
acoustic bulk phonon speed and have decay con-
stants that are imaginary. Thus, they do not repre-
sent modes that are localized near the surface, and
are ignored in the context of the theory of Rayleigh
waves.

In Fig. 4 we show the lowest-frequency I'2 modes
as functions of the wedge angle 8. For small
angles, the convergence is not as rapid as seen in

Fig. 3, and a value of p =12 was used for the angles
8 = 20' and 25'. For angles below 20', the eigen-
values were estimated by visual extrapolation of
the curve of eigenvalue versus integer P. There-
fore, these eigenvalues should be considered as
approximate. Attempts were made to extrapolate
the curves of eigenvalues as a function of integer p
in a more quantitative way by fitting the last few
points to a series in inverse powers of P. These
attempts were abandoned since (a) not all eigen-
values seem to have the same convergence prop-
erties, and (b) the extrapolated value by this meth-
od was often greater than the eigenvalue calculated
for the largest value of p instead of smaller. A

change in the formalism which could possibly lead
to faster convergence would be to replace the
characteristic length of q

' in Eq. (18) by aq ',
where a is an adjustable parameter of the order of
unity. Then, by manipulation of the parameter a,
one should be able to change the convergence rate
of the eigenvalues by adjusting the rate of decay of
the lowest-order Laguerre functions to approxi-
mate more closely the actual displacement pattern.

All of the modes whose eigenvalues fall below
the Rayleigh value, for value of 8 smaller than
105', are of Fz symmetry (shown in Fig. 4). They
correspond to the antisymmetric flexural (asf)
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FIG, 4. Eigenvalues of the I'2 symmetry modes as
functions of the wedge angle e. Also shown is the empiri-
cal dependence 0 =0& sin ne suggested by Lagasse et aI,.

modes described by Lagasse, Mason, and Ash. '
As the angle of the wedge decreases, the number
of these I"2 modes with frequencies below the Ray-
leigh value increases dramatically. This result
has also been obtained by Lagasse, Mason, and
Ash. The fact that a large number of localized
modes exist for very thin wedges is to be expected.
This is because as the wedge angle becomes very
small, the wedge modes become similar to the
vibrational modes localized near the end of a very
thin ridge whose cross section is rectangular. It
has been experimentally verified that these ridge
waveguides become heavily overmoded as the ratio
of the ridge height to ridge width becomes large.

A physical explanation for the large number of
edge modes of I"2 symmetry for small values of 8
seems to be that very thin wedges (and ridges) are
much more flexible than wedges of large apex angle,
and can therefore vibrate in a greater number of
localized modes, characterized by more nodal lines
parallel to the x, axis in the midplane of the wedge.
The thinner the wedge the more flexible it is in a
I'~ mode, in which the two faces move in the same
direction, and the more vibrational modes it can
sustain.

Also shown in Fig. 4 is the empirical dependence
of the eigenvalue upon wedge angle suggested by
Lagasse et al. In terms of the eigenvalue, this
dependence is given by
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I'~ symmetry e= l50 Q = 08443

w 5

surface X,Xe- plane
midplane

FIG. 7. Displacement pattern of the I'& symmetry
vibrational edge mode for a wedge of angle e =150'. The
x3 displacements at both surfaces are the same and are
90' out of phase with the displacements in the x~x2 plane.
The g3 displacements along the midplane are also shown.

placements are then converted to the set of real
space displacements {u (x„z2)}by performing the
inverse of the transformation in Eq. (19). It is
important to notice that due to the introduction of
an i into Eq. (19}, the x, component of the displace-
ments is 90' out of phase with the displacements
in the xix2 plane.

In Fig. 6 we show the x&x2 displacement pattern
for the two I'& symmetry vibrational edge modes
for a wedge angle 8 =45', which are calculated
using a value of P =10. The displacements in the
x3 direction for one of the surfaces of the wedge
are /so shown. We note that the x, displacements
for the other surface of the wedge are the negatives
of those shown, and that the x3 displacements along
the midplane of the wedge are identically zero for
modes of this symmetry, As expected, the lower-
frequency mode is more localized near the apex of
the wedge than the higher-frequency mode. Since
the unit of length is q ', we see that the edge modes
are confined to be within a few wavelengths of the
apex of the wedge.

In Fig. 7 we show the displacement pattern for
the I', symmetry vibrational edge mode for a
wedge of angle 8= 150', again calculated for a value
of P =10. This mode is strongly localized near the
two surfaces of the wedge, but is only weakly lo-
calized near the apex. Since the mode is of I',
symmetry, the xs displacements at both surfaces
are in the same direction. The x3 displacements
along the midplane for this symmetry mode are not
zero, but are rather 180' out of phase with the x,
displacements at the surfaces.

Finally, in Fig. 8 we show the change in the
eigenvalue, ~~, for a wedge of angle 8=45' as a
function of the change in the ratio of the elastic
constant parameters A/B The elast.ic constants
are varied such that the isotropy condition is al-
ways satisfied. Only the Cauchy relation is vio-
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FIG. 8. Change in the eigenvalues 40 with the elastic
constant parameter ratio A/B for eight of the lowest
eigenvalues of a wedge of angle e =45' and for the eigen-
value appropriate to Rayleigh surface waves. 602 is de-
fined such that it is identically zero for each mode when
the ratio of A/B = 3.0. The dependence of the two vibra-
tional edge modes is quantitatively different from the
dependence of the modes whose eigenvalues are above the
Rayleigh value.

IV. CONCLUSIONS

We have found the following.
(i) All vibrational edge modes for wedges of apex

angle 8 less than 100' are of Fz symmetry (anti-
symmetric flexural modes).

(ii) The number of vibrational edge modes lo-
calized near the apex of a wedge increases as the
wedge angle decreases.

(iii}For wedge angles 8 between 185' and 180' there
is a single vibrational edge mode of I', symmetry.
The eigenvalue of this mode is very close to the
Rayleigh value, and this mode is not strongly lo-
calized near the apex of the wedge.

(iv) There is a range of values of the wedge angle
8 for which no vibrational edge modes exist. For
the case of an isotropic medium satisfying the
Cauchy relation, this range of 8 values is between
100' and 125'. This range may vary somewhat as

lated when changing A/B. Of interest is the result
that the group of six eigenvalues of mixed sym-
metry that fall slightly above the Rayleigh value
have a very similar dependence on A/B with one
another, and with the Rayleigh value, and that this
dependence is different from that of the two vibra-
tional edge modes whose eigenvalues fall below the
Rayleigh value. In particular, the eigenvalue of
the strongly localized vibrational edge mode is very
nearly independent of the change in the elastic con-
stants.
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the elastic constants are changed.
(v) The degree of localization of the displace-

ments near the apex of the wedge for a given mode
increases as the eigenvalue for that mode decreases
in magnitude from the Rayleigh value.

(vi) In the method we have presented there are
no mathematical approximations in setting up the
eigenvalue problem. The accuracy of the results
is dependent only upon the number of terms re-
tained in the double expansion of the displacement
amplitudes. The numerical results we obtain for
the lowest eigenvalue, agree very well with results
obtained recently by Lagasse' using the method
of Lagasse et al. ' for the choice of elastic con-

stants corresponding to & = 3. 0 and B= 1.0.
The results presented in this paper, and the

theory underlying them, have been obtained on the
assumption that the elastic medium being consid-
ered is not piezoelectric. The extension of the
present theory of edge modes to piezoelectric
solids would be of interest due to the technological
utility of such materials. We are now exploring
this problem.
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