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The deformable-shell model developed by Basu and Sengupta and later substantiated by a potential form
by Sarkar and Sengupta has found wide application in describing the different static properties of ionic
crystals of both NaCl and CsCl structures. But so far a complete calculation of the dynamical properties of
ionic crystals has been reported for only one crystal. Further, from a critical comparison of the different
lattice-dynamical models which effectively introduce many-body interactions between the ions, we have
found that there are certain differences between them, some of which are quite fundamental in nature.
Moreover, of the current phenomenological models, the deformable-shell model alone is capable of
reasonably treating both the static and the dynamic properties of the crystals. Hence it is important to know
the results of the calculation according to different models. In this work we present the lattice-dynamic
calculation on the following five crystals, NaCl, NaBr, KI, KCl, and KBr according to the deformable-shell
model. In order to obtain the parameters, the well-known macroscopic quantities have been used and no
least-square-fitting procedure has been adopted. The parameters obtained from the theory have been used to
calculate the phonon dispersion relation in both the symmetry and the off-symmetry directions (where
experimental results are available) and the variation of the Debye temperature from the frequency spectra
for these crystals. We have consistently used the polarizable negative-ion model for all of them. The results
thus obtained agree well with experiment. Other theoretical-model results are also discussed in detail.

I. INTRODUCTION

The shell model describing the lattice dynamics
of alkali halides has been improved by the inclu-
sion of effective many-body interactions between
the particle of the ionic lattice. Among such im-
proved models are the "breathing"-shell model
(BSM) by Schroder, ' the three-body-interaction
model proposed by Lundqvist and applied by Singh
and Verma, and the deformable-shell model
(DSM) by Basu and Sengupta. 4 In a recent investi-
gation' we have seen that, despite the apparent
similarity in the formal structure of the dynamical.
equations of these models, there are fundamental
differences between them. From a critical com-
parison of the above-mentioned models it is con-
cluded that they differ not only with respect to the
physical content but also that they imply different
types of constraint on the system. Moreover,
while calculating the static properties such as the
cohesive energy, the relative stability, the phase-
transition pressure, or the anharmonic properties
such as variation of bulk modulus with temperature
and pressure, thermal expansion of solid, etc. ,
all these models lead to different results. Sarkar
and Sengupta and Sarkar have succesefull. y ap-
plied the deformable-shell model to study these
properties of ionic crystals. But both the breath-
ing-shell model. and the Lundqvist model lead to
difficulties in interpreting these properties. For
example, Lundqvist's three-body interaction in rela-
tion to the relative stability of crystal structures

shows a strong preference for GsCl structure, '
and the breathing-shell model in relation to the
change in ionic radius of an ion when put in a crys-
tal lattice leads to a result' contrary to observa-
tion. No such anomaly has yet been found with
the deformable-shell model.

We have further noticed while calculating the di-
electric properties of the ionic crystal that both
the pol.arization mechanism of an ion and the type
of many-body interaction implied in the different
models do not lead to identical results. Hence at
this stage in order to realize the validity of any
model we must have the results of calculation of
the different properties of a crystal by a single
model. Both the breathing-shell model and the
Lundqvist model have been exhaustively exploited
to study the lattice dynamics of alkali halides, but
only a few attempts have been made to apply them
to study the lattice statics of alkali halides. The
contrary is true for the deformable-shell. model.
Hence in this paper we propose to apply the de-
formable-shell model to study the lattice dynamics
of alkali halides.

II. MODEL AND CALCULATION

We present here a short account of the deform-
able-shell model (DSM). The details are given in
Basu and Sengupta and Sarkar and Sengupta.

The distribution of the electron charge cl.oud
around each nucleus will in general depend upon the
relative position of different ions inthe crystal.
The equilibrium density will. be altered when the
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ions are displaced from their equilibrium position.
The deformation of the charge cloud may be ex-
panded in terms of spherical harmonics of differ-
ent orders. ' The zero-order term gives rise to
an isotropic scalar deformation, the first-order
term to a dipole deformation, the second-order
term to a quadrupole deformation, and so on. In
the DSM, the first two terms are taken into ac-
count. The shell model is used to include the ef-
fect of the dipole deformation. For simplification,
the scalar deformation is represented by a single
parameter. The energy of deformation may be ex-
panded in powers of this deformation parameter.
It is further assumed that the deformation param-
eter for a particular ion is proportional to the
radial component of the overlap force exerted on
the ion by its nearest neighbors. With this assump-
tion we can express the deformation energy as a
function of the displacement of the ions from their
equilibrium position. If u(l, k) is the displacement
of the lk ion, then the expression for the deforma-
tion energy may be written as

where the force constant tensor 4'"' for the defor-
mation energy for crystals with a center of sym-
metry is given by

4 i ii = C k f J' r i r
lk(can)

(1')
where the constant C(k) is a measure of the de-
formability of the kth ion, P(r) is the two-body
central-overlap interaction, and r(ll, kk } is the
equilibrium separation between the lk and l k par-
ticles. The summation over lk runs over all the
common nearest neighbors (cnn) of I k and l k
ions. It is evident from Eq. (1') that the defor-
mation force constant has a three-body character.
It may also be noted that the scalar deformation
introduces extra force constant between l.ike-par-
ticle second neighbors only.

To introduce the effect of deformability within
the framework of the shell model, we divide each
ion k of charge Z„ into a core of charge ZI, + Y~

and a shell of charge —Y,. We put k=1, 2, to in-
dicate the cores of the positive and the negative
ions, respectively, and k=3, 4, for the corre-
sponding shells. Assuming that overlap interaction
acts entirely through the shells, the deformation
force constant in Eq. (1') will introduce extra
interaction between the shells (3, 3) and (4, 4) and
the corresponding contribution to the dynamical
matrix is designated as M'"(3, 3) and M' '(4, 4).
Let U(1} and U(2) be the amplitude vectors for
the core displacements of positive and negative

ions, respectively, and the shell-core separation
vectors for the corresponding ions be W& and W~.

Then the dynamical equations for determining the
frequency + of the system may be written in the
form

(R+D + Z C Z)U+ (R+Do —Z C Y)W=m(g U',

(Br+Dr —YC Z)U+ (I+R+Do+ YC Y)W= 0,

where Z, Y, m are 6&&6 diagonal matrices for the
ionic charge, shell charge, and mass of the ions,
U=~U, U2) and W= (Wq, Wa) are six-dimensional
vectors, and R~ C, K are 6x6 dynamical matrices
corresponding to the overlap interaction, Coulomb
interaction, and core-shell spring interaction,
respectively, and Dp is the real 6x6 dynamical
matrix corresponding to the extra interaction due
to deformation and is given by

M(d)(33) P
0 p M(BI (44) (3)

P —PII = (C„+2Ci2)
fp —7 p

a

The necessity of using the elastic constants ob-
tained from the long-wave theory as outlined above
has been discussed in detail by Roy et al. '

Y, K,
and P(l) are determined from the dielectric con-
stants at the temperature of the experiment and
the IO frequency at q= v/2ro(111) for the neutron
diff raction experiment, respectively.

The parameters thus determined have been used
to calculate the phonon dispersion relations, the
frequency spectra, and the variation of Debye tem-

It may be noted that Dp is a real self-adjoint ma-
trix.

In application we have considered only the nega-
tive ion to be polarizable. Setting Z (the ionic
charge) equal to unity, then the total number of
parameters retained is six; they are, IfI, p /ro
(nearest-neighbor force constants), P(1), P(2),
[deformability parameters, P(k) = C(k) IfI ra], I'
(negative-ion shell charge), and K (core-shell
spring constant). The parameters, IfI, p /r~,
and [P(1)+P(2)1 are determined from the elastic
constants obtained from the following expression'
by the long-wave (LW) method:

e,&z
= C, jgI (expt. )+ (P = Po)LW dC& &Its

did

( I1 &0 IJ N IJ III} & (4)

where C is the harmonic value of the elastic con-
stant, 2rp is the lattice constant at the tempera-
ture at which the normal mode frequencies are to
be calculated, I'p is the atmospheric pressure,
and
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TABLE I. Input data and parameters for the crystals.

Crystal KI ~

Temp. 95'K

Input data~
KBr NaCl

90 'K 80 'K
KCl NaBr

80 'K 295 'K
KI

95'K

Parameters
KBr NaCl KCl

90'K 80'K 80'K
NaBr
295 'K

Ref,

C«
eii
Ci2

C44

e44

rp(A)
rp(~)
6p

(0. 325)

(0. 032)

(0. 0369)

{3.504)

4. 66
2. 69

24. 76

30
31
32
33
19

0.438
0.414
0. 050
0. 047
0. 057
0. 056
3.278
3.267
4. 64
2. 38

27. 43

34
35
32
33
25

0. 580
0. 548
0. 125
0. 119
0. 142
0. 141
2. 799
2. 790
5. 53
2. 31

43. 30
(extd. )

36
35
32
33
26

0. 515
0.491
0, 056
0. 053
0. 068
0. 069
3. 137
3. 108
4. 53
2. 09

30. 50

37
38
32
27
27

0.496
0. 357
0. 097
0.434
0. 110
0. 106
2, 988
2. 951
6. 28
2.62

35. 99

1.9447 2. 3093 2. 8819 2. 6551 2. 3256

fIt '/rp —0. 2134 —0. 2332 —0 2777 —0.2728 —0. 2352

2. 999 3.6046 2. 6263 3. 5611 2. 6203

25. 008 52. 8978 45. 3117 74. 9831 31.7339

P (2) 0. 0155 0. 0518 0. 1073 0. 02116 0. 0803

P(1) —0. 0803 —0. 1099 —0. 1088 —0. 0968 —0. 1575

off etc. and eii, etc. are the harmonic and long-wave elastic constants, respectively. All elastic constants are in
units of 10 dyn/cm . ~ is in units of 10 s, References are arranged as follows: temperature derivative of the
elastic constants, pressure derivative of the elastic constants, high-temperature linear thermal expansion coefficient,
dielectric constants, and LOfrequency [q= ~/2rp(111)] for each crystal in the corresponding column. r, a, &p, and E„
refer to values at the temperature of the neutron diffraction experiment for each crystal mentioned near the top of the
table. F5�", p'/rp, k, P(1), and P(2) are in units of 10 dyn/cm.

"Values for this crystal refer to the temperature of the experiment.

perature for each crystal. In calculating the fre-
quency distribution we have used the sample of
1000 points evenly distributed throughout ~48 volume
of the first Brillouin zone selected by Kellermann.
The secular determinants in these directions have
been solved in IBM 1130 and IBM 1620 computers.
With a larger number of points in the mesh, the
frequency distribution and the specific-heat calcu-
lation become more accurate. It is, however,
expected that the mesh me use will give the gen-
eral trend of the eI, -T curve fairly mell. The
Debye function is taken from a table by Harrison
et al. The input data and the values of the param-
eters for all the crystals are collected in Table I.

In the sections that follow we give the results
for different crystals and discuss them separately.

III. RESULTS AND DISCUSSION

A. KI

Figure 1(a) represents the DSM calculation of the
dispersion relation in the symmetry directions,
and compares the same with that of the simple
shell model" (SSM) and the experimental observa-
tion. We find that our calculation shows distinct
improvement over the SSM. There is a calculation
by Deo and Dayal' which shows some improve-
ment for certain branches of the dispersion curves,
but the over-all improvement is poorer than that

of the SSM. The dispersion relations for KI cal-
culated on the model of Singh and Verma show
agreement similar to that of the present calcula-
tion. In the case of KI, we have not determined
the parameters of the model according to the proce-
dure of Sec. II. We have simply used the same
set of input data as was used in the calculation of
the SSM. Dolling et al. ,

' in addition to the SSM
calculation, have used another model in which the
SSM has been modified to include polarization of
both ions, noncentral forces between nearest
neighbors, and also central forces between next
nearest neighbors. The ionic charge is also taken
to be a variable. In this way there are 11 param-
eters which have been adjusted from the neutron-
scattering results. They report excellent agree-
ment between theory and experiment. However,
the calculated high-frequency dielectric constant
is about 10% too low. Furthermore the short-
range polarizability of the positive ion turns out
to be negative, indicating that the shell of the posi-
tive ion has a positive charge. This finding is in
agreement with that of Cowley et al. ' for NaI and
KBr. That the agreement in the case of the SSM
calculation is to a certain extent arbitrary has been
demonstrated by Deo and Dayal for the case of KI.

is, in general, determined from C«. If this
is determined from the compressibility for KI,
the calculated frequencies are about 1(Po too lom.
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There is a calculation on the deformation dipole
model (DDM)'8 which gives results similar to that
of the SSM. From Fig. 3(a) we find that the order
of agreement for low-temperature specific heat
is similar for both the SSM and the DSM.

B. KBr

In the case of KBr, in addition to neutron dif-
fraction measurement in the symmetry directions,
an experiment has been done to obtain the fre-
quencies in certain off-symmetry directions, "
which directly provides a scope to test the validity
of a model for directions other than the symmetry
ones.

Figure 1(b) represents the experimental" points
in the symmetry directions and the two theoretical
curves calculated according to SSM' and DSM.
There is a calculation by Karo and Hardy on DDM'

which shows agreement similar to that of SSM.
Figure 1(c) compares the results of SSM and DSM
in the two off-symmetry directions with experi-
ment. An examination of Figs. 1(b) and 1(c) shows
that the agreement for DSM is quite satisfactory,
and superior to that of SSM in both the symmetry
and off-symmetry directions. In this case we find
that, in fact, all the frequencies are reproduced
almost within the range of experimental error.
The calculations of BSM' and on the model due to
Singh and Verma' also show similar agreement.
The specific-heat calculation also shows that the
agreement is closer for DSM. In this case the
shell-model curve is calculated on an extended
shell model, '7 where all the parameters are al-
lowed to vary.

C. NaC1

Since Kellermann's pioneering work on NaC1,
a number of more complex models ' ' ' have
been proposed to describe the interaction of this
solid. Of these models only Lundqvist's calcula-
tion is based on first principles, but it could not
properly explain the observations. In this section
we consider first the DSM calculation of the pho-
non frequency of the crystal in comparison with
experiment and with that due to other models.

The results of DSM and BSM calculations, to-
gether with the phonon dispersion relation of NaCI.

experimentally obtained by Raunio et al. ~6 with
the neutron diffraction technique, are presented in
Fig. 1(d).

The agreement between theory and experiment
is quite satisfactory for both the models except
for a small discrepancy of the order of 4% in case
of BSM for the IO branch in the [111]-direction
zone boundary, and TQ~-mode and TA-mode fre-
quencies for large wave vectors in the [110]direc-
tion, the discrepancy in the latter cases being
greater than the experimental error. In their ex-

periment on NaC1, Raunio et gl. claim that "ex-
cept for higher frequencies the relative error is
not greater than 0. 5%." In this connection it is to
be mentioned that in the BSM calculation an ionic
charge Z = 1.0 is used. In a later ca1culation by
Nusslein and Schroder using ionic charge Z = 0. 9,
the agreement is considerably poorer. This is,
however, not always the case, as we shall see for
other alkali halides.

There is a shell-model calculation by Caldwell
and Klein ' not shown in the figure which gives the
main deviations to be confined to the following
five areas: The [ill] IO branch is up to 107' too
high and also too flat; the LA branch at point L
is about 107' low; the [110]IO branch has a pecu-
liarity which is absent in experiment; the maxima
in the LA branch in the [100 and [110]directions
are 6% to 8%a too low.

A six-parameter shell-model calculation by
Namjoshi et al. ' shows somewhat better agree-
ment than that of the one just described. The DDM
calculations' for NaC1 show good agreement for
the acoustic branches except near the zone bound-
aries, where the values are low by 5-8% for the
[ill] LA and [100] LA branches. For optical
branches the agreement is significantly poorer,
particularly near the zone boundary in the [110]
direction. The characteristic discrepancy between
theory and experiment for both SSM and DDM in the
IO mode frequency in the [1111direction is also
present but somewhat less pronounced than that of
the shell model.

There are two other calculations ' ' on NaCl
which yield results more or less similar to DSM
and BSM. In the results due to Melvin et al. (a
more generalized version of BSM), we find that
there is a hump in the [100] LO frequency near
the zone boundary, leading to a value of frequency
nearly 10' greater than experiment, a charac-
teristic discrepancy of their model. In the [110]
direction the theoretical curve for TO, mode
crosses the experimental curve at q = (0. 5, 0. 5, 0)
on the lower wave-vector side, the calculated re-
sults being about 4% below experiment, while on
the higher wave-vector side it is up by 2%& to 8%.
In the [111]direction the IO mode and the TA fre-
quency at (1.0, 0, 0) are nearly 5% off from experi-
ment. Except for the f requencies mentioned above,
the agreement is quite satisfactory. The calcula-
tions on the model of Singh and Verma show bet-
ter agreement with experiment than that of
Melvin. However, there are still certain dis-
crepancies which are restricted to the following
regions: In the [110]direction, the frequencies of
the IO mode from q = (0. 2, 0. 2, 0) to q = (0. 6, 0. 6, 0)
are about 5%p above the experimental curve; the
IO frequency in the [111]-direction zone boundary
is about 4% greater than the experimental value;
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TABLE II. Comparison of experimental and theoretical frequencies at the point (1.0, 0. 5, 0) for NaCl (in units of
1O" s-').

Mode

TA
LA
TO
LO

Expt. (Ref. 26)
(8O K)

2. 267 + 0. 004
2. 65+ 0. 01
3.00+ 0. 015
3. 51+ 0. 015

DDM (Ref. 18)
cu (O'K)

2. 278
2. 544
2. 993
3.783

BSM (Ref. 23)
Z=1. 0
~ (o'K)

2. 28
2. 58
2. 96
3.64

BSM (Ref. 24)
Z=O. 9

~(o K)

2. 153
2. 63
3.09
3.415

SM (Ref. 25)
~(O K)

2. 20
2. 48
3.25
3.46

DSM
x (80'K)

2. 27
2. 62
2. 98
3.43

being nearly 4% higher than experiment. Consid-
ering all the calculations according to the different
models, we notice that the best over-all agreement
is obtained for DSM.

A close inspection of the above discussion re-
veals the fact that all the many-body interaction
models considered here give significant improve-
ment in agreement of varying degree between theory
and experiment over SM and DDM. The difference
in results between DSM, BSM, and the model of
Singh and Verma might be partly due to slightly
different values of the input data.

In Table II a comparison is made between sev-
eral model results for frequencies in an off-sym-
metry direction, [1.0, 0. 5, 0], for which experi-
mental results are available. Here also we find
that DSM compared to others shows a better fit.

Next we have computed the specific-heat curve
from the distribution function represented in Fig.
2(c). The DSM and BSM results together with ex-
periment are shown in Fig. 3(c). Here also the
agreement is quite fair. For the e~-T curve the
model of Singh and Verma also shows satisfac-
tory agreement. But as we know, the specific-
heat calculation implies a gross averaging of the
frequencies in which the finer details of a model
are masked and hence the fit cannot be considered
to be a distinct test for any model. However, for
NaC1 one distinct point to be noted is that the ex-
perimental specific-heat curve does not totally
reproduce the characteristic dip at low temperature
as in the case of other alkali halides. This pecu-
liarity may be related to the large deviation from
the Cauchy rel.ation for NaC). Of the Na halides,
the Cauchy violation is largest for this crystal,
which indicates the importance of many-body in-
teraction. The theoretical curves considered in
Fig. 3(c) reveal this feature, as both of them imply
the types of many-body interaction not included
in either SM or DDM.

D. KC1

In Fig. 1(e), the phonon frequencies experi-
mentally determined by Raunio et al. 7 have been
compared with the frequencies calculated at the
same temperature on DSM. The agreement is

superior to that due to calculations on DDM' and
SM (not shown in figure), which show discrep-
ancies characteristic of them.

There is a calculation on BSM with an effective
ionic charge of 0. 9e for which the discrepancies
foll.ow: the LA, U), and TQ frequencies for
q= (1.0, 0, 0) are about 12%, 5%, and 5%, respec-
tively, below experiment. For the present calcu-
lation the discrepancies for this value of wave vec-
tor are 6%% below, 5% above, and within experi-
mental error for the TO frequency. For other
frequencies the predictions of the two models are
similar. The calculations~ on the model of Singh
and Verma with 0 'K input data show better agree-
ment for these frequencies.

In Table III, we compare DSM results with ex-
periment for the off-symmetry point (1.0, 0. 5, 0).
For this point also we find the agreement to be
satisfactory.

The specific-heat calculation, Fig. 3(d), also
shows satisf actory agreement.

E. NaBr

Figure 1(f) compares the phonon frequencies cal-
culated on DSM with the experimental observation
and another theoretical calculation on the model
by Melvin et al.

An examination of Fig. 1(f) shows that the order
of agreement with experiment is more or less
similar for both the models considered. For both
the models in the [1001-direction zone boundary,
the discrepancy is noticeable, and for the L0
mode it is larger for the model of Melvin et al.
(12% above experiment). For the TA modes in all
the three symmetry directions, the results pre-
dicted by the model of Melvin et al. are a few per-
cent below experiment, while the DSM results are
much closer to experiment. There is a DDM cal-
culation by Karo and Hardy' which shows agree-
ment characteristic of these models. The fre-
quencies of the model with second-neighbor forcesa~
show some improvement over those derived from
DDM. There is another calculation on the model
of Singh and Verma which shows agreement
similar to the present calculation.

Figure 3(e) compares the specific-heat calcula-
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tion on DSM with that calculated on the model by
Melvin et al.

The input data for the crystals considered above
are taken from Refs. 19, 25-27, and 30-38.

IV. CONCLUSION

A survey of the results of the application of the
deformable-shell model considered here clearly
indicates that the agreement between theory and
experiment both for the dispersion relation and
low-temperature specific heat of the alkali halides
is fairly good and suggests a definite improvement
over both SN and DDM. It is noted that the effect

of many-body interaction implied in DSM is prom-
inent for some regions of the dispersion curves;
e. g. , for the longitudinal- and transverse-optical
branch in all three symmetry directions, the ef-
fect is maximum; the effect is somewhat less pro-
nounced for the transverse-acoustic mode. The
magnitude of the effect, of course, varies from
crystal to crystal. The effect of many-body inter-
action on the eD-T curve, except for LiF' and

NaCl, is less prominent.
BSM also includes the many-body interaction of

a nature similar to that in DSN and gives good
agreement in some cases. However, there are
some essential differences between the two models
as discussed in Ref. 5. As both the models fit
the experiment by adjustment of some parameters,
the differences tend to smooth out. At least from
the study of the dispersion curves and eD-T curves
it is difficult to ascertain which model fits the ex-
periment better. Moreover, in most applications
of BSM, both ions are taken as polarizable and
second-neighbor and noncentral interactions are
also included in addition to the breathing effect.
We have in our application consistently used only
the negative-ion polarizable model and, except for
the case of LiF, neglected the second-neighbor
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overlap effect. Because of these differences, a
comparative study of agreement with experiment
for the these two models becomes difficult.

The other model~ which also includes the many-
body interaction proposed by Lund(lvist is definitely
different in principl. e from both BSM and DSM.
But when a cal.culation is made by adjustment of
parameters the differences cease to be prominent
because the dominant contribution to dynamical

~ 5matrix from the many-body interaction has the
same formal structure as in DSM and BSM

Strict comparison between different many-body-
interaction-model results is further rendered

difficult owing to small differences of the input
data in various theories. Considering the differ-
ent ways of choosing the input data of other calcu-
lations, our method of evaluation of the same
seems to be more consistent.

The final conclusion which is reasonable in view
of the present work is that the different types of
many-body interaction present in the various
models have a significant effect of varying degree
on the phonon frequencies of the alkali halides and
so far as the dynamic properties of the crystals
considered in the present investigation are con-
cerned, the order of variation is not pronounced
enough to draw any definite conclusion about the
superiority of any particular model. However,

Mode LO TO TA

Expt.
C0 (80'K) 2. 96 + 0. 02 2. 39+ 0. 02 1.66+ 0. 02 1.65+ 0 02

DSM
cg (80'K) 3. 11 2. 47 1.63

TABLE III. Comparison of experimental and theoreti-
cal frequencies at the point (1.0, 0. 5, 0) for KCl (in
units of 10 s ').
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for certain crystals, for example Naf (not discussed
in this work), it is noted that the order of differ-
ence between DSM and Lundqvist's model calcula-
tions4'24 for certain frequencies (LO) is as high as
15%, the agreement with experiment being better
for DSM; we think this cannot be explained in

terms of variation of the input data alone.
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