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An exact solution is given, using methods familiar from the theory of the dynamic Jahn-Teller effect

of orbitally degenerate states, for the vibronic problem posed by a model for the excited state of the F center
suggested by recent experiments on Stark effects in F-band luminescence of alkali halides. In this model, non-
degenerate 2s and 2p electronic states interact in cubic symmetry via a triply degenerate odd-parity (I 4 ) vibra-
tional mode. From the exact wave functions for the resulting vibronic levels of the coupled electron-lattice sys-
tem, expressions are derived for the following quantities: radiative lifetimes of the various levels; change in ra-
diative lifetime of the vibronic ground state in an electric field, when this level is a nondegenerate s-like state;

polarization induced in luminescence from the s-like ground state by electric fields, magnetic fields, and

applied stress; change in the g factor of the ground state because of the vibronic mixing; and reduction
factors for the splitting of degenerate levels by applied magnetic fields and stress. These results take a
particularly simple form when the coupling to the I 4 modes is strong. From a comparison of these
theoretical results with the experimental data for the alkali halides, it is concluded that, contrary to
earlier interpretations, the experimental situation cannot be in or close to the strong-coupling regime.
An estimate of this coupling strength to the 14 modes from a moment analysis of the vibrational

broadening of the F band in absorption and of stress-induced linear dichroism indicates that this

coupling is probably weak for KC1, and that the Jahn-Teller coupling of 2p states to the I 3+ and/or
I 5+ modes is stronger. This estimate is supported by an analysis of the form of the stable distorted
configurations given by the adiabatic energy surfaces of the static problem, when simultaneous coupling
to all three types of modes I,+, I 4, and 1 ~+ is considered. An interpretation of the experimental data
on the basis of this analysis indicates that for KC1 the 2s state must be below 2p by about 0.1 eV in

the cubic configuration corresponding to the relaxed position of the symmetric I ~+ mode. Also discussed
is the relationship of the exact solution of the vibronic problem to an approximate treatment given by
Bogan: The adiabatic states introduced by Bogan can be identified with different groups of the exact
vibronic states in the strong-coupling limit, but the approximate treatment is shown to have given rise

to misleading interpretations of some of the experimental results.

I. INTRODUCTION

The results of a number of recent experiments
on luminescence in the E band of various alkali
halides, particularly Stark-effect studies by Bogan
and Fitchen, ' Kuhnert, and Stiles, Fontana, and
Fitchen, ' have been interpreted as showing that a
2s-like level lies below the 2p level in the relaxed
excited state of the E center. Whereas the earlier
prevailing view had been that absorption and lumi-
nescence in the E band involved only the 2p excited
states, recent theoretical studies have indeed
shown that the 2s electronic state may lie very
close in energy to the 2P states and may be the low-
er state in the relaxed configuration. ' These
states should be coupled by odd-parity vibrational
modes, and the resulting vibronic levels of the
coupled electron-lattice system will then be mix-
tures of the 2s and 2p electronic states. This
mixing has been thought to be strong, ' and it plays
a crucial role in determining properties of the E
center such as the radiative lifetime of the excited
state and the polarization of the luminescence in-
duced by an electric field, magnetic field, or ap-
plied stress. However, no satisfactory theoretical
treatment of this dynamic mixing of the 2s and 2p

electronic states has been given, and interpretation
of the experiments has therefore been possible only
on the basis of a semiclassical approximate theory
developed by Bogan. ' The limitations on Bogan's
treatment have not been known, however, particu-
larly as they concern its applicability in the regime
of fairly strong electron-lattice coupling, in which
the experimental situation has been interpreted to
lie.

The purpose of the present paper is to give an
exact solution of the vibronic problem posed by a
model for the excited state of the E center which
incorporates the principal features indicated by
the recent work, namely, nondegenerate 2s and 2p
electronic states interacting in cubic symmetry
via a triply degenerate odd-parity (I'4} vibrational
mode. ' Using the wave functions for the resulting
vibronic states of the coupled electron-lattice sys-
tem, we then derive results for various quantities
that have been measured in the recent experiments,
including the radiative lifetime of the various vi-
bronic levels, the change in radiative lifetime of
the vibronic ground state in an electric field, and
the polarization induced in the luminescence from
the ground state by electric fields, magnetic
fields, and applied stress. Our solution of this
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problem is valid over the entire range of coupling
strength, and it is found in fact to assume a par-
ticularly simple form in the strong-coupling
regime.

On the basis of this analysis of the vibronic
model, we then discuss the interpretation of the
experimental data for E centers in alkali halides.
We are there able to show that these data are in-
consistent with the assumption that the experimen-
tal situation is in or very close to the strong-cou-
pling regime for the I'4 vibrational modes, contrary
to the earlier interpretation of these data. Indeed,
we conclude from this study that those alkali ha-
lides for which data are available are probably in
the weak-coupling regime. Rather than apply the
full formal theory to the weak-coupling case, for
which it is unnecessarily cumbersome, we have
investigated this limit in the following paper using
simple perturbation theory, and we consider there
a quantitative interpretation of the available data
on this basis.

The method we have used in solving this vibronic
problem is very similar to that used in treating the
dynamic Jahn-Teller effect of orbitally degenerate
states, and especially to the work of Moffitt and
Thorson' and Longuet-Higgens, Opik, Pryce, and
Sack" on the orbital doublet state. The present
problem would not in a strict sense be said to in-
volve a Jahn-Teller effect, since the coupling due
to the vibrational modes here is between nonde-
genexate electronic states and the Jahn-Teller the-
orem" is therefore not applicable. (Such a system
is often described as exhibiting a "pseudo-Jahn-
Teller effect. ") Nevertheless, the physics of the
two situations is essentially the same, as Opik and
Pryce" have noted previously, and accumulated
experience' '" with the Jahn-Teller problem pro-
vides a valuable guide to the usefulness of the
present model for the excited state of the F center,
while also indicating the method of solution. In-
deed, with sufficiently strong coupling to the odd-
parity vibrational mode, the cubic configuration in
the present case is unstable with respect to asym-
metric distortions, as we show in Sec. IIIA, in a
manner reminiscent of a Jahn-Teller instability.
Moreover, if the 2s and 2P states were accidentally
degenerate, this instability would involve a linear
splitting of the electronic degeneracy exactly as in
the Jahn-Teller effect.

One difficulty with the model used in this paper
is that it does not include the true Jahn-Teller
coupling of the P states to the even-parity I"3 and
r, modes, although this coupling in the excited
state of the E center may in fact be even stronger
than the coupling to the odd modes. Including the
even-mode coupling makes the dynamic problem
too complicated for an exact solution to be possi-
ble. Nevertheless, we have been able to solve the

corresponding static problem when all three types
of modes are included, and we have determined the
form of the stable distorted configuration for the
various ranges of relative coupling strengths.
These results enable us to determine the range in
which the dynamic solution of the simpler model is
relevant, and moreover they enable us to draw
qualitative conclusions about the way this dynamic
solution would be modified if the even-mode cou-
pling were included.

We also discuss at the end of the paper the rela-
tionship between our exact solution of the vibronic
model and the approximate treatment given by
Bogan. ' The states introduced by Hogan can be
identified with the various groups of the exact vi-
bronic states, but the approximate treatment is
shown to have given rise to misleading interpreta-
tions of some of the experimental results. In par-
ticular, previous determinations of Bogan's mix-
ing coefficient n, which is supposed to give the
amount of electronic p state mixed into the s-like
vibronic ground state, have greatly overestimated
the size of this parameter.

II. VIBRONIC MODEL

X,z, = G(Q„p„+Q~p~+Q,p, ),
where G is a coupling coefficient and

p» = Ip~&&2s I+ l2s)&p

(2. 4)

(2. 5)

The full Hamiltonian X of our vibronic model is
then given by

We consider nondegenerate s (I",) and p (I',)
electronic states' interacting in cubic symmetry
(point group 0„)via a triply degenerate I', vibra-
tional mode Q„, Q„Q,. In the configuration of
cubic symmetry (Q„=Q, =Q, =O) the electronic
singlet state, which we denote by 12s&, is taken to
have an energy E,~ relative to the triplet state

1 p„), !p,), Ip, ). The purely electronic part of the
model Hamiltonian is therefore taken to be

(2. 1)

where pa denotes the electronic operator given by

Po=+ l2s&&2s
I

—Ip. &&p. I

—Ip,&&p, l

—Ip. &&p. l.
(2. 2)

The vibrational part of the Hamiltonian is taken to
be that appropriate to a three-dimensional simple
harmonic oscillator,

3Oi = (2 p) 'I. f".+f"„+&'.+ (p~)'(Q'. + Q', + Q'. )],
(2. 3)

where co is the angular frequency of the mode, p,

its effective mass, and P; the momentum conjugate
to Q, . Finally, the coupling of the electronic
states that is linear in the distortions Q„, Q„Q, is
given by
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X Xg +XI +KgJ ~ (2 6)

III. SOLUTION IN GENERAL CASE

A. Static Problem: Adiabatic Energy Surfaces and Configurations
of Minimum Energy

As in the study of the static Jahn-Teller effect, "
it is useful in the present case to analyze the static
problem defined by the Hamiltonian (2. 6) when the
vibrational kinetic-energy terms (2I/, ) 'P, in Rz are
omitted. The linear combinations of the electronic
states that diagonalize the Hamiltonian for any
choice of Q„, Q„Q, are then easily obtained. We
find that two states are linear combinations of s
and p and have energies

E —
~ 2y2 g (E2 + 4G2y8)1/2 (3. la)

where r = (Q„'+@~+@',)'/~, while two involve the p
states alone and correspond to the double root of
the secular equation

algebra of the method used by Opik and Pryce, we
have been able to show that the configurations of
minimum energy are those given in Table I for the
various regions defined by the relative strengths
of the coupling with the different modes. In partic-
ular, the rhombic stationary points are never mini-
ma. There are two types of minima having tetragonal
or trigonal symmetry. In one of these the electronic
state in the minimum configuration is pure p; we have
Q„=Q, = Q, = 0; and the minimum results from the
Jahn-Teller coupling of the P states to the I'3 or
1", modes alone and does not involve the s state in

any way. In the other type of minimum (which we
call the s-p mixed type in Table I), the electronic
state is a mixture of s "nd p, and there is a non-
zero distortion both in the space of the I'4 Q's and
in that of the Q's of either I"3 or I'5. In this latter
case, energetically equivalent minima occur at
points related by inversion symmetry in 1', Q
space, and the number of minima is therefore twice

r2 (3. lb)

These energy surfaces have spherical symmetry in

Q space and are plotted for representative cases
in Fig. 1. The configuration of minimum energy
is obtained by finding the stationary points of the
lower root in Eq. (3. la). The minimum occurs at
r = ro given by

& 0 = (G/I/ ~')' —(E~ /2G)' (3 2)

(3.3)

provided the coupling is sufficiently strong so that

)-,' fE

where we have defined

Eo—- G /2I/, rr/

The energy at the minimum is

E= —Er.[1+(E,p/4Eo) ] .

(3.4)

(3. 5)

The energy E& thus provides a measure of the
strength of the electron-lattice coupling to the r4
modes, and for strong coupling (Eo»-,' IE& I) it
gives the approximate depth of the well in Figs.
l(a) and 1(b) and therefore is the analog of the sta-
bilization energy E~T in the Jahn-Teller prob-
lem. "' On the other hand, when the coupling is
weak so that the condition (3.3) is not satisfied, the
minimum occurs at r = 0 and is given by E = —&I E,~l,
the energy of the lower of the s and p states. No
well develops in this case, therefore, and the cubic
configuration remains stable IFigs. 1(c) and l(d)].

The more general static problem of s and P
states, including linear Jahn-Teller coupling of the

p states to 1"3 and I'& modes, has been considered
by Opik and Pryce. ' As they have shown, one can
prove in the general case that the stationary points
have cubic, tetragonal, trigonal, or rhombic sym-
metry. By carrying out the somewhat tedious

I I r I2
0 2 4 0 2 4

(2/rrr /~E, &~) r

FIG. 1. Adiabatic energy surfaces for electronic s
and p states interacting in cubic symmetry via a triply
degenerate I'4 vibrational mode. The energy surfaces
have spherical symmetry in Q space. Plotted for repre-
sentative cases is the ratio of the energy E to the mag-
nitude of the energy difference E+ of the s and p states
in the cubic configuration (Q = 0), as a function of (2pcs /

I E I) r, where r is the radial coordinate in Q space,
r= (Q„+Q +Q ) [see Eqs. (3.1a) and (3. 1b) of text].
The coupling energy is denoted by EG [Eq. (3.4)]. (a)
E &0, E / I E l=1; (b) E &0, E / I E I=1; (c) E &0,
Eo/IE~ I

= 0.2; (d) E~& 0, Eg/ I E~ I
= 0.2.
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TABLE I. Configuration of minimum energy for simultaneous coupling of nondegenerate s and p electronic states to
modes of symmetry I'3, I'5, and I'4. The range of the coupling energies Ec (I'4), (E&T)z (I"3), and (EzT)z (I'~), over which
the indicated configuration is the minimum, is given below. ~ Also given are the minimum energy, " the number of ener-
getically equivalent minima, and the irreducible representations of 0& spanned by the distorted states.

Configuration:

JT z

(EgT)z& I E~ I

E+&0
NgT)z& IE~I

E~&0

Energy~

No. of equivalent
minima

Irreducible reps.
spanned (0&)

Cubic
s state, r=O

IE

(E'z T)z' (EJT)r
Tetragonal

Jahn-Teller type

E, & —,'(E~)z+ 4'E„

E= —(Egg)z

Tetragonal
s-p mixed type

Ec& 4 IE~ I

Ec& 2(E~)z —4 IE~ I

E &1(E )

E — ( Ec -E~) + 4(E~)z E»
4~4Ec —(Err)z~

I",+ r', + I4

Configuration: Cubic
s state, r= 0

NJT)T & (EgT)z
Trigonal

Jahn-Teller type
Trigonal

s-p mixed type

E~&0

Energy"

No. of equivalent
minima

Irreducible reps.
spanned (Oq)

Ec&4 I

Ec&2(Ezr)r —4 IE~ I

Ec & 2%'~)~+ 4E~

& —IE

Ec 2 (EJT)z' 4

& —(E )

E (4Ec —E~) + 4(E~)~~
4l4Ec —(E~)~l

I;+ r-, + r4+ r',

~E~ is the energy of the s electronic state relative to that of the p state in the cubic configuration. The coupling
energy Ec for I'4 modes is defined in Eq. (3.4) of the text. The Jahn-Teller energies (Ezz)z and (Ezz)z for the I'3 and
I'q modes, respectively, are defined by Eq. (3.6) of the text.

"In this table the energy of the minimum is given relative to the zero of energy taken to coincide with the energy of
the electronic p state in the cubic configuration.

that found for the case of pure Jahn-Teller coupling
alone. In summarizing these results in Table I
we use the Jahn-Teller energies (Err)z and (E»)r
for the coupling of the P states to the I", and I',
modes, respectively. These are related to the
coupling coefficients, effective masses, and fre-
quencies of the modes as follows:

(Err)z ——Vz/2Pzez, (EzT)r= 2V&/3p, rurr. (3. 6)

where our notation is the same as that used in
earlier papers on Jahn-Teller effects in an orbital
triplet state. "

Including the Jahn-Teller coupling to the I'3 and
I', modes has the important effect of destroying the
spherical symmetry found in Eq. (3. 1) and Fig. 1
for I'4-mode coupling alone [except in the excep-
tional case in which (Ezr)z - (Ezr)r]. Because this
symmetry provides the key to the ensuing solution
of the dynamic problem, we have not been able to

Lg= I '(Q„P —Q„P„), (3. 7)

etc. , and we take as a complete set of functions

include coupling to the l 3 and I'5 modes in our
treatment of this problem.

B. Dynamic Problem: Solving for Vibronic Eigenstates

The spherical symmetry of the static problem
for F4 coupling only, as found in Eq. (3. 1) and Fig.
1, results from the invariance of the model Hamil-
tonian (2. 6) under a continuous group of simul-
taneous rotations of the electronic and vibrational
coordinates. We shall exploit this symmetry in a
manner similar to that used previously by Moffitt
and Thorson' and Longuet-Higgins et al. " in treat-
ing the dynamic Jahn-Teller effect of an orbital
doublet state. We introduce a vibrational angular-
momentum operator L with components I.„, L„L,
given by
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of the angular coordinates 8, y in Q space (Q,
= r cos8, Q„=r sin8 cosy, Q, = r sin8 sing} the
spherical harmonics Yz (8, y) (defined with the
phase relationship of Condon and Shortley") for
which we have

L,Yi (8, p) =IYi (8, y), (3.8a}

(3.11)

does commute with K,L, and thus with the full
Hamiltonian K in Eq. (2.6). Vibronic eigenstates
of 'K may therefore be classified by the eigenvalues
of J = J(J+l)(J=O, 1, 2, .. . ) and J,=M. In addi-
tion, if we introduce the inversion operator I in Q
space, where

(L„siL,) Yi (8, p)=+[L vm)(L +m+1)]'i Yz ~(8, y).
(3.8b)

We also introduce the electronic orbital angular-
momentum operator 1 with components represented
within the electronic basis 12s), Ip„), Ip,), Ip,) by

&. = - f Ip. &&p, I+f Ip,&(p. I, (s. 8}

etc. The state I2s) is thus an eigenstate of I with
1 =0, while the P states may be combined with the
conventional choice of phases to give eigenstates

I I, l,'& of I and I„
Il, 0&= Ip. » Il ~»=+(2) '"(Ip.&+flp, &) (3»)

r~
Both L and 1 commute with X, and X~, the elec-

tronic and vibrational terms in the Hamiltonian,
but neither commutes with the coupling term X,i..
However, the total angular-momentum operator

X=L+1

A'= (-1) ". It follows that any eigenfunction of SO

which belongs to J, J,=M and has A'= (-1) can be
expressed in the general form (which we call type
I)

ei(J, M, A') =fg(J, r)
I
J, cv; J, s&+fp(J, r)I J, M; J—l,p&

+f3(J, r)
I
J; M; J + 1,p), (3. 15}

where the f,(J, r) are functions of the radii coordi-
nate r (.For J=0 the term in f, is absent. ) Eigen-
functions also belonging to J, J,=M but having A'
= (- 1)~", on the other hand, take the form (type II)

(J, M, A')=f (J r)IJ. M' J p) (3 16)

All eigenfunctions of the model Hamiltonian (2. 6)
belong to one or the other of these two types of
vibronic state.

It is straightforward to show that the only non-
zero matrix elements of SO,z, as given by Eq. (2. 4),
among the "angular" functions I J, M; L, p) and

I J, M; J; s) are given by

(J, M; J+ l, p IK,z IJ, M; J, s)= —Gri(J+ I)/(2J+ I)]'is,

(3. 17)

(J, M; J—1,P I
3C, IJz, M; J, s ) = + Gr [J/(2J+ 1)] 'i' .

(The matrix elements imply integration over the
electronic coordinates as well as over the angular
coordinates 8 and y in Q space. ) Introducing the
Schrodinger representation for Kz, in Eq. (2. 3),

Xz = &, + (0'/2p, r') L'+-,' pro'r', (3. 18)

(8, y)=(-1} Y (8, p),
we find that

(3. 12)
where

(s. Io)

A =Ipo (3. 13)

also commutes with X and with J, where po is de-
fined in Eq. (2. 2) and represents the electronic in-
version operator. We can therefore also classify
an eigenstate of X by the eigenvalue A'= +1, which
we call the parity of the state. Since only states
with the same eigenvalues J, J„and A' can be
mixed by X, we see that we have obtained in this
way a means of separating the vibronic wave func-
tions for the dynamic problem into nonmixing sets.

Eigenfunctions of J and J, formed from the s
electronic state are given simply by

J, M; L, s)= Yi „(8, y)I2s), (3.14)

where J= L, M = m, and the function has the parity
(-1} . The corresponding eigenfunctions I J, M;
L, p) formed from the p states may be obtained as
linear combinations of the products of Yz (8, y) with
the electronic states (3. 10), from a table of Wigner
coefficients given by Condon and Shortley. For
these states, using a given L, we have J= L —1, L,
L+1 (except for L =0, for which J= 1 only), and

we now substitute the type-I wave function (3. 15)
into Schrodinger's equation for the Hamiltonian
(2. 6). The angular functions may be eliminated by
using their orthonormality, together with Eqs.
(3. 17) and (3. 18), and we get the following three
coupled differential equations for the radial func-
tions f,(J, r)(f= 1, 2, 3) and the vibronic energy
eigenvalue E:

(
h2&„+,J(J+1)+ipaPr +iiE,~ Ef,(J; r)-

2p.r
1/2 J+ 1 1/2

+Gr fz(J, r) —Gr J I f,(J, r)=0,
(S. 20a)

1/2+Gr, J, r =0, 3.20b2J+ 1

(
82

& + z (J 1)(J++2)+kg&a'r' —aE ~-E f,(J, r)
2p, r sP



VIBRONIC MODEL FOR THE RELAXED EXCITED. - ~ I- ~ ~ 2931

1/2
-Gr f,(J, r)'=0. (3.20c)

A similar substitution of the type-II functions
into Schrodinger's equation yields simply

[&„+(ff /2pr)J, (J+1)+ay, (d g —qE,~ E]f-4(J,r) = 0,

(3.21)
which is identical with the radial equation for a
three-dimensional simple harmonic oscillator. A

type-II vibronic state has the opposite parity from
that of a type-I state belonging to the same J; it is
made up entirely from the P electronic states, and
it is completely independent of X,&. Energies of
the type-II states therefore coincide with those of
the vibrational levels of the p eLectronic state in
the complete absence of s-P vibrational coupling.
(There are, it must be noted, no type-II states
having J= 0. )

It is useful for our subsequent work to express
the vibronic states in the form

(J—M+ 1)(J M 1))
(J'+ l)(2J+ 3)

J'.2 M(8, (1( ), (3.24b)

(3. 25a)2I)gg, (J, M, A') =0,

4ii.(J, M, A')=M[J(J+1)] '"f4(J.~)F, .(8, 4o),
(3.25b)

2{ MJ, 1)')2'2„„(J,M, A')=( ~
)

4)q„(J, M, A') aiba (J, M, A')

(J +M —1)(J+M) ~)

J(2J 1) f2(J2 +)FJ'-12 ()441(82 C )

(J+M+ 1)(JISM+2) '~'f (J ) F (8 )(J+ 1)(2J+3)
(3.24c)

For the type-II states )I(,4(J, M, A') in Eq. (3. 16),
we have

4 = 4, I2s&+ 4„Ip, &+ c, I p, &+ c.
I p.&, (3. 22) xf (J, r)F „(8, y) . (3.25c}

where the 4's are the appropriate complex func-
tions of Q normalized so that

f(IC.I'+ IC. I'+ Ic, I'+ I4.I')&4=1

(3. 24a)4)„(J, M, A')= f~(J, r) 7'J „(8, y),

C„(J, M, A')= J J 1 f,(J,r)FI ), g(8, y)
(J' —M)(J+ M)

For the type-I states, 21{&(J, M, A') in Eq. (3. 15),
we find from Eqs. (3. 10), (3. 14), and the expres-
sions for I J, M; I, p & obtained from tables of Wig-
ner coefficients' that we have the following expres-
sions for the @'s:

We will consider in Sec. V various properties of
the iwo types of states )IJ,(J, M, A') and )IJ„(J,M, A')
that may be related to the general form of their
wave functions. We proceed now to seek solutions
of Eq. (3.20} for the type-I states in the limit of
strong coupling.

IV. STRONG-COUPLING LIMIT

The terms that couple the three differential equa-
tions (3.20) for the radial functions f,(J, r) of the
type-I vibronic eigenstates result from K,l and may
be represented by a symmetric matrix,

U= +Gt'[J/(2J+1)]'i'

-Gr[(J+1)/(2J+1)] ' 2

+G4'[J/(2J+ 1)] ' ' —Gr[(J+ 1)/(2J+ 1)) ')'

(4. 1)

They are large when the coupling is strong, and in

this case it is appropriate to introduce an orthog-
onal transformation of the f& that brings U to diag-
onal form. This transformation is given by

J J+1
2(2J 1) 2(2J 1))

1/ J+ 1 /2

2(2J 1) 2(2J 1))

"3- 2J+1 f2' 2J+1 f3

for which we have

UFq ———GrF, , UF =+GxF, UF =0. (4. 3)

(4. 4a)

[S,+ (If'/2i4r ')(J'+ J+ 1) + z p cu'r'+ Gr E]F2-
+ [-'E„—(h'/2ur')] F, (h'/2qr')

From the definitions (4. 2) and Eq. (3. 20), we find
the coupled differential equations satisfied by the
F; tobe

[5)„+(h'/2i4r')(J'+ J+ I) + J i)(d'r' —Gr E]F, -
+ [-'E.& —(@'/2u ~')]F4+ (h'/2m~')

x[2J(J+1)]'~'E =0
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x[2'(J+1}]'~~F3 = 0, (4. 4b)

[8„+(g'/2pr ) J(J+ 1) + 2 p &u'r ' —2 E,~ E]-E3

+(h /2Ijr )[2J(J+I)] ~(F, -F2)=0. (4. 4c)

With the radial differential equations thus trans-
formed, we see from Eqs. (4. 3) and (4. 4) that the
coupling X,~ introduces a term —Gx in the effective
potential energy for F„aterm + Gr for I"2, and no
term in G at all for F3. If we have G &0 (for G & 0
the roles of E, and E2 are interchanged), the effec-
tive potential energy

(4. 5)

for E, therefore has a minimum at r = G/p&a', where
V,«- —G'/2pu . The depth of the potential well
given by Eq. (4. 5) is therefore equal to Es as given
by Eq. (3.4), and we recognize the resemblance of
V,«(E,) to the lowest adiabatic energy surface in
Fig. 1(a) [except, of course, near r=O, where the
effect of a nonzero value for E,~ is omitted from
Eq. (4. 5}]. Similarly the effective potential ener-
gies for E, (with G &0) and E, resemble the highest
and middle surfaces in Fig. 1(a), respectively.

When the coupling is sufficiently strong, there
will be low-energy solutions of Eq. (4. 4) having
wave functions localized near the potential mini-
mum. For r /Gp~, -the difference between the
potential energies for I"„I"

&, and E3 is Gx-2E|-.,
while the terms in Eq. (4.4) that couple the different
equations are proportional to E,~ and (K /2gr )- h~(A~/4Es). Accordingly, if we have Es» IE,~ I

and E&» @(d, it will be a good approximation to
drop these coupling terms and to seek the low-en-
ergy vibronic states by solving the remaining sim-
ple radial differential equation (4. 4a) for E, The.
term (8 /2pr )(J2+ J+1) is approximately constant
in the vicinity of the minimum, however, so that
the relative energy of the low-energy states is
given by

E,(P =4(4+1)R(o(gu)/4Eo) . (4. 6)

In the strong-coupling limit, therefore, the lowest
type-I vibronic state is a nondegenerate s-like
state (J=O, A'=+1), while the first excited state is
a p-like triplet (&= 1, A' = —1), the separation of
these levels being given by

E,(l) —E,(0) = p g+(h(g/Eo) . (4 7)

Since these levels lie lower than the lowest type-II
state [a state with J = 1, A' = + 1, and E = (- ~ E,~
+ —', Km) as obtained from Eq. (3.21)] by an energy
of approximately Ec„ the type-I s-like level is the
vibronic ground state of the system and the p-like
level the first excited state. The order of these
levels in strong coupling is therefore independent
of the sign of E,~, that is, of the order of the s and

p electronic states in the cubic configuration.
Since, under our assumption that E&» S(d, the

energy differences of at least the lowest few type-I
states (s, P, d, f, ... -like, with J=O, 1, 2, 3, .. .)
as given by Eq. (4. 6) are «k&u, the radial function
E, obtained by solving Eq. (4. 4a) will be approxi-
mately the same for these different levels. Since
for these states F,-F, -O, we find on inverting
Eq. (4.2) that the vibronic wave function for these
states is given by Eq. (3. 15), with

f, (Z, r) =+(2)-'~F„

f,(J, r) = —[J/2(2 J+ 1)] '+E„

fs(~, r) =+[(J+I)/2(2~+1)] '~E&.

(4. 8)

Normalization of the wave function requires in this
case that

J r2E', dr=1.
0

V. PROPERTIES OF VIBRONIC STATES

A. Radiative Lifetime

(4. 9)

q'.(Is) = 4'.(Q) I
ls } (5. 2)

and that the associated vibrational functions 4„(Q)
form a complete set in the space of the vibrational
modes:

~ @'.*(Q)@.(Q')=5(Q —Q'). (5.3}

The rate of spontaneous emission of light of en-
ergy E and polarization p, resulting from a transi-
tion from a vibronic level with wave function +, and
energy E~ to the electronic ground state I ls), is
given by

f.(5, E)= c & l&~. ID. I
~.(»})I'5(E. E. E)--

where

C = (4nE /35 c )(8, /g ),
(5.4)

(5. 5)

n being the refractive index of the medium, c the
speed of light in vacuum, and 8,« /$0 the local-
field correction. In most of this work we will ig-

We will now consider the properties of the vi-
bronic eigenstates of the dynamic problem, and we

will show how these are related to the properties
of the s and p electronic states. We first obtain
the lifetime of vibronic states, such as those given
by Eqs. (3. 15) and (3. 16), for radiative decay to a
simple nondegenerate s-like electronic ground
state, which we denote by I ls). We take the matrix
elements of the electric-dipole-moment operator
D between I ls} and the electronic P states to be
given by

(5. 1)

where p = x, y, or z. As in the work of Henry,
Schnatterly, and Slichter, we assume that the
vibronic states +„(Is)associated with I ls) have
the simple-product form
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nore the variation of C over the energy range of the
states +„(Is}to which the transitions occur, on the
assumption that the width of the emisson band is
small compared with its mean energy. Integrating
Eq. (5. 4) over Z, we then have for I„(b), the total
probability per unit time of the emission of a photon
of polarization g,

f„(b)= cZ
I
(4' ID. I

4'.(Is)&l' (5. 6)

Using the general form (3. 22) for +„we then ob-
tain from Eqs. (5. 1), (5. 2), and the completeness
relation (5.3), the result

f„(b)= CD' f I 4„(b)I'~. (5. 7)

The reciprocal of the radiative lifetime 7'„(b} of
the state +~ is obtained by summing f„(b) over all
polar izations q,
T „'(b) =cD' f [ I

4'.(b) I'+
I 4,(»l'+

I ~.(» I'] d4
(5. 6a)

=cD'[I f Ic,(b) I'dQ], (5. 8b)
where in obtaining the latter form we have used the
normalization from Eq. (3.23). It follows that any
state for which 4', (b) = 0 has a radiative lifetime
equal to what we would obtain for the electronic p
states in the absence of electron-lattice coupling,
namely,

„(p)=(&D') ' (5.9)

rp (J)= & 7'p (p) (5. 11)

for the low-energy states for which the f, are given
by Eq. (4. 8), where we have also used Eq. (4. 9).
With strong coupling, therefore, the radiative life-
time r„(J) of the low-energy vibronic states is the
same for the different states and equals 27„(p).
This factor 2, of course, results from the fact that
in strong coupling these low-energy type-I states
are equal mixtures of the s and p electronic states,
as is seen from Eqs. (4. 8) and (4. 9).

B. Stark Effects in Emission

If a uniform electric field F is applied to the
crystal along the z direction, the perturbation of
the defect is given by

X~= -D,F, (5. 12)

We therefore obtain a radiative lifetime given by
v„(p) for all the type-II vibronic states given by Eq.
(3. 16), which are made up from the p electronic
states alone. For the type-I states, on the other
hand, we have from Eqs. (3. 15) and (5. 8) the gen-
eral result

r„'(J)=r„'(p) f r [f2(J, r)+f', (J, r)]dr. (5. 10)

In the case of strong coupling this reduces simply
to

where F, is the local effective field. We will now

consider the effect of such a field on the vibronic
states, their radiative lifetime, and the polariza-
tion of their luminescence.

The components of the electric-dipole-moment
operator D transform like x, y, z, so that the per-
turbation 3C~ can have nonzero matrix elements
only between vibronic states of opposite parity A'

for which the difference in J is 0 or +1. Since we
have taken the field in the z direction, we have the
additional selection rule ~M= 0. We take the ma-
trix elements of D between I 2s& and the electronic
p states to be given by

d= &» IDnl pn&. (5. 13)

It is then straightforward to show from Eq. (3. 15)
and the definition of the angular functions that the
only nonzero matrix elements of XF between differ-
ent type-I states are given by

There is no coupling via X~ to the type-II states in
this case, since M=0 in Eq. (5. 15). The functions
@,(1, 0, —1), +,(2, 0, + 1), and 4,'(0, 0, + 1) in Eq.
(5. 16) in the general case will be linear combina-
tions of the eigenstates of the unperturbed dynamic
problem, since there are nonzero matrix elements
as in Eq. (5. 14) to many of the eigenstates of higher

J+I&'-M' '~'

J+1 0

x f,(J+1, r) —(2J'+3) '~'f, (J, r)f, (J+1,r)].
(5. 14)

There are, of course, no nonzero matrix elements
of X~ among type-I states having the same value of
J, because they all have the same parity &' =(- 1) .
However, between type-I and type-II states of the
same Jwe have nonzero matrix elements given by

&4i(J, M, &') l~r I4ii(J, M, -&')& =d+, «(J+I)] '"
x f r'f, (J, r)f,(J, r) dh. (5. 15)

0

We now consider the effect of the electric field
in perturbing a nondegenerate type-I vibronic level
with J= 0. Such an s-like level is the vibronic
ground state of the 2s-P manifold over a rather
wide range of circumstances, including the
strong-coupling limit as we have seen in Sec. IV,
and we are then particularly interested in the effect
of various perturbations on this state because it
determines the polarization of the luminescence
and the radiative lifetime of 0 'K. We can write
the perturbed state @,(0, 0, + 1) to second order in
F, as

@~r(0, 0, + 1)= (1+aE,')@0, 0, + 1) + bE,@&(I, 0, —1)

+cE',4,(2, 0, + I}+eF',+,'(0, 0, +1) . (5. 16)
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energy. The term eF, 'P,'(0, 0, +1}represents the
second-order contribution of Z= 0 states different
from the unperturbed state qi, (0, 0, +1). However,
the predominant perturbation of the ground state
will often be due to the states with J = 1, 2 that lie
closest in energy, since the energy difference ap-
pearing in the denominator of the perturbation coef-
ficients a, b, and c in Eq. (5. 16) is smallest for
these states. As we will show later, in the strong-
coupling limit it is for many purposes only these
nearest states that are important, and we will limit
our analysis here to this simple case. The gen-
eralization necessary when coupling is to more
than one state or when coupling to other 4 = 0 states
must be included can be made in a straightforward
way.

We therefore take the perturbation in Eq. (5. 16)
to involve only the state of lowest energy from
each of the sets of P- and d-like type-I eigenstates
with J=1 and 2. The coefficients a, b, and c in
Eq. (5. 16) a.re then given in terms of the reduced
dipole matrix elements defined in Eq. (5. 14) by

do(0)
Ez(I) -EK(0) '

do(0) d|(0)
[EI(I)—E (0)]I.E (2) —E (0)] '

(5.17)

and the second-order shift in the energy of the J= 0
ground state is

[do(0)l'F .'
E,(1) -E,(o)

(5. 18)

&[r„'(0}]=F', 1 E 0 [r„'(1)—7, (0)] . (5. 20)

The change in radiative lifetime of the ground

The change in the radiative lifetime of this level to
order F ', may be obtained easily from Eq. (5.8b)
if we use Eqs. (5. 16) and (3.24a) to obtain the
coefficient of 12s} in the perturbed wave function.
(For simplicity, we ignore any perturbation of the
electronic ground state I ls} caused by the applied
field, on the assumption that the dominant effects
are due to the mixing of the states 12s}and 12P},
which are assumed to be close together in energy
compared to the separation of the states I ls) and
12p). ) Because of the orthogonality of the spherical
harmonics Fo o and F2 0 under integration over Q,
we see that the term in 4', (2, 0, + 1) in Eq. (5. 16}
does not contribute to the lifetime to order E„and
we have

r„'(0 ) = r„'(0) —CD F, [2af I 4,(0) I
dQ

+b' f 14.(I) I'd@] (5 IS)

Using Eqs. (5. 8b) and (5. 17), we therefore have

state is therefore proportional to the difference
in lifetime between the s-like ground state and the
P-like state that is mixed with it by the field.

A more complicated result than that for the radi-
ative lifetime is obtained for the linear polarization
P(0) induced by the field in the luminescence from
the J= 0 ground state. To calculate this induced
polarization, we must use Eq. (5. 7) and the ex-
pressions given for 4'z„(Z, M, A') (q=x, y, s) in Eq.
(3.24). Defining the polarization P in the usual
way,

Il, +I~ ' (5. 21)

P(0) = s F,(b + c v 5 ) .

In this limit, we have from Eq. (5. 14),

do(0) = —(3) d, dg(0) = —2(15) ' d,

so that we obtain from Eq. (5. 17),

P(0) = 3 d'F,'[Eg(I) -Ez(0)l ',

(5. 23)

(5. 24)

(5. aS)

where we have used the relationship [E,(2) —E,(0)]
=3[E,(l) -E,(0)] from Eq. (4. 6). The change in
the radiative lifetime is zero in the strong-coupling
limit, aside from the change resulting from the
shift in the emission band, the expression in Eq.
(5. 20) vanishing because r„(J) was shown in Eq.
(5. 11}to be independent of Z in this limit. This
result is also evident from Eq. (5. 1S), because,
as we have seen, in the strong-coupling limit the
low-energy states are equal mixtures of the s and

p electronic states, so that f IC,(J'}I dQ= ~. The
radiative lifetime is therefore independent of how
these states are mixed and is given by 2r„(p). The
conclusion that the field-induced change in the radi-
ative lifetime is zero in the strong-coupling limit
remains valid even when coupling to states of high-
er energy, such as those associated with the mid-
dle and upper energy surfaces in Fig. 1 which were
ignored in deriving Eq. (5.20), is included.

Hogan and Fitchen' observed a shift proportional
to I" in the average energy of the luminescence.
This is not, however, equal to the level shift &E(0)

where in the present situation we have Il =I„ I, =I„
=I„we obtain to order I",

P(0) = —', F,'[ J r'f', (0, r)dr] '

x J r'{b [fz(1, r)+(10) 'f', (1, r)]
—(2)'~scf, (0, r)f2(2, r) }dr. (5. 22)

In the general case, the expression for P(0) in
Eq. (5. 22) depends on the wave functions in a com-
plicated way and shows no simple relationship to
the change in radiative lifetime, Eq. (5. 20). In
the strong-coupling limit we may simplify Eq.
(5. 22}, however, using Eqs. (4. 8) and (4. S), to
obtain
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given by Eq. (5. 18), because the intensity distribu-
tion of the emission over the vibrational levels of
the lls) state is, in general, changed by mixing the
excited states into the J= 0 ground state. We have
not succeeded in obtaining a simple general formula
ana, logous to Eq. (5.20) or (5. 22) either for this
average energy shift or for the field-induced broad-
ening of the emission band.

In concluding this discussion of the Stark effects,
we want to show that for strong coupling it is the
lowest p- and d-like levels with J= 1 and 2 that are
mainly responsible for perturbing the s-like ground
state. For all three of these levels the radial func-
tions f,(J, r) are given to a good approximation in
Eq. (4. 8) in terms of the same function F„ the
lowest-energy solution of Eq. (4. 4a) (for which
F2-F, -O). There are, of course, higher-energy
solutions FI"' of Eq. (4. 4a), and the resulting se-
quence of levels for a given J has an energy sepa-
ration - her, but to a good approximation these are
orthogonal to F,: Jr F,F~"'dr 0. We see there-
fore from Eqs. (4. 8) and (5. 14) that states formed
with these higher-energy radial functions E',"' will
have negligibly small matrix elements of X~ with
the low-energy states formed from I",. On the
other hand, there are nonzero matrix elements of
X~ to states associated with the middle energy sur-
face in Fig. 1 and formed from Fs (for which F,
-F, -O). For such states, however, the perturba-
tion-energy denominator in Eq. (5. 17) is -2Eo
Since E~ »Nor for strong coupling, the effect of
such states on the ground state is thus negligible
compared to that of the low-energy states whose
separations are given by Eq. (4. 6). The latter are
therefore the only ones that contribute significantly
in perturbing the ground state in the strong-coupling
limit.

C. Reduction Factors for Vibronic States

The (2J+1)-fold degeneracy of one of the vibronic
levels is lifted by a perturbation that lifts the
threefold degeneracy of the electronic P states

I P, ), l P, ), and I P, ) in the cubic configuration.
We may relate the matrix elements of such a per-
turbation within a given level to the electronic in-
teraction by introducing "reduction factors" anal-
ogous to those which have proved useful in the the-
ory of the dynamic Jahn-Teller effect. " The form
which this interaction takes within a level is of
course determined by symmetry, but the size of
the matrix elements and thus the magnitude of the
initial linear splitting of the level are proportional
to the appropriate reduction factor, which itself
depends only on the strength of the electron-lattice
coupling Xe

A perturbation that splits a, p (I'4) state in first
order must belong to one of the irreducible repre-
sentations I'3, I 4, or I'5 or 0„. Representative

electronic operators of these three types may be
defined in terms of the components l„, l„and l, of
the orbital angular momentum given by Eq. (3. 9),
which themselves belong to I'4. For I'3 we may use
l', —&(l„'+l,') and (3/4)' '(l„' —l', ), and for I';, (3/4)'~'
x (l/~+ i/, ), (3/4)'~ (l,l, + l,l,), and (3/4)'~2(l, l„+lj,).
However, taking account of the full rotational sym-
metry of our vibronic model in the combined space
of electronic and vibrational coordinates, we recog-
nize that these last five electronic operators trans-
form in the same way as a set of functions belong-
ing to J= 2 with parity A'=+1. The reduction fac-
tors for I'3 and I', operators in any given level are
therefore the same in our model, instead of being
independent parameters as they would be if the
model had only cubic (0„) symmetry W.e recognize
also that l„, l„, and l, transform as J= 1, A'=+ 1.

To obtain reduction factors for these two sets of
operators in a given level, we need evaluate only
one nonzero matrix element for one operator from
each set. We will do this only for the type-I states
of Eq. (3.15), for which we obtain

(@i(Z, M, A') il i@,(Z, M, A')) =MJ 'K~(T,),
(@,(J, M, A') ~i, —k(l„+l,) ~4', (J, M, A')) (5. 26)

= —(2J ) '[J(J+1)—3M ]K~(E),

with the reduction factors K~(T,) for I'4 operators
and Kz(E) for I'3 and I"5 operators given by

KJ(T&) = f x'[f2(&, x) —J(J+1) 'f', (J, r)]dr,
K (&)= f ~'[&(2& 1) 'f'(J, -&) (5 2'I)

+ J (J+1) '(2J+3) 'f~(J, r)]dr .

Kz(T, ) is the appropriate reduction factor for per-
turbations such as a magnetic field or spin-orbit
interaction, while K~(E) is appropriate for splittings
due to applied stress. For strong coupling and
states given by Eq. (4. 8), we find the limiting
values

K~(T,) =0, K~(E) =8 (2J —1) (2J p3) . (5. 28)

In the strong-coupling limit the magnetic splitting
of the low-energy states is therefore completely
quenched, as we expect from the similar result for
a dynamic Jahn-Teller effect (these results pertain
to the Zeeman effect due to the orbital magnetic
moment but not, of course, to that due to spin).
The effect of applied stress is not entirely
quenched, however; we have in particular for a p-
like level (J= 1) the limiting value K,(E) = 5, so
that the strain splitting of this level is reduced by
80% compared to the splitting of the electronic p
states.

D. Magnetic Polarization of Emission

A magnetic field II applied in the z direction
gives rise to the orbital Zeeman interaction
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e = gl gaHlg, (5. 29) x[8(",)(I) —E (0)] ' . (5. 34)

+g(0, 0, +1)=+~(0, 0, +1)

+sit sH~ tPPi'(I, 0, +I), (5. 31)

where the summation is over the various type-II
states with J=1, M=O, and we have

t„=+(2/3)"'[&'r'(I) —&z(0)] '

&& f r f,(0, r)f4"'(1, r)dr. (5.32)

Using Eq. (5.7) with 42, = (2) '~'(4', +iC„) to obtain
the emission probabilities I,(0) and I (0) for light
with left- and right-handed circular polarization,
respectively, along the magnetic field, we obtain
from Eqs. (3.24c) and (3.25c)

I(0)=-, CD' J r'(r(2/2)'~'f(0, )
0

2

+g~psHZ t„f4"'(1, x) Ch (5. 33)
n

f,(0) -L(0) = —(4/3) CD'gLus H

2

x Z r'f3(0, y)f4"'(1, y) dr
n - 0

where i(, s = ek/2mc is the Bohr magneton and g~ is
the orbital g factor of the electronic P states. We
omit electron spin for the time being and consider
the effect of K&' in inducing circular polarization
in the luminescence from the vibronic ground state,
which we again take to be an s-like state (type I)
with J=O, A'=+1.

The matrix elements of the components of 1 must
obey the selection rules ~J= 0 or 1 and cannot con-
nect two states with J=O, since 1 transforms as
J= 1. Moreover, since 1 commutes with p0 and
therefore with A, it can only couple states of the
same parity A'. It follows that Xs~ in Eq. (5.29)
cannot couple an s-like (type-I) state (8= 0, A'=+ 1)
to any other type-I state, since the only such states
thai wouM satisfy the selection rule ~J=1 are the
p-like states, which have A' = —1. As a conse-
quence, the only vibronic states having nonzero
matrix elements of X„"with an s-like state are
type-II states (3. 16) with J= 1. The states that are
mixed into the vibronic ground state by a magnetic
field are therefore altogether distinct from those
which are admixed by an electric field. We have
for these matrix elements,

(4' (1 o, +I)130'"I~,(0 o. +1)&

= —(2/3)'~'g~p, sH f r2f, (0, r)f, (l, r)dr.
(5. 3o)

The perturbed ground state is then to first order
in H,

I,(0) -I (0) 2g pH,
f,(0)+I (0) E„-E(0)

(5. 37}

The negative sign of t2~(0) thus favors emission of
light right circularly polarized when the propagation
vector is in the direction of the magnetic field.

When we take into account the electron spin, we
must include the spin-orbit interaction

X =Xl S, (5. 36)

which also mixes the ground state only with the
type-II excited states. Introducing the spin states
I+ & }and I —2 }quantized with respect to the z di-
rection, we have for the perturbed ground state

)I'f(0, 0, + 1; + ~) = 4', (0, 0, + 1)
I
+ r~)

+ (2) + xZ t„@,", (1, s 1, + 1) I
+ p )

n

+ —& Z t„+,'",'(I, 0, + 1) ~+ ~ ),
n

(5. 39)

where t„was given in Eq. (5. 32). The second term
on the right-hand side of Eq. (5. 39) leads to a
small probability that the spin will flip in the opti-
cal transition to the electronic ground state I ls},
while the third term induces circular polarization
in the luminescence by interfering with the matrix
elements from the first term. The calculation of
this polarization resulting from a net spin polariza-
tion (S,}proceeds exactly as in the derivation of
Eq. (5. 37). Combining this result with that of Eq.
(5. 37) under the same simplifications assumed in

the earlier derivation, we obtain for the total cir-
cular polarization b, (0) of the emission from the
vibronic ground state

f,(0) -f.(0) 2( g~t(, s H+ X(S,))
f.(0)+I (o) & -& (o)

We have defined (S,) = 2 (p, -p ), where p, and p
denote, respectively, the probabilities that the

(5. 40}

We can simplify this result if we can replace
[E',",'(1) -E,(0)] by [E„—E,(0)], which represents
the average energy difference between the ground
state and the type-II states with which it interacts
significantly, and which for strong coupling is ap-
proximately equal to 2Eo Th. e functions f,'"'(1, r)
form a complete set of radial functions satisfying

Z I r "g(r')f4'"'(J, r)f,'"'(Z, r')dr'=g(r) (5.35)
n )

for an arbitrary g(r), so that we have for Eq. (5.34),

I (0) -I (0) = —(4/3)CD'gl, usH[Err -&g(0)] '

x f r fs(0, r)dr= —(4/3)g~p, sHv'„'(0)[Zn -E,(0)] ',
(5. 36)

where we have used Eqs. (5.9) and (5. 10). We may
express this result finally in the form
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spin has values S, =+ ~ and —~ in the vibronic
ground state of the excited electronic state, and
we have (p, +p ) = 1.

E. g Factor of Relaxed Excited State

the strain tensor

1 ~u, ~u~
e]g=ey ~ =2 ~

+

and we define

(5. 45)

We cannow easily calculate the change 6g in the g
factor of the s-like vibronic ground state, which
results from the vibronic mixing of the s and p
electronic states. Using the wave function as
given by Eq. (5.39), which is correct to first order
in the spin-orbit interaction, we evaluate the diag-
onal matrix elements of Xs~ as given by Eq. (5.29)
and define 6g by the relation

,"5gps-H=, (4",(0, 0, +1; + —,') i'' i4",(0, 0, +1; +g)) .
(5.41)

From Eqs. (5. 30), (5.32), and (5.39), we obtain

5g = —(4/3) %g ~ [&~fr'(1) —&i(0)] '

I a) 2

r f,(0, r)f4'"'(1, x)dr . (5. 42)
p

Replacing [E~P,'(1) —E,(0)] by the average energy
difference [E„-E,(0)] as done previously, and
using the completeness relation Eq. (5. 35), we ob-
tain the general result

r„(p)
3 E„-E,(0) r, (0) ' (5. 43)

where we have also made use of Eq. (5. 10). Since
the spin-orbit parameter X is presumably negative,
as has been found to be so in the unrelaxed con-
figuration for all of the alkali halides for which it
has been measured, we see from Eq. (5. 43) that
this vibronic contribution to the g shift in the re-
laxed excited state should be positive.

F. Stress-Induced Polarization of Emission

The linear polarization of the emission that re-
sults when stress is applied to the crystal may be
derived in a manner similar to that used in Sec.
V B to obtain the electric-field-induced polariza-
tion, but the calculation is simpler because the
stress-induced polarization is a first-order effect.
For simplicity, we shall consider only the case of
uniaxial stress applied in the [001] or [111]direc-
tion, and we consider as before only the polariza-
tion of the emission from an s-like ground state.

The coupling of the electronic p states to a uni-
form strain introduced in the crystal by an applied
stress may be expressed in a standard form' '" for
an orbital triplet state in cubic symmetry as

K~ = Vz(e~8~+e, 8,)+ V~(e„&&+e,„v„+e~&&), (5'. 44)

where we define the electronic operators as 8~= l,
—,
'

(l „+l,' ), h, = (-,' v'3)(l ' —l,), &, = i,l, + lg„v'„= l,l„
+l„l 9'& —-lg, +l l„. V2 and V~ are appropriate strain
strain coupling coefficients, e,j is a component of

1e~=e„-~(e„„+e„),
e, =(2 v 3)(e„,-e„).

(5. 46)

where (5. 47)

s= -(2) '"V,ekE, (2) -&,(0)] '

&& J r'f3(0, r)f, (2, x)dr. (5.46)

As discussed in Sec. VB, we limit our treatment
to the case in which only the perturbation from the
nearest level with J= 2 is important. The proba-
bilities I,(0} and I„(0) for emission with pola, rization
parallel and perpendicular the stress, respective-
ly, are then obtained from Eq. (5. 7) with 4, and
4„given by Eqs. (5. 47), (3. 22), and (3.24). De-
fining the polarization P as in Eq. (5.21), we ob-
tain finally the result

P(o) =-'. v,e,[z,(2) -E,(o)]-'

X[J r2f3(0, r)f2(2, r)dr] . (5. 49)

In the strong-coupling limit this is found from Eqs.
(4. 8) and (4. 9} to be given by

P(0) = (3/20)V, e, [E,(2) -E,(0)) '. (5.50)

For a uniaxial stress along [111]we have e, = e,
= 0 and e„,= e, =e,„=& e~. A similar analysis then
leads to results for the polarization identical to
Eqs. (5.49) and (5. 50) if V,e~ is replaced by V,er
in these expressions.

VI. COMPARISON WITH EXPERIMENT

A number of different experiments have now been
carried out which yield information concerning the
nature of the relaxed excited state of the I' center;
we will consider in this section principally the
measurements of the radiative lifetime and its tem-
perature dependence, ' the change in the radiative
lifetime in an applied electric field, and the polar-
ization induced in the luminescence by electric

From the transformation properties of the elec-
tronic operators in Eq. (5. 44), noted already in

Sec. VC, we see that their matrix elements with
respect to the vibronic states must obey the selec-
tion rules &J—2, &A'=0. In particular, the only
states admixed in first order with an s-like (type-1)
state are the d-like type-I states with J= 2, A'=+1.
Assuming uniaxial stress along [001] so that the
only nonzero component of the strain is e~, we ob-
tain then for the perturbed ground-state wave func-
tion

@z(0, 0, +1)=4',(0, 0, +1)+s4',(2, 0, +1),
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fields, "magnetic fields, "~ and app]ied stress-
es. -' The fact that the radiative lifetime in KCl,
KBr, KI, and NaCl was found by Swank and Brown
to be from 10 to 100 times longer than one expects
from the oscillator strength in absorption can be
explained, as Fowler" has shown, if the 2P elec-
tronic state in the relaxed configuration is very
much more diffuse spatially than in the unrelaxed
configuration. Alternatively, Swank and Brown
suggested that the longer lifetime might result be-
cause the lowest level of the excited state in the
relaxed configuration is a state of even parity, such
as the 2s state, so that luminescence requires the
simultaneous emission of a phonon. The latter
model, with a nondegenerate state lowest, is fa-
vored by the evidence that this lowest state is not
split by stress or by an electric or magnetic field.
Such evidence is provided, in the data of Hetrick
and Compton, for KCl, NaCI, RbCl, and NaF with
an applied stress, in that of Bogan and Fitchen' for
KC1, KF, RbCl, and NaF with an electric field, and
in that of Fontana and Fitchen ' for KF and KCl
with a magnetic field, by the absence of any tem-
perature-dependent component varying as T ',
which should result from such a splitting, in the
polarization of the luminescence occurring at low
temperature in the presence of the external per-
turbation. A nondegenerate ground state is also
consistent with the observation ' of a simple
isotropic electron-spin resonance in the relaxed
excited state. The suggestion that this lowest state
is an s-like level of even parity is supported by the
fact, shown by Stiles et al. ' for KCl, NaF, and KF,
that its radiative lifetime decreases in an electric
field, presumably because the field mixes this
state with an excited odd-parity P-like state having
a shorter lifetime. This model, which is the basis
of the interpretation given by Bogan and Fitchen'
and by Stiles et al. ' for the Stark effects in the
luminescence, does not of course preclude the
possibility that the 2p electronic state is spatially
diffuse, as in Fowler's calculations, ' even though
it is not the lowest level in the relaxed configura-
tion. Indeed, the recent detailed calculations of
Wood and Opik, which place the 2s state below 2p
in the relaxed configuration for KCl, KBr, KI, and
NaC1, give strong support to the hypothesis that the
2P state expands substantially as a result of the
symmetric la.ttice relaxation associated with the
large Stokes shift. '

The temperature dependence of the radiative
lifetime and of the electric-field-induced polariza-
tion of the luminescence' enables us to determine
the energy separation 6E between the lowest level
of the excited electronic state in the relaxed con-
figuration and the nearest excited level. To correct
for the effect of the temperature-dependent shift of
the E band on the radiative lifetime ~„ through the

factor E in Eq. (5. 5), we define a quantity'

M' = (r„(E'))-'. (6. 1)

The temperature dependence of M below - 100'K
was then found by Stiles et al. ' to be described
quite well for KCl, KF, and NaF by the expression

M'(Z') 1+Sfte-ez& r
M~(0) 1+ 8 e-~&&» (6. 2)

This expression is appropriate if the lowest level
is s-like and the excited state a p-like triplet, and
R is then the ratio of the lifetimes of these levels,

& = &,(0)/T, (1) . (6.3}

The excitation energy 6E was found to be 18 meV
for KCl and 17 meV for KF and NaF, the corre-
sponding values for R being 2. 75, 2. 75, and 5. 6,
respectively. Similar values for 5E (18, 16, 12,
and 15. 5 meV for KCl, KF, NaF, and RbC1, re-
spectively) were obtained by Bogan and Fitchen'
from a similar analysis of the temperature depen-
dence of the electric-field-induced polarization of
the luminescence. A similar but somewhat smaller
value for 6E in KC1, 14. 2 meV, has also been ob-
tained by Ruedin from the temperature dependence
of the spin-lattice relaxation time (Orbach process)
in the relaxed excited state. For KF, however,
Ruedin's value 6E= 7. 1 meV is less than half that
obtained from the Stark-effect studies. Ruedin has
also obtained in this way values for 6E for a number
of crystals for which the Stark-effect data are not
available: NaCl, 9.4 meV; KBr, 9.4 meV; KI, 6. 5
meV; RbBr, 7 meV; RbI, 7. 2 meV.

To test if our vibronic model with strong elec-
tron-lattice coupling for the I 4 vibrational modes
might be appropriate for an interpretation of these
data, we can compare these values for 5E with the
separation of the lowest vibronic levels predicted
by Eq. (4. 7). Since we must have Eo»her if this
model with strong coupling is appropriate, it fol-
lows from Eq. (4. 7) that 5E should be very much
smaller than one-half the energy of the effective
vibrational mode which best represents the cou-
pling of the I" center with the 1"4 modes of its en-
vironment. This is, however, clearly not the
case. In KI and KBr, an optically active I 4 mode
of the E center has been identified' at 10.2 and
12. 3 meV, lying within the gap between the acous-
tic- and optical-phonon branches of the perfect
crystal. In KCl there is no such gap, but the high-
est phonon energy of the crystal (the LO mode at
q = 0, with huz, o = 26. 8 me V), as determined by
neutron diffraction, is less than twice the experi-
mental value for 6E. Indeed, this value for 6E is
very close to the energy" of the TO mode (at q= 0)
h&To=18. 5 meV. Similarly, for RbCl" we have
kcoT o = 15.4 me V, h(d Lo = 21.4 me V; for RbBr '
@+»= 11.2 meV, Sco« = 16.1 meV; and for RbI"
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@u~p=9. 7 meV, Sco«=13.4 meV. For KF, NaF,
and NaCl, ~E is somewhat smaller relative to
these phonon energies (@o«&= 23. 4 meV, k&u«
=40.2 rneV for KF"; k&~p=31.0 meV %dLp =52. 5

meV for NaF '; k+« = 21.4 meV, h+Lp = 32. 7 meV
for NaCl"), but not enough so to possibly be con-
sistent with Eq. (4. V) if we have Eo»k~. We con-
clude from this comparison that the strong-coupling
model is not consistent with the experimental
values for 5E.

We have also seen that the strong-coupling model
predicts that the radiative lifetimes are the same
for the different low-energy levels and are equal
to 27„(p) according to Eq. (5. 11). The fairly large
values for the lifetime ratio 8 obtained from the
data are therefore also inconsistent with the
strong-coupling model, In addition, we have seen
that the electric-field-induced change in the radia-
tive lifetime of the lowest level should approach
zero in the strong-coupling limit, since the s and

p electronic states are then already fully mixed by
the vibronic coupling, and we would expect from
Eqs. (5.20) and (5.25) that &M (0)/M (0) [ob-
tained from dr„(0)/r„(0) using Eq. (6. 1)j would

then be much smaller than the induced polarization
P(0). In fact these quantities are found to have
values that differ by less than a factor of 2. ' We
conclude from these various data that the experi-
mental situation cannot be in or very near the
strong-coupling limit, and that an interpretation of
these results must be sought instead in the regime
of weak or intermediate coupling strength. This
conclusion contrasts with previous interpreta-
tions' ' of the Stark-effect measurements, which
concluded that the 2s and 2P electronic states were
strongly mixed by the coupling with the I'4 vibra-
tional modes.

If the coupling is at least moderately strong, an
estimate for the coupling energy Ez can be ob-
tained from the diamagnetic part of the magnetic
circular polarization of the luminescence, as given

by Eq. (5. 3V), since in this case the energy denom-
inator in this equation is approximately equal to
2E& and we have

(6. 4a)

Fontana and Fitchen ~ obtained the value n, ~(0)/H
= —(6+ 1)x10 ' for KF (H in gauss), and Fontana'6

found 4~(0)/H= —(9+1)X10 for KCI. The orbital

g factor as obtained for the unrelaxed configuration
from a moment analysis of the magnetic circular
dichroism of the E-band absorption is g~ = 0. 95
+0. 1 for KCl and g~-1 for KF. Using this
value of g& to approximate that for the relaxed con-
figuration, we obtain from Eq. (6.4a) the estimates
0. 095 and 0. 06 eV, respectively, for E~ in KF and

KC1. These values, if correct, would be indicative
of a coupling of intermediate strength, since they

If we approximate the broadening due to each type
of mode as resulting from a single mode of a suit-
ably averaged frequency, the vibrational compo-
nents take the form

(E'&, = (K~,) E„ctoh(@u, /2k T),

(E &q
—(k(u~)(E~r)s coth(kurq/2kT),

(E'), = & (h&o, )(Z»)r coth(h&u, /2kT),

(6.6)

where (E»)s and (E»)r are the Jahn-Teller ener-
gies for the 2p state as defined in Eq. (3.6), and

E& is the corresponding stabilization energy as-
sociated with the I'& totally symmetric mode. The
spin-orbit component (E )„can be determined
from magneto-optic experiments, while the three
vibrational components in Eq. (6.6) can be deter-
mined separately from the second moment, Eq.
(6. 5), and the first and third moments of the
stress-induced linear dichroism for stress applied
along (100& and (110&.' ' Such measurements have
been made for F centers by Schnatterly ' and
Hetrick, and the latter has determined the sepa-
rate average frequencies u„~„and a, for KCl
from the temperature dependence of the separate
vibrational components of Eq. (6. 6).

This analysis has been generalized by Loader"
to take into account the proximity of the 2s elec-

are several times larger than the energies of op-
tical-mode phonons in these crystals.

Alternatively, if the coupling is weak and if we

have E,~& 0, so that the 2s electronic state is below

2p in the cubic configuration, the energy denomi-
nator in Eq. (5. 3V) is approximately I E,~ I and we

have

(6. 4b)

This interpretation of the data then leads to esti-
mates for IE~I of 0. 19 and 0. 12 eV, respectively,
for KF and KC1.

We may seek an independent estimate for Ez
from a moment analysis of the vibrational broaden-
ing of the E band in absorption and of the stress-
induced linear dichroism. (It must be noted, how-
ever, that such an analysis of the absorption data
gives the coupling strengths for the various modes
appropriate to the unrelaxed configuration, and
these may be changed significantly in the relaxed
configuration because of the large relaxation of the
totally symmetric mode. ) Henry and co-work-
ers ' have shown that, if in the excited state of
the E center one considers only the 2p electronic
states and their linear coupling to the I'$ I'3 and
I", vibrational modes, the second moment of the E
band in absorption is the sum of four separate
terms resulting from the spin-orbit splitting and
these three types of modes:
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«&4 = (%u4) Es coth(/+4/2kT), (6. 8)

(d4 being the effective frequency of the 14 mode and
Es the energy defined in Eq. (3.4). The other
terms in Eq. (6. 7) have precisely the same signifi-
cance as in Eq. (6.6) and depend only on the cou-
pling of the 2p state to the I"„ I"3, and 1 5 modes.
The second moment, Eq. (6. 7}, is entirely inde-
pendent of the coupling of the 2s state to the 1"~

mode. Loader further showed that the stress ex-
periments in this situation determine not (E &&,

(E )„and «)„but rather the linear combinations
«'&, j(E )4—, (E'&, + 3 (E'&„and «'&s+ f (E'),.
From Hetrick's data for 7'K, we accordingly
obtain for KCl the values

(k(o,)E„—$(R(o4)Eo=(2. 5+0. 2)x10 eV

(Los)(E»)s+ —',(K(o4)Eo=(0. 61+0.08)x10 eV

(6. 9)
—,
'

(K&g~)(E»)r + $ (h&o4) E o = (1.2 y 0. 1}x 10 eV

The averaged phonon energies which Hetrick ob-
tained for these three components of «) (and which
for Loader's model therefore represent not 5&„
S(d3 and 0(d z but rath er the appropriate ave rage of
these energies with 8'A&4) were 15, 9, and 13 meV,
respectively.

An upper bound for E~ for KCl may now be ob-
tained from the second equation in Eq. (6. 9), if we
neglect (E»)s. We take as an estimate for K&@4 the
experimental separation &E = 18 meV obtained for
the lowest levels, since according to our analysis
of the vibronic model this separation should be less
than the phonon energy. Our result is then E~
~ 0. 05 eV. This and the first of Eqs. (6. 9) leads
to a value for E„of 0. 17 eV, while from the third
of these equations we obtain the bounds 0. 04
—(E»}r 0. 06 eV. ' The—re is, however, no evident
reason why (E»)s should be small compared with

(E»)r, and indeed we obtain as an upper bound for
(EzT)s from Eq. (6.9) (by neglecting Es and taking
K&o&=9 meV} the result (E»)s~0. 07 eV. It seems
likely, therefore, that the actual value of E& in
KCl (for the unrelaxed configuration) is significant-
ly less than the upper bound and probably no more
than 0. 01 or 0. 02 eV. This estimate constitutes,
in our view, rather strong evidence that the cou-
pling to the X'4 modes is actually quite weak, at
least for KC1, and that the interpretation given by
Eq. (6. 4b) is therefore the better one for the mag-

tronic state and to include its coupling with the 2p
state via the I'4 vibrational modes. Provided the
second-moment calculation includes the intensity
transferred to the 1s 2s transition by this cou-
pling, Loader showed that Eq. (6. 5) is replaced by

«')=«'&, +«'), +«'&. +«'&, +«'&. , (6. 7)

where the additional term is given simply by

netic circular polarization data.
Further support for this view may be obtained

by considering Table I, where we listed our conclu-
sions from Sec. IIIA concerning the configuration
of minimum energy for the 2s and 2p states when
simultaneous vibronic coupling with the I', , I'4,
and I'z modes is considered. From our estimates
above for (E»)r and (E»}s from the absorption
data, we see that the larger of these is at least
some four times larger than the corresponding
value of S~. This represents a fairly strong Jahn-
Teller coupling, and there should be a correspond-
ing strong quenching' of matrix elements of elec-
tronic interactions between vibronic states asso-
ciated with different equivalent minima on the elec-
tronic energy surfaces. In particular, the tunnel-
ing splitting between vibronic states belonging to
different irreducible representations of the cubic
group and made up from the states of minimum en-
ergy in these distorted configurations should be
substantially less than the corresponding phonon
energies Sco. Looking at the last line in Table I,
we see that these low-energy vibronic states over
most of the range of coupling energies comprise
either a triply degenerate (P-like} 1'4 level or else
several tunneling levels belonging to different 1",.
Experimentally, however, we have seen that the
evidence is that the ground state is an s-like singlet
with the lowest excited state some 17-18 meV high-
er in KCl, a separation at least comparable with
representative phonon energies. The only entry in
Table I that is consistent with this situation is the
one in which the 2s state is below 2p (E~ & 0) and
the minimum is in the cubic configuration. For
this to be the case, we require from Table I that
the following three conditions be satisfied: (E»)s
& I E,~ I, (E»)r & IE& I, and E~& ~ IE~ I. Returning
to our earlier estimate of (EzT)r from the absorp-
tion data, we see that these conditions then require

I E~ I ~0. 06 eV in agreement with the value I E,~ I

= 0. 12 eV we obtained for KC1 from Eq. (6.4b).
The condition on E~ in the relaxed configuration is
then E~& 0. 03 eV, in agreement with our earlier
estimate.

These arguments seem to be quite persuasive
for KCl, and presumably also for the other alkali
halides which show similar behavior but for which
the data are less complete, that the coupling with
the F4 modes is actually fairly weak (E~& %04) and
that the Jahn-Teller coupling of the 2p states to the
I"3 and/or 1"5 modes is probably stronger. The 2s
state must then be below the 2p state by 0. 1 to 0. 2
eV in the cubic configuration corresponding to the
relaxed position of the symmetric 1", mode. This
conclusion is consistent with our earlier conclu-
sion that the data on F-center emission do not
agree with the predictions of the vibronic model
with strong coupling to the I'4 modes. %e consider
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an interpretation of these data on the basis of an
analysis of the opposite limit, that of weak cou-
pling, in the following paper.

VII. DISCUSSION

I2"&=(1+a') '"(I»&+a I»).
where 1p) denotes the linear combination

I» = ai I2p. &+a212p, &+as I2p. &

(V. 1)

(V. 2)

and e is a parameter giving the extent of the mix-
ing. The 2P states are split by this interaction,
the state

I2pl&=(I+a') '"(I»-a I»&) (7 3)

being displaced to higher energy, while the two
orthogonal states

I 2p2& = bi l2p.&+ ba l2p,&+ b~ I2p.&

(7.4)
I2p3& =c&12p*&+c312p &+ca l2p &

remain unaffected. Here (b» b2, b3) and (c&, cm, cz)
denote the components of two mutually perpendicu-
lar unit vectors b and c that are also perpendicular
to a. The radiative lifetime r, (0) of the ground
state is accordingly given in terms of the lifetime
r„(p) of the unperturbed 2p states [Eq. (5.9)) and

a time-averaged value of the square of the mixing
coefficient Qt by

r,'(0) = I.a'l(I+ a')1 &,'(p) . (7. 5)

In the presence of an externally applied electric
field, Bogan noted that a further mixing of 12s')
and 12p,') occurs, and he obtained a relation be-
tween the linear polarization P(0) thereby induced
in the luminescence from the ground state and the
field-induced change in the radiative lifetime,

P(0) = -k(1+a') r„'(0)«„(0). (V. 6)

This relation has been used by Stiles et al. ' to ob-
tain a value for o from the experimental data.

From experience with the dynamic Jahn-Teller
effect, ' one expects that the adiabatic or Born-

We have given an exact solution for the vibronic
model posed by the Stark effect studies of Bogan
and Fitchen and Stiles, et al. , and it is of interest
now to compare this solution with the semiclassical
approximate theory developed by Bogan. ' Hogan
assumed that in the cubic configuration the 2s elec-
tronic state is slightly lower in energy than the 2p
state, and that these states are mixed by a Quctu-
ating electric field due to longitudinal-optical pho-
nons. Taking the instantaneous orientation of this
field to be given by a unit vector a(f) having com-
ponents (a„az, a,) with respect to the cubic axes,
Bogan assumed that the mixing of the electronic
states could be treated as adiabatic. The lowest
state then has the instantaneous form

Oppenheimer approximation to the vibronic states
should be valid in the strong-coupling limit, and
we therefore expect the closest correspondence be-
tween Bogan's theory and the exact solution to oc-
cur in this limit. We first define (a„a2, a,) cor-
responding to a point in Q s~ce by

Q„= -a&r, Q„= -a2r, Q, = -a3r,
so that 3C,z, in Eq. (2. 4) may be written as

3C,~= —Gr(a, p +a2p, +asp, ) .

(7. 7)

(V. 8)

It may then be shown by straightforward algebra
that any type-I vibronic state given by Eq. (3.15),
for which the radial functions f„ f2, and f, are
given for strong coupling in terms of E, alone by
Eq. (4. 8), may be expressed in the form

@ (J; M, A') = Y s(8, rp)F (r)P

where

&-=(2) '"(I2s&+ail p. &+aml p, &+asl p.&)

(V. 9a)

4,(Z, M, A') = Y~ „(8, y) Fp(r) g„ (V. 9b)

y. = (2) "'(I») - ail p. &
- a21 p,&

- a~l p.&)

where p, is identical with Hogan's 12p [) for a = l.
Finally, type-I functions given for strong coupling
in terms of E3 alone and associated with the middle
surface in Fig. 1 and Eq. (3. lb) may be expressed
as linear combinations of products of vibrational
functions with Hogan's states 12pm) and 12ps) in

Eq. (7.4). The same is true of any type-II function
given by Eq. (3. 16). Bogan's states are therefore
identified in the strong-coupling limit (a = 1) with
the adiabatic electronic states associated with the
three energy surfaces in Fig. 1. This result may
be seen directly from Eqs. (7. 4) and (V. 10), using
X,z, in the form given in Eq. (7. 8), since we have

3C,L g, = + Grg„K,z, I
2pz & =Ã,z, I

2p~ ) = 0, (V. 11)

where we have used the relations (a ~ 5) = (a c) = 0.
Away from the strong-coupling limit, we have

seen from the exact solution that states of type I,
in general, involve all three radial functions E„
E„and E„which satisfy the coupled differential

is the electronic eigenfunction associated with the
lowest-energy surface in Fig. 1 and Eq. (3. la) (for
G &0, Ea» 1E,~1) at the point in Q space given by
Eq. (7. V). We see that Eq. (V. 9a) has the form of
a simple Born-Oppenheimer product of a vibration-
al function Y~ „(8, p) F,(r) with an electronic func-
tion g which is identical with Bogan's state 12s')
in the case of complete mixing, n =1. Similarly,
type-I wave functions associated with the highest-
energy surface in Fig. 1 and Eq. (3. la), for which

f» fm, and f, are given in strong coupling from Eq.
(4. 2) in terms of Fz alone (G &0), may be shown to
have the form
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equations (4.4). The terms in these equations that
couple E& with F2 involve the electronic cubic-field
splitting Z~ as well as the dynamical term (g /
21Jr ) resulting from the centrifugal force. How-
ever, only the latter couples E, and E, to F,. If,
therefore, E+ is large compared with 0& but not
perhaps with respect to E~, it will be a good ap-
proximation for states depending primarily on E~
or E2 to omit F3, and such a state may then be ex-
pressed in the form

+z(J, M, A') = Fz „(8, p)[F,(r)g +Fz(r)$, ]

=y, , (6, q)2'"GF (r)+F.(r)]I»&

+[F,(r) -E (r)] I p&). (V. 12)

Comparing this with Eq. (V. 1), we see that the
ratio [F,(r) -F2(r)] /[F, (r)+F~(r)] plays the role of
Bogan's mixing coefficient n when the mixing is
not complete. The expression (7. 12) is exact for
an s-like state (J'= 0), since we have then from Eq.
(4. 2) that F, ls identically zero (since fr= 0 for
J=0). We may pursue this analogy further by using
Eq. (5. 8) to evaluate the radiative lifetime of the
state (V. 12); using the normalization J(F, +Fz)r dr
= 1 and comparing our result with Eq. (V. 5), we ob-
tain the correspondence to Bogan's averaged value
of n' for the state 12s'&,

n /(I+a )- &
—f rmF, (r)F2(r)dr (7. 13)

in terms of E& and E& appropriate to the vibronic
ground state.

On the other hand, when E& is not large com-
pared to Ice, we know from the dynamic Jahn-Teller
effect that we may not neglect the dynamical mixing
between the adiabatic states associated with the dif-
ferent energy surfaces in Fig. 1. This mixing is
due to the vibrational kinetic-energy term in the
Hamiltonian, and it occurs because the adiabatic
electronic states, which diagonalize the static
Hamiltonian gas in Sec. III A and Eq. (V. 11)], are
functions of Q. This dynamical mixing is evident
in the terms in (iI /2p, r ) which couple E, with F2
(that is, P. with P,) in the differential Eqs. (4. 4),
and also in the similar terms which couple E& and
F2 with E, (for J4 0) (that is, g and g„with 12Pz &

and 12P,')). In the general case we must expect to
retain all of these terms in calculating the wave
functions, and we may not expect the vibronic
states to be given correctly as simple Born-Oppen-
heimer products of vibrational functions with the
adiabatic electronic states given by the static
Hamiltonian. With weak or intermediate coupling,
therefore, we may not expect that Bogan's adiabatic
states will provide an accurate basis for a simpli-
fied treatment of the vibronic system.

There are, of course, an infinite number of en-
ergy levels of our vibronic problem, and indeed an
infinite number for any set of eigenvalues (J, M,

A'). With strong coupling, that group of low-en-
ergy type-I vibronic states accurately represented
by Eq. (7. Qa) should clearly be identified with
Bogan's state 12s'&, while the high-energy type-I
states given by Eq. (7. Qb) should be identified with
his 12P,'). The type-II states and those type-I
states given in terms of F„both of which accord-
ing to Eqs. (3.21) and (4. 4c) satisfy the same radial
equation and therefore have the same energy spec-
trum when the coupling to F, and E~ can be ne-
glected, should be identified with 12Pz& and 12P3&.
There is, therefore, no one-to-one correspondence
to be expected between Bogan's adiabatic states and
the exact energy levels of the vibronic system.
There is, however, a definite correspondence in
the strong-coupling regime between Hogan's states
and groups of the vibronic states.

Bogan and Fitchen' and Stiles et al. ' identified
the activation energy 6E, which appeared in the
temperature dependence (6. 2) of the radiative life-
time and that of the electric-field-induced polariza-
tion, with the time average of the energy difference
between the state 12s'& and the states 12p', ), 12p2),
and 12P,'&, which were treated for this purpose as
being approximately degenerate. It is clear from
our discussion that this identification is wrong and
that 5E should be identified with the excitation en-
ergy of the excited vibronic state nearest to the
vibronic ground state. In the strong-coupling
regime both of these states would be of the form of
Eq. (7. Qa) in the group identified with Bogan's state
12s'&, the ground state being the lowest s-like level
with J= Q and the excited state the lowest p-like
level with 4= 1 and an excitation energy given by
Eq. (4. 7). As we have already remarked in Sec.
VI, Eq. (4. 7) does not fit the experimental F-center
data, and we concluded there that the system can-
not really be in the strong-coupling limit. We will
discuss the significance of 6E in the weak-coupling
limit in the following paper.

Equation (V. 6), used by Stiles et al. ' to deter-
mine e from the data, is not generally valid, al-
though we will see in the following paper that it
does turn out to be correct (for a -0) in the weak-
coupling limit. For strong coupling, as we have
seen in Sec. V B, &r„(0)/r„(0) approaches zero be-
cause the s and P electronic states are fully mixed
by the vibronic coupling. P(0), on the other hand,
approaches a large value given by Eq. (5.25), which
reflects the fact that the effect of an electric field
in polarizing the low-energy group of vibronic
states associated with 12s'& is not quenched by the
electron-phonon coupling. Equation (7.6) therefore
may not be used to estimate n, and the values thus
obtained by Stiles et al. (n -0. 5 for KC1 and KF),
which suggested a fairly strong coupling, appear
from our estimates of the coupling strength in Sec.
VI to be onsiderably too large.
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In their interpretation of the magnetic circular
polarization of the luminescence in terms of
Bogan's theory, Fontana and Fitchen assumed the
energy of the P states mixed into the ground state
by the field to be given by 6E as obtained from the
temperature dependence of the lifetime. They ac-
cordingly obtained a value for the orbital g factor
of the electronic 2P states which was anomalously
small, 0. 04 for KF and 0. 06 for KC1 compared
with values -1 measured in absorption. We have
seen however in Sec. V D that it is only the type-II
states with J= 1 which are admixed by a magnetic
field with the s-like ground state in first-order
perturbation theory, and these states are in gen-
eral much higher in energy than the first excited
type-I state, which is responsible for the tempera-
ture dependence of the lifetime. We have indicated
in Sec. VI tEqs. (6. 4a) and (6. 4b)] how the circu-
lar -polarization data should be correctly interpreted
in the limiting cases of strong and weak coupling,
and we will consider this question further for the
weak-coupling case in the following paper.

We have observed that a weakness of the treat-
ment we have given of the dynamic problem, at
least for application to realistic situations, is that
is does not include the true Jahn-Teller coupling
of the electronic p states to the even-parity I", and
I'z modes. We were able, however, to solve exact-
ly the corresponding static problem when coupling
to all the modes, I"„ I',, and I'4, was considered
(Sec. IIIA), and the nature of the stable configura-
tion for the various ranges of coupling energies
was given in Table I. We want now to indicate
qualitatively how including the coupling to I"3 and
I'5 modes should affect the vibronic states, partic-
ularly those of low energy. From Table I we see
that, if the I'4 coupling, as indicated by E&, is suf-
ficiently weak, and if either the Jahn-Teller cou-
pling to I"3 or I"& modes is sufficiently strong or if
p lies below s in the cubic configuration, the stable
distorted configurations are determined entirely
by the Jahn-Teller coupling and there is no mixing
of the s and P electronic states in these configura-
tions. Clearly our treatment of the dynamic prob-
lem would be inappropriate in this regime, and
one would do better to analyze this case as one in-
volving a dynamic Jahn-Teller effect in the p
states. The weak coupling to the s state via the I'4
modes could then be treated by perturbation theo-
ry, using as unperturbed states the vibronic states

of the Jahn-Teller system. On the other hand, if
E& is sufficiently large so that the stable configura-
tions are of the tetragonal or trigonal s-p mixed
type in Table I, such a treatment will not suffice.
However, we may then obtain from the last line in
Table I the symmetry type of the low-energy tun-
neling states that are formed from the lowest en-
ergy vibrational state in each distorted configura-
tion. For the tetragonal type of distortion these
span I",+I"~+ I'4, so that these states have the same
symmetry as the low-energy s-like (Z= 0; I",) and
p-like (J= 1; I', ) states of our vibronic model with
only I'4 coupling, together with the I 3 states from
the d-like states (7=2; I"~, I'~). We recognize
therefore that as the coupling to the I'; modes is
increased, the d-like vibronic states of our model
are split into their I'3 and I'5 components, and the

I „and I", states of lowest energy tend to bunch
together. A similar bunching also occurs for
groups of higher levels, and reduction factors for
the various states are changed to reflect the in-
creased quenching of off-diagonal matrix elements
of operators coupling the electronic states appro-
priate to the different distorted configurations. Al-
ternatively, if the distortion is of the trigonal s-p
mixed type, the tunneling states span I'j+I'~+I'4
+I'& are drawn from the vibronic levels with J=O,
1, 2, and 3 of our model. Qualitatively, at least,
it is therefore possible to see how to modify the
predictions of our simplified model if the true
Jahn-Teller coupling is important. Again, we will
consider these modifications to the theory in more
detail for the weak-coupling case, in the following
paper. '
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