
PHYSICAL RE VIE% B VOLUME 8, NUMBER 6

Carbon Interstitial in the Diamond Lattice

1 5 SEPT EMBER 1973

C. Weigel~, D. Peak, and J. W. Corbettf
Physics Department, State University of New York at Albany, Albany, New York 12222

6. D. Watkins and R. P. Messmer
General Electric Corporate Research and Development, Schenectady, New York 12301

(Received 20 February 1973)

Linear-combination-of-atomic-orbitals —molecular-orbitals cluster calculations using the extended Huckel

theory are carried out for the interstitial carbon in the diamond lattice. The results suggest that the

interstitial configuration is not the tetrahedral or hexagonal site, as has been previously assumed, but is

instead an "interstitialcy" configuration, i.e., either a split- (100) interstitial (which our results favor)
or a bond-centered interstitial. The predicted minimum-energy configuration changes with charge state,

suggesting that the interstitial in the diamond lattice is a possible example of the Bourgoin mechanism

of athermal migration of a defect in the presence of ionizing radiation.

I. INTRODUCTION

The problem of treating the electronic states of
defects and impurities in semiconducting covalent
solids is one of great importance, both from a
fundamental and a practical point of view. As has
been discussed by Messmer and Watkins, ' ' there
is no general theoretical description which has
achieved even moderate success for these problems.
They introduced a molecular cluster approach to
this problem, and as a first step used a particu-
larly simple molecular-orbital (MO) approximation,
the extended Hiickel theory (EHT). As they dis-
cussed, this approach provides wave functions, lo-
cates energy levels with respect to band edges, is
amenable to treating lattice distortions and relax-
ations around the defect, and provides the basis
for a practical computational scheme. They argued
that the utilization of more sophisticated molecu-
lar-orbital theories would be desirable, but that
in view of the computational complexities, the use
of EHT is desirable as a survey tool to treat a
number of problems that heretofore have not been
fully treated.

Here we use the Messmer and Watkins approach
to treat the problem of the interstitial in the dia-
mond lattice. This is a problem in which experi-
ment has been very much in need of support from
theory. As is well documented, in silicon, for
example, EPR studies have identified the vacancy
(one of the problems considered by Messmer and
Watkins) and a number of vacancy-related defects. '
However, although there are a number of unidenti-
fied EPR spectra, none have been firmly estab-
lished as belonging to an interstitial. We will re-
turn to the question of experimental evidence, and
other theoretical work in Sec. VI. In Sec. II, we
discuss EHT as applied to this interstitial problem.
In Sec. III, we present calculations of the energy
of an interstitial atom as it is moved from site to

site in an otherwise static lattice, i. e. , a lattice
in which the lattice atoms remain fixed. These
calculations show, as has been described in a pre-
liminary report, ' that neither the tetrahedral inter-
stitial site nor the hexagonal interstitial site cor-
respond to potential-energy minima; in fact, the
tetrahedral site is a potential-energy maximum
and the hexagonal site a saddle point. This result
was surprising since the earlier theoretical work~ '
on the interstitial had assumed that one of these
sites would be the minimum-energy interstitial
configuration, Instead, it is found that the poten-
tial energy of the interstitial is lowest near the lat-
tice atoms, indicating that the interstitial partici-
pates in substantial bonding with the lattice.

In Sec. IV, we present calculations in which
some relaxation of lattice atoms is permitted. It
is found thai the lowest-energy configuration cor-
responds to a split-(100) interstitial, with the
bond-centered interstitial very little higher in en-
ergy for the neutral interstitial atom. In Sec. V,
we consider the electrical levels of the various
interstitial configurations. In Sec. VI, we dis-
cuss the utility of these calculations, their limi-
tations and implications.

II. THEORY

Recently, a number of semiempirical theoret-
ical approaches to molecular problems were de-
veloped (cf. Ref. 13). These are typically approx-
imations to the more rigorous Hartree- Fock-
Roothaan self-consistent-field (SCF) theory'4 "—it-
self often inadequate —and are justified by their
utility in, say, giving physical insight into the
problem, in explaining trends, etc.

We employ here such a semiempirical theory-
the extended Huckel theory. ' EHT may be applied
at the present time to systems containing up to
some 300 atomic orbitals on the typically available
modern computers. With the possible exception of
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the complete- neglect- of- differential-overlap
(CNDO) method, ' 'f' there are no other methods
available at present with the simplicity and com-
putational speed needed to handle clusters of atoms
as large as the systems we wish to investigate.
CNDO, moreover, does not seem to represent the
band structure of homopolar crystals nearly as
well as EHT. ~O

EHT has been widely employed and for a number
of problems gives good results; among them are
the following: barriers to internal rotation in cer-
tain molecules like Ca+, C,H„"NzO„or BIC1~ ';
vibrations in molecules like Cu~; deep impurity
levels in diamond; Jahn- Teller distortions in
diamond or in the CuC16 radical.

Especially relevant to our calculations is the
fact that EHT can give reasonable predictions for
the following: elastic properties of diamond ' and
of graphite; stability of defects in graphite
defect migration and formation energies in graph-
ite; configurations of molecules like methane,
ethane, propane, acetylene, ethylene, "trans-
butadiene, benzene, ' F~O, or BH~. '

But when using EHT, one should bear in mind
the following examples of limitations or failures.
EHT can be applied justifiably only to systems
with uniform charge densities, since it is not a
self-consistent method. As previously pointed
out, EHT may give unreliable predictions for
ionic systems, where the electronegativity dif-
ference between adjacent atoms exceeds 1.3 on the
Pauling ' or ]..0 on the Sanderson scale. " Also
EHT gives wrong isomerization and strain ener-
gies in certain cases like pentanes or hexanes. "
For some systems like H~, Li~, Be~, C~, HF, and
HCl, EHT yields no minimum as the internuclear
distance is changed. ' The results are also com-
pletely unrealistic for small internuclear distances.

The mathematical origins and approximations of
EHT have been discussed by Newton, Boer, and
Lipscomb' and Moore.

The EHT equations for the molecular-orbital
(MO) energies and MO coefficients have the same
form as the more rigorous Hartree-Fock-Roothaan
equations, ' viz. ,

The c„,'s are MO coefficients given by

Pf=ZC„fXv &

Vnl

where the y„'sare the atomic and the (t), 's the
molecular orbitals. The S„„areoverlap matrix
elements.

The H„„areelements of an effective one-elec-
tron Hamiltonian given by

H„„=—,'K(H»+H„„)S», if 0 v .

This is the so-called Wolfsberg-Helmholtz form'
of the Mulliken approximation" for the H„„'s.

The diagonal elements are taken to be

H„„=—I„,
with I„the empirical atomic ionization energies.
The constant K in Eq. (3) is determined empirical-
ly, ranging between 1 and 2; we have used 1.75. '7

Equations (1)—together with the normalization
conditions for the ft), 's—yield the MO coefficients
c„,and the MO energies E, .

We use as atomic orbitals one 2s and three 2p
Slater orbitals on each carbon atom; the orbital
exponent is chosen equal 1.625 for all atoms. '
The I„'sused are 19.44 eV and 10.67 eV for the 2s
and 2p orbitals, respectively. " These parameters
comprise our "standard" set of parameters.

In EHT, the total energy of a system is approxi-
mated by

EEHT ~ nf+f

where n, is the occupation number of the level E,.
To be sure, this is only an approximation to the

total energy E~ of a system. As Slater' pointed
out, the energy gfnfEf as obtained from Hartree-
Fock equations (to which EHT is an approximation)
is equal to E~ minus the repulsion energy of the
nuclei, V», plus the repulsion energy of the elec-
tron pairs, V„.Slater observed that, in a very
rough approximation, V» canceled V,„,so that
gfnfEf displayed some sort of parallel behavior to

E~; Slater investigated the binding energies of Xz
molecules (X= Be, B, C, N, 0, F). (Later Good-
isman ' stated that it was not V„that roughly
equaled V» but rather AV„=V„—g, V;„where ff

stands for the atoms that form the molecule m. )

Similarly, the EHT binding energies, as calcu-
lated for boron hydrides' ' ' and hydrocarbons, '
are systematically larger than the experimental
values by a factor of 1.8, but are otherwise inter-
nally consistent. Another parallel behavior of EHT
energies to E~ was observed by Allen and Russell, 7

when they varied the bond angle in homopolar
systems.

It was stressed by these authors, as well as by
others, e. g. , Blyholder and Coulson, 6 that this
parallel behavior of E~» to E~ can only be ex-
pected for systems with reasonably uniform charge
distributions.

In view of all these observations, we expect our
results for carbon interstitials in diamond to be
useful in showing trends and qualitative behavior,
although E«~ is a poor approximation to E~ itself,
a point we will return to in Sec. VI.



2908 WEIGEL, PEAK, CORBETT, W ATKINS, AND MESSMER

Os

Os

I

I

I

8
I

I

I

(s+ a

[01 Ij

B

Qs

T +SO
3 2 I 0

FIG. 1. (011) plane in the diamond lattice. This plane
contains the major symmetry axes and all the special
symmetry points: substitutional atom sites (S); bond-
center sites (8), i. e. , half-way between adjacent sub-
stitutional sites; tetrahedral interstitial sites (T); hexag-
onal interstitial sites (H). The coordinates along the
[100] and [011] axes allow for identification of specific
sites.

ancy is attributed to the finite size of the cluster. '
The gap width decreases with increasing number of
atoms in a cluster; it is 9. 5 eV for a 35-atom clus-
ter, 9.1 eV for a 47-atom cluster, and 7.4 eV for
a 71-atom cluster. ' EHT band-structure calcula-
tions, using the same set of parameters, i.e. ,
calculations for the infinite cluster, yield a band

gap of 4. 7 eV.
There are more levels in the valence band than

in the conduction band, because the energies for
all the 40 dangling orbitals on the surface of the
cluster are also in this band. The remaining 80
levels are divided equally between valence and
conduction bands.

To obtain the energy Easr [Eq. (5)], all of the
valence-band levels are filled with two electrons
(a total of 160) and their respective one-electron
energies are summed up. By doing so, one can
obtain the elastic properties of the crystal. ' A
more complete discussion of this procedure is
provided elsewhere. '

The center of this 30-atom diamond lattice is a
tetrahedral (T) site. Placing an interstitial car-

50—

III. STATIC LATTICE

A. Standard Parameters

All our calculations were carried out on diamond-
lattice- model crystals. The diamond lattice be-
longs to the space group40 Fdsm (Schoenfliess nota-
tion 0'„). Figure 1 shows a (011) plane containing
all major symmetry and principal crystal axes. In
terms of that group, the several sites of importance
to us are labeled unambiguously: the substitutional
(S) site, the tetrahedral interstitial (T) site, the
bond-centered (B) site, and the hexagonal intersti-
tial (H) site. In terms of the coordinates in Fig. 1,
(S) sites can be found at (0, 0, 0), (4, 0, 0), or
(0, 2, 2); (T) sites at (2, 0, 0), (1, 1, 1), or (2, 2, 2).
The (B) site is half-way between lattice atoms,
e. g. , at (-0.5, 0. 5, 0. 5) or (3.5, 1.5, 1.5), whereas
the (H) site is the center of a "chair-shaped" six-
membered ring4' at (1.5, 0. 5, 0. 5) or (1.5, l. 5, 1.5).
(S) and (T) sites have point group symmetry
43m(T, ); (B) and (H) sites have 3m(D, ~).

The calculation for a lattice (with no interstitial
atom) consisting of 30 carbon atoms results in the
energy levels shown in Fig. 2(a). As can be seen,
these 120 MO levels can be divided into two bands,
a valence and a conduction band. The energy gap
between the bands is a little more than 10 eV,
while the observed gap is 5. 5 eV. This discrep-
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FIG. 2. (a) Energies of the one-electron MO's for the

30-carbon-atom "diamond. " (b) Energies of the same
model crystal with an additional carbon atom at the cen-
tral tetrahedral interstitial site.
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Symbol

T30
B32
S35
S47

Model center

Tehrahedral site
Center of bond
Substitutional site
Substitutional site

No. of atoms
in cluster

30
32
35
47

No. of levels in
valence band

80
85
88

124

TABLE I. Various model clusters used in calculations
(without interstitials) .
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FIG. 3. {a) Electronic energies and (b) EE„Tenergy
(for the neutral charge state) of the 30-carbon-atom
diamond with the interstitial atom moved along the [111]
axis containing the central tetrahedral interstitial posi-
tion {R=1.0). The coordinates are to be understood in
terms of Fig. 1. The symmetry of the energy levels is
shown; the interstitial in this axis of the 30-atom dia-
mond has Tz point group symmetry at R = 1.0, C3„other-
wise. For the neutral charge state the T2 level holds
four electrons.

son that they are not is that the R =2 site is already
near the surface of the model cluster used, and the
corresponding levels are changed due to surface
effects. To avoid these surface effects in subse-
quent calculations, we always chose clusters such
that the interstitial was never too near the surface;
to be specific, the model clusters listed in Table I
were used.

As can be seen from the table, the number of
levels in the valence band varies from cluster to
cluster; hence, the value of EE» of the system is
also different. But corresponding energy plots for
different clusters always displayed the same qual-
itative behavior, so that it was possible to fit judi-
ciously these different equivalent plots to one an-
other. This procedure is illustrated for the tra-
verse along a [011]axis containing the (S) sites in
Fig. 4. The EE» energies were obtained for other
paths in the same way.

The energy contours were plotted (see Fig. 5)
in the part of the (01T) plane which is enclosed by
the dashed line in Fig. 1; here we have followed
the lead of comparable work in the metals, e.g. ,
Johnson and Brown. The notation in Fig. 5 is the

bon atom in this position while keeping all other
atoms in their normal positions results in the
energies shown in Fig. 2(b).

Again, the valence band contains 80 levels. But
now there is a defect level in the gap with the band
edges essentially unchanged. This level is three-
fold degenerate. The fourth level originating from
the interstitial carbon is in the conduction band.
Since the neutral carbon atom has four valence
electrons, we put four more electrons into this new
set of energy levels; thus, 82 levels in total are
occupied with two electrons each.

As the interstitial carbon leaves the (T) site, the
symmetry of the crystal is lowered and therefore
the degeneracy of the levels in the gap is lifted.
This can be observed in Fig. 3, which shows the
dependence of band edges, impurity levels, and

E«T for a traverse of the interstitial along the
[111]axis of Fig. 1.

For an infinite lattice, the energies at R = 2

should be the same as at R = 1, since the two sites
would be equivalent [both are (T) sites]. The rea-
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FIG. 4. Method of combining results from different

lattices illustrated for claculations along the [011] axis
(a) in the T30 lattice and (b) in the B32 lattice which
give the adjusted results in (c), to be used in Fig. 5,
The coordinates are to be understood in terms of Fig. 1.
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-2
-4
-6
-8
-IO

-12

-6-10-14-16 -16 -14 -10 -6
-2 -4-8-12-15 -15 -12 -8 -4-2

-6 -10 -14 -14 -10-6
-2 -4 -8 -12 -16 -16 -12-8-4 -2

-2
-4
-6
-8
-IO Site T30

'A1odel-lattice type
B32 $35 S47

Values used in
Fig. 5.

TABLE II. Relative energies (eV) of several sites as
evaluated in the static lattice calculations on the various
model lattices and as shown in Fig. 5.

-14
-15

-16 -16-14-10-6 -2 -2 -4 -8-12 -16 -16 -14 -10 -6 -2S T -2 -6 -IO -14
-15-12-8-4 -6-10-14 -12 -8 -4 -4 -8 -12

FIG. 5. Potential energy (eV) contours for the neu-
tral carbon interstitial in the static diamond lattice
calculated with the standard parameters. The dashed
line indicates the migration path.

-14 Tetrahedral
Hexagonal
Bond center

0 ~ 0
-9 ~ 1

-14.5

0.0
-9.3

—15.5

0.0
-10.6
-18.8

0 ~ 0
-9.1
-15.2

the region near (S) or (B).
B. Band-Structure Parameters

0.0
-9.1

-16.1

same as in Fig. 1. The rectilinear solid lines
indicate axes, along which calculations have actual-
ly been carried out. The rest of the plot was ar-
rived at by connecting points of equal energy values,
considering continuity and symmetry arguments
(e. g. , symmetry requires contours to cross (100)
axes at right angles, etc. ). The energies are given
in units of eV, the numbers representing a relative
scale, the highest energy [at the (T) site] being set
to zero (cf. Fig. 5).

This energy contour map for the static lattice is
not to be taken as a final result, but rather as a
first approximation, especially in the region near
the (S) and (B) sites where the energy contours are
expected to change considerably, when lattice
relaxations are allowed. The region near the (T)
and (H) sites, however, is relatively distant from
atoms and can therefore be expected to keep its
characteristic features even in a distorted lattice.

Among the notable features of Fig. 5 is a local
energy maximum for the tetrahedral (T) site and a
saddle point for the hexagonal (H) site. All theo-
retical treatments of the interstitial up to 1971' '
had assumed that one of these sites was the lowest-
energy site for the interstitial. From our calcu-
lations, there are two minima of comparable en-
ergy: the bond-center (B}site and a site on the
[100]axis near (3, 2, 2) (see Fig. 1).

In Table II a comparison is made for three spe-
cific lattice positions, as they are computed in
different clusters and shown in the contour map.
The highest energy is always set to zero. As in-
dicated earlier, the discrepancies are due to the
fact that surface effects influence the results for
a specific lattice site differently in different clus-
ters. The contour-map values for the (T) and (H)
sites as well as their vicinity originate from the
T30 lattice, while the region around (B) was taken
from the B32 lattice, the reason for this procedure
being the same as was pointed out earlier. In any
event, the results are consistent, as far as rela-
tive magnitude is concerned.

These results argue that an interstitial atom will
not be found at (T) or (H), but rather it will go to

-8-10 -12 -12 -IO -8 -6-4 -2 -2 -4 -6-8 -10 -12 -12 -10-8
i~3

-IO

-10

-IO

-IO

-IO

-12 -12 -IO -8 -8-10 -12 -12 -10 -8 -6-4 -2~S -2 -4 -6 -8 -10

FIG. 6. Potential energy (eV) contours for the neu-
tral carbon interstitial in the static diamond lattice cal-
culated with the band-structure paramteres. The dashed
line indicates the migration path.

Messmer ' used EHT with the same parameters
as in our calculations to obtain the band structure
of the infinite diamond lattice. He showed that his
results could be improved considerably when two
parameters were changed, viz. , the Slater orbital
exponent for 2s orbitals from 1.625 to 2. 0 and the
empirical constant K from 1.75 to 1.575 for 2s-2p
interactions.

To check the sensitivity of our results to these
parameters, we carried out the static lattice cal-
culations with this new set of parameters. As
Messmer pointed out, the change in the parameters
has no dramatic effect on the valence band. Since
it is essentially the valence-band energies that
contribute to the energy EE», no important dif-
ference in the energy-contour map was expected.
The results are shown in Fig. 6.

Examining the energy contours in Fig. 6, one
finds again a local energy maximum for the (T)
site and a saddle point for the position (H). More-
over, the two minima are observed, the lowest
energy is obtained for the (B}site, while the en-
ergy minimum lying in the [100] axis is about
1.5 eV higher. It is important to note that the new

parameters still yield minima, saddle points, or
maxima where there were minima, etc. for the
calculations with the original set of parameters.

Table III compares the results for the (T), (B),
and (H) sites with each other, which can be com-
pared to the previous results in Table II. Again,
the highest energy is set to zero. These results
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TABLE III. Relative energies (eV) of several sites as
evaluated in the static lattice calculations on the various
model lattices using the band-structure parameters.
Compare with Table II which uses the standard parame-
ters.

c IIO&

Site
Model-lattice type

T30 B32 S35
Values used in

Fig. 6

Tetrahedral
Hexagonal
Bond-centered

0.0
-2. 7

-12.2

0.0
-2.9

-12.9

0.0
4 0

-13.8

0.0
-2 ~ 7

-13.7

cIOO&

show consistency with previous results, the same
ordering occurring versus energy.

For our purposes the new parameters do not
give essentially new results. Furthermore, they
could not reproduce the elastic lattice constants~~
as well as the old parameters. ~ Since we are
interested in finding defect configurations, we pre-
fer a set of parameters that gives a good fit to
elastic properties. Hence, in the following calcu-
lations, the standard set of parameters was used.

IV. SPLIT INTERSTITIALS AND LATTICE RELAXATIONS

The next stage in our calculations, following the
static lattice calculations, is to allow one lattice
atom to relax with the interstitial to form a split
interstitial, the rest of the model crystal being
held static. A "split interstitial" is defined as a
substitutional atom replaced by two atoms sym-
metrically displaced with respect to the original
substitutional site. Our nomenclature conforms
to that common in the metals (see, for example,
Ref. 46) where the interstitials are also thought
to have split configurations. If these two atoms
are located along the (100) axis, the configuration
is called a split-(100) interstitial, etc. (see
Fig. 7).

The split-interstitial calculations have been
carried out in lattices centered on a substitutional

FIG. 7. Split interstitials, i. e. , a pair of atoms
sharing a substitutional atom site (dashed circles), of
different axial orientations, and the relaxed bond-
centered configuration; all shown in a {110)plane.

(S} site, first in the S35 lattice, then —with the
more distant neighbor relaxations in mind —in the
S47 lattice. The positions of the split-interstitial
atoms were symmetrically changed until a mini-
mum of E«T was obtained. It was found that the
spatial separation between the two split-intersti-
tial atoms at the respective minimum energies
were the same in the S35 and S47 lattices. These
configurations are shown in Fig. 7. Also, the
same ordering according to energy between the
various split interstitials was obtained.

In Table IV, the E«T energies corresponding to
the mentioned configurations as well as those of
single interstitials at some specific lattice sites

TABLE IV. EEHT energies (eV) of the various interstitial types calculated (using standard paramters) in the $47
lattice.

Interstitial type

(100) split
(110) split
(111) splitc
Relaxed bond-centered
Tetrahedral'
Hexagonal'

Relative
energy

-19.8
-16.9

1702
-18.6

0.0
—9.1

Energy difference
between relaxed

and
static casea

-0.9
(-1.1)

(-2.7)
(-0.5)

Number
of

nearest
neighbors

Amount of
relaxation

(bond length = 1)+~

+0.05
(+0.15)

(+0.25)
(+0.1)

Values in brackets result from relaxation calculations carried out in lattices other than $47; cf. text.
+ sign for the amount of relaxation indicates relaxation away from the interstitial configuration.
Calculated in the otherwise undistorted lattice.

~Two nn's of bond-centered atom relaxed; cf. Fig. 7.
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are listed for the S47 lattice. As can be seen, all
split interstitials and the relaxed bond-centered
configuration have considerably lower energies
than the single interstitials. Among the split in-
terstitials, the (100) one is the lowest. (The val-
ues of the relative energies given in Table IV are
slightly different from those in Ref. 6, which were
based on calculations in the S35 lattice. Also, it
should be noted that similar calculations have been
carried out with the "band-structure parameters";
they yielded, in general, the same split-intersti-
tial configurations and ordering. }

These results do not depend on which model
crystals (S35 or S47) are used for the calculations.
They indicate that split-interstitial and relaxed
bond-centered configurations must be taken into
consideration, since they are energetically favored
in comparison to single interstitials.

It should be noted that Watkins recognized rath-
er early the possibility of the bond-centered con-
figuration and Friedel discussed qualitatively the
split-(100) interstitial, but Watkins et al. first
showed the importance of these low-energy con-
figurations, previous treatments of the interstitial
having assumed the (T) or (H) site, as mentioned
in Sec. III A. Singhal has subsequently reported
calculations based on the solid-state scattering
theory indicating that the (B) site is also much
more probable for the Si interstitial in the Si lat-
tice than the (T) site. These latter calculations
did not consider lattice relaxations, however.

We next consider further lattice relaxations in
our model calculations. In doing so, we hold a
given interstitial configuration of the type previ-
ously considered fixed and let the next shell of
equivalent neighbors (nn's) move back or forth the
same distance along an axis pointing to the center
of the interstitial configuration. To avoid unneces-
sary complications, these axes were always taken
to be (111)axes.

The nn relaxations for single interstitials were
considered first. The calculations for the single
interstitial at the (T) and (H) sites were carried
out in the T30 lattice; the extent of the nn relaxa-
tions as well as the energy gained by the relaxa-
tions can be found in Table IV. These numbers
may be slightly different for the S35 or S47 lat-
tices; but their values indicate [ —3~ 7 eV for (T),
—0. 5 eV for (H)] that the single interstitials even
with nn relaxations have considerable higher en-
ergies (about 10 eV) than split interstitials without
nn relaxations.

The split-(100) interstitial is the most interest-
ing, for it seems to be lowest in energy. The nn

relaxations, as calculated in the S35 lattice,
yielded spurious results (the energy monotonically
decreased as the four nn's were relaxed). This
was attributed to the finite size of the S35 lattice,

where the four nn's were essentially surface atoms.
In a larger model cluster, the S47 lattice, a min-
imum in EE» was obtained, about 0.9 eV lower
than for the unrelaxed case. This configuration
may be close to the final one within the theoretical
framework we have employed, as subsequent sym-
metric variation of the positions of the two split-
interstitial atoms (the four nn's being kept at their
relaxed positions) did not yield a lower energy.

At this stage it would seem logical to include
relaxations of the six nn's of the relaxed bond-cen-
tered configuration, especially since this config-
uration comes closest in energy to the (100) split.
But even in the large S47 lattice, three of these
nn's are essentially surface atoms. With the ex-
perience we had with the (100)-split calculations
mentioned above, we were reluctant to do these
calculations and have deferred them for a possible
later study using a larger lattice. We will also
not consider nn relaxations for the (111) split.

For the (110) split, which has the highest energy
among the split interstitials in the unrelaxed case,
the relaxation of the two equivalent nn's resulted
in an energy lowering of 1.1 eV for the new mini-
mum (as calculated in the S35 lattice). Tnis is an
indication that the energy difference between the
(100)- and (110)-split interstitials may be practi-
cally the same with or without the inclusion of nn
relaxations.

V. ELECTRONIC ENERGY LEVELS

One major advantage of EHT is that it gives not
only EE», a measure of the total energy of the
system, but also all the individual electronic en-
ergy levels. Of course, in the model crystals we
are using, we will not obtain the 10 or so energy
levels corresponding to the solid, but we do obtain
localized energy levels corresponding to the defect
and levels corresponding to the valence and con-
duction bands. This was already shown in Figs. 2
and 3 for the carbon interstitial located in a [111]
axis of the T30 lattice; in Fig. 8, we show the
energy levels in the gap for several types of inter-
stitials ((100)-split, bond- centered, hexagonal,
tetrahedral) including nn relaxations for minimum

E«T. As can be seen, all of the highest occupied
energy levels are partially filled for the neutral
charge state, which allows for changes in charge
state (see Sec. VI).

In Table V, we also present the information
about the electronic charge distribution (normal-
ized to one) for each of the levels in the energy
gap for the neutral charge state. These results
were obtained by carrying out a Mulliken population
analysis which establishes the localization of the
charge on the various atoms near the interstitial
for each of the levels in the gap. This indicates
that some of the levels correspond to localized
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defect states, whereas others are not localized.
As it turns out, these nonlocalized levels are in
or very close to the carrier bands, as has been
discussed in more detail by Messmer and Watkins. '

VI. DISCUSSION

2
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0
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A2U

U 4 I

I t
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E

We have considered the carbon interstitial in
diamond using the extended Huckel theory. This
theory is one of a number of semiempirical molec-
ular-orbital theories which has been developed
over the past ten years. These theories are ap-
proximations to the more complete Hartree-Fock-
Roothaan self- consistent-field theory. Although
the approximations restrict the validity, they also
make possible the treatment of problems that are
otherwise intractable with the more rigorous the-
ory. We have considered the interstitial in a
small portion of the diamond lattice —a model
crystal —and have treated this crystal using EHT,
which considers all the valence electrons of the
model system. Our approach is reminiscent of
the EHT treatment of configurations of organic mol-
ecules, which has been quite successful" in pre-
dicting the most stable configuration.

The major conclusion of this paper is that on the
basis of our calculations, we expect the lowest-
energy configuration to be one which is interstitial-
like, i.e. , a split-interstitial or a bond-centered
configuration; the (100)-split interstitial appears
to be preferred. On the other hand, the intersti-
tial, at the tetrahedral (T) or hexagonal (H) site,
does not appear to be in a potential-energy mini-

E I

t I
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FIG. 8. One-electron MO energy levels for inter-
stitial configurations with nearest-neighbor relaxations:
(a) split —(100) interstitial, (b) bond-centered inter-
stitial, (c) hexagonal, and (d) tetrahedral interstitial.
The point symmetry group of the interstitial configura-
tion is given as well as the symmetry of the levels in the
gap. The energy-gap edges are taken from the corre-
sponding undistorted lattices without interstitials. Also,
the occupancy of the highest filled levels is indicated.

mum and the calculated energy differences of these
sites, with respect to the interstitialcies, are
quite large. These results were obtained in a
variety of model crystals. The results are in-
tuitively plausible as well, since in (T) or (H) sites
the interstitial has four broken bonds, while in the
interstitialcy configurations there are only two

TABLE V. Results of EHT calculations for electronic levels in the band gap (of the undistorted lattice without inter-
stitial) for four types of neutral carbon interstitial. The results in each case are for the relaxed configuration as de-
scribed in Sec. IV. "Localized charge" means the sum of the charge density on the interstitial atoms and for the near-
est neighbors.

Site
(symmetry)

Level
symmetry EEH~ (eV)

Average charge on a single atom
Interstitial 1st nn 2nd nn Localized charge

(100) split
(D2„)

Eb

B2

E b
Q

-5.728
-8.355
-8.464

-3.210

0.343
0.100
0.000

0.560

0.033
0.040
0.033

0.007

0.008
0.009
0.005

0.054

0.818
0.360
0.132

0.574

Eg
A2„
E b

Q

Ag
Ag
E„
A)
E
T b

Ti

Results from S47 lattice.
Highest occupied level.

0.246
0.158

-2.599
7+ 337

-8.555
-8.557

-0.951
-1.126
-4.097
-8.350

0.000
0.000
0.259
0.729
0.016
0.000

0.206
0.000
0.314
0.000

0.102
0.084
0.095
0.007
0.021
0.024

0.154
0.107
0.104
0.027

'Results from B32.
~Results from T30.

0.037
0.050
0.003
0.016
0.063
0.016

0.010
0.065
0.002
0. 035

0.612
0.504
0.829
0.771
0.142
0.144

0.820
0.428
0.736
0.108
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TABLE VI. Charge dependence of EzHT of the two
lowest-energy configurations (including nn relaxations)
and their difference, AE~T=EKHT (bond-centered in-
terstitial) —EzHT ((100) split), as calculated in the S47
lattice. The sign change of AEz,„Tindicates the change
of equilibrium site with charge state.

(100) split
Bond-centered

Neutral

—3586. 25

-3584. 06

Energy (eV)
Singly Singly

negative positive

—3591.98 -3580. 52

-3587. 93 -3580. 20

Doubly
positive

-3574, 79

-3576. 33
Interstitial

&EEHT 2. 19 4.05 0. 32

broken bonds. These results lead us to believe
that more extensive and more rigorous calcula-
tions are not likely to overturn that conclusion.

All these considerations were made for the
neutral charge state, because only for the neutral
charge state can we expect a reasonably uniform
charge distribution in the model crystals. As
mentioned in Sec. II, a uniform charge distribution
is required for EHT.

It is expected, however, that the interstitial can
exist in several charged states and in this respect,
it is interesting to ask what our results suggest
for charged interstitial configurations. EHT
yields one-electron levels, so the various charge
states are obtained by filling states to a different
level. The results have to be considered very
cautiously, because the EHT energy levels are
independent of charge state, contrary to a self-
consistent theory.

With these reservations in mind, we observe in
Fig. 8 that the highest occupied levels are partial-
ly filled, i.e. , they can take up or give away elec-
trons. In Table VI we list the charge dependence
of Ea» for the (100)-split interstitial with nn re-
laxations and the relaxed bond-centered position-
the two lowest-energy configurations for the neu-
tral case. As can be seen, the (100)-split inter-
stitial has the lower energy for the singly charged
states, but is higher than the relaxed bond-centered
configuration for the doubly positive state.

This agrees with the suggestion made by
Watkins, ' who argued that a doubly positive inter-
stitial could find a natural position at the center of
a bond.

In addition, this result of a change of the energy
minimum position with charge state suggests the
possibility of a low-temperature migration mech-
anism for the interstitial in the diamond lattice
recently proposed. " According to this Bourgoin
mechanism, athermal' migration is possible if
the location of the energy minimum changes sub-
stantially with the charge state of the interstitial.

These results also constitute an attractive ex-

planation for the problem of interstitial conversion
in silicon. On the one hand, host-atom intersti-
tials must be created as the Frenkel partner to the
lattice vacancy, which is produced in a radiation
damage experiment and has been detected by EPR
techniques '"; on the other hand, no direct exper-
imental evidence is available for the interstitial
yet. If we interpret I &E&»l according to Table VI
as interstitial migration energies, these barriers
are quite high in terms of thermal energies for
migration at 4 'K. The Bourgoin mechanism, how-

ever, supplies an athermal mechanism for the
interstitial migration via the alternate capture of
electrons and holes.

These results of the interstitial calculations are
indeed provocative. We must remember that there
are substantial limitations to the extended Huckel
theory as a molecular-orbital theory. (We have
already mentioned that some conclusions on the
energies of different charge states cannot be made
in full confidence from the EHT because it does not
treat the charge self- consistently. Moreover,
EHT is most successful when it treats small
changes in bonding and configuration —but we have
extended its application into realms of large change
in bonding and configuration. ) We believe the
large changes in energies which are observed, and
the intuitive nature of the results, lend much cre-
dence to the results.

As with any semiempirical theory, its value will
depend upon its ultimate proven utility. This util-
ity can arise in two ways. It may be useful to the
theory by providing a better starting point for sub-
sequent calculations; the work of Singhal ' is one
such example. Its utility can also be gauged by
its ultimate impact on experiments, and we note
the initiation of a reconsideration of the mecha-
nisms of radiation-damage production. ' As we
have remarked earlier, among the many unidenti-
fied EPR spectra in silicon, none were identified
with the interstitial or interstitial-related defects;
we note, however, that the present results have
initiated the tentative identification of an EPR
spectra in diamond as being due to the interstitial '
and of EPR spectra in silicon as being due to inter-
stitial aggregates.

Finally, we note that there are several indica-
tions in the literature that some impurity inter-
stitials are in interstitialcy-type configurations.
For example, Watkins" has found a low-symmetry
EPR spectrum which he identifies with the boron
interstitial. Channeling measurements in silicon
also indicate that the boron is not in the tetrahedral
or hexagonal site. In addition Cherki and Kalma, '
using photoconductivity, concluded that the alumi-
num interstitial was not at the tetrahedral site, but
was much nearer a substitutional-atom site. As
we will show elsewhere, comparable EHT calcu-
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lations for the boron interstitial support the
view that it is in an interstitialcy-type configura-
tion.

%e conclude that both theory and experiment

now suggest that the interstitial in the diamond
lattice is in an interstitialcy-type configuration,
i. e. , either a split-(100) interstitial (which our
results favor) or a bond-centered interstitial.
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