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Order of the Electronically Induced Crystallographic Semiconductor-to-Metal Transition
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The electronically induced crystallographic semiconductor-to-metal (Adler-Brooks) transition is
reconsidered in the tight-binding approximation. In contrast to other work, it is found that both first-
and second-order phase transitions can occur, depending on the relative magnitude of lattice
compressibility and transfer integral. An analytical expression for the second-order phase-transition
temperatures as a function of these quantities is obtained.

The parameters E, and g are related to the trans-
fer integrals ht and hz between the two unequiva-
lent neighbors:

E~= 2(hgha) ~ (2)

g = sinhf —,'1n(h, /ha)].
The bandwidth Eb and the gap 2E~ are given by

The electronically induced crystallographic
semiconductor-to-metal transition is calculated in
the tight-binding approximation. Inclusion of the
exponential character of the wave functions leads
in a straightforward may to first- as well as sec-
ond-order phase transitions. The transition tem-
peratures, as well as the order of the transition,
can be determined numerically. In a set of recent
papers, Adler and Brooks, ' as well as Hallers and
Vertogen, investigated theoretically the elec-
tronically induced crystallographic semiconductor-
to-metal transition. A distinctive feature of all
theoretical treatments so far is that an unmodified
symmetry-split band system yields only second-
order semiconductor-to- metal transitions. In
connection with phase transitions tetracyanoquino-
dimethan (TCNQ) salts, we recently had occasion
to reinvestigate the problem in the tight-binding
approximation. It is the purpose of this paper to
show that if one takes the exponential character of
the orbitals into account, both first- and second-
order phase transitions are possible, depending
on the ratio of the electronic-binding to the lattice-
repulsion energy.

In our model we consider a simple one-dimen-
sional lattice consisting of N sites with, on the
average, one electron per site. In the semicon-
ductor phase, the distances alternate (r, , ra) and
in the metallic phase they are equal (r& = ~3 = —,'a).
The alternation parameter is defined by r& z
—= -',a(1 v f), with 0 ( $ ( 1, where a is the lattice
parameter.

In the tight-binding approximation the electronic
states of this system are given by

E'(k)=+E, f g +cos —,
' ak] ~

E,=E, [(g +1)' -g] =2
I

h2
I

I
ha

I
~

The transfer integrals h, 3= f gf zv'gods depend on
the intersite distance and therefore on the alterna-
tion parameter $. In the tight-binding approxima-
tion we can approximate h& z by

h, z=(const)e

or

hI. p=hpe +bj

where hp is the transfer integral in the nondis-
torted case. The constant b will, of course, de-
pend on the type of wave functions used and on the
intersite distances. (Table I gives a list of values
for b to be used in the various cases, using molec-
ular two-center integrals, as evaluated by Lofthus. ')

The lattice energy will be approximated by

E,(&) = ,'N(Br@+8—rP)= —,'NQ[(1 —$) "+(1+$) "],
(4)

where 0 = B(—,'a) " and B is a measure of the lattice
repulsion. The role of lattice vibrations will be
neglected, since they do not contribute to the prob-
lem considered here. Their contribution was eval-
uated, and it could be shown that their effect is
limited to a small change in the transition tempera-
ture.

The partition function of the electronic system
can now be evaluated:

Z„=II[(1+e' ~"' ' ' )(1+et-z'&a&/an )]

frnm which we obtain the free energy of the crys-
tal:

F($, T)=( —2/v)NE, J ((g +cos2z'ak) ~2

+ 2(kT/E, ) in{1+exp[ —(E,/kT)

&& (g +cos —,'ak) ~
] ))d(—,'ak)

+ kNfl [(1—t')" + (1+5)" ] (5)
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TABLE I. b values, entering in the approximate
transfer integral expression (2.3), for different types
of wave function p; c= (Z'/n)ao = orbital exponent/Bohr
radius.

From (5) and (10) we derive

24C=,' = n(n+1) (n+2) (n+8)NII
8 F($, T)

8$

Vo &= W~, »
1g
2p
3p
M

2ac —1l
12ac —3
12ac —5
2ac —51

—b I4(E, /kT)NE, , (11)

in which the integral I4(E, /kT) is a function of

E, /kT only, given by the following expression,
with y -=(E, /k T) cos—,'ak:

I4(E,/kT) = (6/v)(E, /kT)'

F($, T) =Fo+A$ +C$ +G$ +''' (6)

A, C, G, . . . are all functions of T and the param-
eters of the system. Odd terms in $ are zero for
this symmetrical case. Since in the semiconduc-
tor-to-metal transition a symmetry element is
added to the system, we know at least that a sec-
ond-order transition is allowed. %'ith the power
series for F we can investigate the various pos-
sibilities for the order of the phase transition.

In Eq. (6), A & 0 corresponds to the symmetrical
phase and A & 0 to the nonsymmetrical phase. The
curve of second-order transition points is deter-
mined by

A=O, C&O,

whereas the transitions will occur as first-order
phase transitions if

In principle we can now calculate this function nu-
merically for certain types of systems, but since
we are primarily interested in the order of the
phase transition, we will, according to Landau,
consider the free energy in the neighborhood of a
transition point and expand F($, T} as apower series
of $'

2xJ [y (1+coshy) '-y tanh 2y]d( —,'ak)

14(E,/kT) was evaluated numerically as a function
of E,/kT, and its sign turned out to be negative
for each E,/kT value, indicating that the sign of
C is positive definite. According to (7), only sec-
ond-order phase transitions are possible. The
transition points can be found by the requirement
A=0. From (5) and (10),

2A = z' = n(n+ 1)NII —b Iq(E, /k T)NE, ,
s'F(&, T) 2

e~ g=o (12)
in which

I2(E, /k T) = (2/v)(E, /k T) J y tanh zy d(zak)

and the second-order transition point is uniquely
determined by

~H
I

I

1
1

1.00—
A&0, C&0, G&0. (8)

The first-order-transition curve joins on to the
second-order curve at the critical point, which is
defined by

A„=O, C„=O, and G„&0 .
Now, we will examine the sign of the fourth de-
rivative of F((, T) with respect to $ in $ =0, be-
cause the sign of C clearly is decisive in deter-
mining the order of the phase transition.

Because the analytical treatment can be con-
tinued further with the approximated relation be-
tweeng and $

(10)

which is the linear term in the expansion of (2),
we will first consider this case and show that it
always leads to C &0 and, therefore, to second-
order phase transitions only, in agreement with
previous authors. '
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FIG. 1. First- and second-order transitions lines,
joined by the critical point (cr). The broken line is the
continuation of the second-order transition line. The
curves were constructed with g=6, 5=8.
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order, critical, and first-order transitions, re-
spectively. The temperature dependence of the
equilibrium distortion in these three cases is given
in Fig. 3. The behavior of the energy-band gap
with temperature is now given by 2E, = 2E,
xsinhbl $ i. For small $ values these E (T) curves
will be similar to the I ) l(T) curves.

In conclusion, it is clear that inclusion of the

exponentional character of the wave functions adds
sufficient "cooperativeness" to the model to lead
to first-order phase transitions, which in the
tight-binding approximation can be quite accurately
calculated.
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