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one might start with a Hamiltonian with an analytic
cut off and preintegrate it over the region 1 &k &~.
We shall not go further into this problem here.

The final result for (Al) is thus

1 1 1 4

4 ( 5) (16')a q ln2+ O(q )

+O(2 —o)+terms(q, q~, etc. ) . (A5)
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In this and the following two papers, low-temperature spin-wave properties of quadratic-layer

antiferromagnets having the K,NiF4 structure are reported and analyzed in detail. Here we present the

results of a least-squares adjustment of spin-wave theory to the temperature variation of the sublattice

magnetization in the compounds K,NiF4, K,MnF4, and Rb,MnF4, as reflected by
' F NMR frequency

measurements in zero field. Lowest-order temperature-dependent and temperature-independent corrections

to simple spin-wave theory, as formulated by Oguchi, are included in the analysis. The free parameters

of the fits are taken to be the exchange coupling, the zero-temperature spin-wave gap energy, and the

zero-temperature ' F NMR frequency. Our conclusions are as follows. Spin-wave theory accounts for

the sublattice magnetization of these compounds up to somewhat lessthanone-half the Neel temperature,
with the temperature-dependent corrections yielding less than 20% improvement in the range of fit for

the Mn'+ compounds and a negligible improvement for K,NiF4. The breakdown of spin-wave theory is

clearly not ascribable to spin-wave interaction effects and is apparently caused by excitations of a

fundamentally different nature. Exchange values obtained are in excellent agreement with data from

neutron and susceptibility measurements. The "effective" spin-wave-energy-gap values obtained give some

evidence for interplanar exchange coupling between second-neighbor planes, yielding upper limits for
such coupling of a few parts in 104 of the primary exchange. Earlier conclusions regarding the large

zero-point spin reduction in K,NiF4 are refined here, giving a result slightly larger than but within

error limits of the spin-wave-theory value (17.7%).

I. INTRODUCTION

The isomorphic compounds K~NiF4, K2MnF4 and

Rb2MnF~, whose magnetic properties were exten-
sively investigated by Breed and co-workers, ~ ap-
pear to be almost ideal two-dimensional (2D) anti-
ferromagnets. The large separation between the

planes, in which the magnetic ioas form a quadrat-
ic lattice, and the symmetry relations between
these planes of ions combine to make interplanar
interactions between the magnetic ions extremely
weak. In sharp contrast to a material such as
CrBr3, where the ratio of intraplanar to interpla-
nar exchange is quite large, but of order 10, it is,
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in the present materials, of the order of several
thousand. The predominantly 2D character of the
system mas brought out most clearly in the neutron
scattering experiments of Birgeneau et a/. Here
it mas shomn that, as the temperature is lowered
toward the transition temperature, there is in-
creasing evidence for scattering by a short-range
order which is entirely 2D in character. Only at
the Noel temperature, where this 2D order be-
comes long range, does a 3D ordering of the planes
become possible as a result of the dipolar and/or
exchange interactions between them.

The predicted behavior of 2D spin arrays with

isotopic Heisenberg interactions only has been
considered by Mermin and Vgagner' and by Stanley
and Kaplan. ~ It was established rigorously by the
former that such a system can have no long-range
order at finite temperatures. There is no energy
gap in the excitation spectrum and the situation at
low temperatures is controlled by the density of
states for small excitation energies or, in fact, for
small k values. As the dimensionality of the sys-
tem decreases, this low-k density increases and in
two dimensions leads to a catastrophic excitation
of spin waves which destroys the long-range order.
In the presence of any anisotropy, such as to leave
the system with an easy axis, the above argument
is not valid. An energy gap appears in the excita-
tion spectrum at k=5 and inhibits the disordering
process at sufficiently low temperatures. Stanley
and Kaplan4 showed that an analysis of the high-
temperature series for the susceptibility of the iso-
tropic system predicted a divergence at a finite
temperature, in the manner familiar in 3D Heisen-
berg systems or for the 2D Ising system. To rec-
oncile their result with that of Mermin and Wagner,
they suggested that the transition might be to a
state without long-range order but having a diver-
gent susceptibility. This is plausible from phase-
space considerations. Consider, for simplicity, a
ferromagnet mhose average energy at some tem-
perature is prouortional to —gf yf (5f 8 g), where
yf= (I/Z)$6e' ', with 5 a nearest-neighbor dis-
placement and Sy the Fourier transform of the local
spin vector 8,. The quantity Q also has to satisfy
the sum rule gf {SI 8 I) = NS(S+1). As the tem-
perature decreases, so does the average energy
and since y„has its maximum at k= 5, the system
achieves this by increasing (Sf 8 „-) for small k.
In a 3D system, there is such a paucity of low-k
states that the system eventually is forced below
a certain temperature into making (fo 80) of order
N—that is to say it orders. A 2D system meets
this situation by developing a pole of some order in
{ff Sg) at k= 0, and this will imply infinite sus-
ceptibility, but no long-range order. Real systems
possess anisotropy and thus may be expected to be
ordered at sufficiently low temperatures. In the

present cases the anisotropy is small (anisotropy
field/exchange field- I.O ) and the transition tem-
peratures appear to be rather close to the Stanley-
Kaplan values. It appears that the existence of the
transition is controlled by the stronger exchange
interactions and that the anisotropy then determines
the nature of the new state belom T~.

The present paper and a number of others associ-
ated with it discuss various aspects of spin waves
in the quadratic-layer (QL) compounds. These are
the zero-point spin deviations, the temperature
dependence of sublattice magnetization (considered
below), antiferromagnetic resonance (APMR) in
high fields, ' and the dispersion relation of the
magnons as a function of temperature. To provide
some coordination between these papers they will
all be commented on here.

The zero-point spindeviationwas measuredby a
double-resonance technique; the results are given
in Ref. 5. In 3D systems the predicted deviations
are small (-2%) for the best investigated system
MnFz. The uncertainties in the value of the super-
transferred hyperfine coupling constant of the Mn
nuclei in the ordered system are such as to make
comparison of theory and experiment marginal.
In the QL structure, on the other hand, simple
spin-wave theory predicts a reduction in(S') of = 0. 2
and this is substantially greater than in 3D cases.
The results found in Refs. 5 and 6 gave values of
0. 20+0. 03 for K~NiF4 and 0. 17+0.03 for K~MnF&
and Rb~MnF4, in very good agreement with the val-
ues predicted by spin-wave theory including the
anisotropy. Results from various perturbation
calculations give substantially lower values. ' It
is not really clear mhy the agreement with spin-
wave theory is so good. Stinchcombe has calcu-
lated 8 corrections to spin-wave theory mhich go
to zero as the anisotropy vanishes and adduces this
as a justification for the good result of the 80

theory, since in the present case the anisotropy is
small. However, it does not seem likely that when
the anisotropy goes to zero, spin-wave theory wiQ
become exact and it would appear necessary to cal-
culate the 8 corrections before accepting the ar-
gument.

The variation of sublattice magnetization with
temperature is measured in the conventional way
by following the NMR of suitable F nuclei as the
temperature is varied. The results show clearly
that spin-mave theory in its simplest form gives
an excellent account of the magnetization up to
about 0.4T~. The two-dimensional nature of the
magnetic ordering, which has a marked effect on
the whole functional form of the {8')-vs-Tcurve is
thus confirmed. Attempts to extend the fit to high-
er temperatures by simple renormalization pro-
cedures, which are described in detail in the cur-
rent paper, are not markedly successful. A meth-
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od employed by Low for MnF~ was used. This
renormalizes the spin-wave energies by a term in-
volving occupation numbers to essentially order
S . The occupation numbers themselves are then
found self-consistently. (The spin-wave gap is in-
serted into the calculation as a known quantity. )
The treatment has a slightly hybrid character, but
the nature of the results seems to suggest that no
simple renormalization scheme is likely to be ef-
fective. In K&MnF4 and Rb2MnF4 the region of good
fit is extended by about 3 K, while in KzNiF4 no im-
provement whatsoever is found. At the same time
the values of the exchange constants and spin-wave
gap energies derived from the fits are in good
agreement with other estimates. Also the renor-
malization dispersion relation which can be deduced
agrees very well with that of recent neutron mea-
surements on K~MnF4.

The failure of the modified spin-wave theories
to describe the behavior of the magnetization takes
place in KgliF4 when only a 4% extra thermal de-
viation has been added to the 18% of the zero-point
motion. In K~MnF4 and RbzMnF4 it occurs when
7% thermal has been added to 7% zero point. On
the other hand, in 3D, Low found substantialagree-
ment up to a deviation of 2% zero point plus 50%
thermal. It is clear that in the 2D systems, when
the spin-wave theory starts to underestimate the
fall of the sublattice magnetization, there has not
been a prolific excitation of magnons and occupation
number renormalizations are not significant. Pre-
sumably one is then starting to see the contribution
of excitation processes which are characteristic
of the transition or critical region. All available
evidence from neutron scattering, ' the linewidth
of antiferromagnetic resonance' and that of EPR,
indicates that in 2D systems such processes extend
over a wider temperature range than in 3D ones,
both above and below the critical temperature.

It was mentioned above that in attempting to fit
the sublattice-magnetization data the temperature
dependence of the energy gap was inserted into the
calculations independently. This energy gap is just
the antiferromagnetic resonance frequency and is,
in principle, accessible to direct determination.
In K&NiF~ it lies in an experimentally convenient
region and has been measured by Birgeneau, De-
Rosa, and Guggenheim. For K&MnF~ and Rb&MnF4
the direct measurement is not readily available in
zero field. In a field of = 40 kQe the gap may be
reduced to microwave frequencies. The measure-
ment of the field for resonance at 24 GHz is de-
scribed in Ref. V. It is possible to deduce from
these observations the gap in zero field by extend-
ing the Oguchi-type renormalization method already
cited to cases where a magnetic field is present.
The system parameters used in this reduction are
themselves found from the fitting of the sublattice

magnetization.

II. SPIN-WAVE THEORY

g f=(I+a-yf) [(&+a)'-y~m] "'
R, = (I/2SIV, ) E (gf —1),

(3)

and

R, = (I/2SN, ) 2 g f (n'f" +n„-'"), (5}

where n= ggsH„/41 JlS is the anisotroPy Param-
eter, n-'" = s.'~' = [a~& —1] ' are the Bose occupation
numbers for the two spin-wave branches, and yg
= cos(-,'k„a) cos(-,'k„a) for the QL structure. No is
the number of magnetic unit cells in the system.
The correction terms in Eq. (2} have also been de-
rived by Keffer using physical arguments. The
quantities Ro. and R& are first-order corrections
in the expansion parameter in 1/S. One objective
in this study is to see what improvement in fitting
to the experimental sublattice magnetization data
can be effected by including these terms in the
analysis.

Ro is a negative definite quantity so that -gfRO
gives a temperature-independent fractional in-

In this section we review the results of spin-
wave theory necessary to our discussion of sublat-
tice magnetization in the QL structure, and note
the assumptions upon which our interpretation is
based. This material is found in many .sources;
an excellent general reference is the review by
Keffer. '

Sublattice magnetization calculations for the QL
compounds are based on a model of nearest-neigh-
bor isotropic exchange coupling J, with anisotropy
represented as a temperature-dependent staggered
field H„at the sites of the atomic spins. Thus,
the Hamiltonian is given by

&= i@I E 1 s„-gg,a„&s;-&s'), (1)
(r, ~&

where l and m are summed over the two magnetic
sublattices, respectively. Our first goal is to
summarize the calculations of (S'}for a strictly 2D
system using simple spin-wave theory and the low-
est-order corrections to this picture developed by
Oguchi. ' Small corrections to this approximate
picture —including interactions with more distant
neighbors, effects of dipolar anisotropy, and in-
teractions with neighboring layers —will be consid-
ered in due course.

In zero applied field the model situation described
above has two degenerate spin-wave branches
with energies given by

Ef/41 J~ S= [(1+n) —yf] —gI [Ra +R~(T}]
(2)

with
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crease in magnon energy varying from —,'Ro at the
bottom of the band to Ro/(1+ a) at the zone bound-
ary. As discussed previously, however, this
correction is very nearly "'.nvisible" to experi-
ments because its effect is simulated to within
parts in 10 by adjusted values of J and n in the
zero-order dispersion relation. Thus, at low tem-
peratures [R,(T)= 0], Eq. (2) is closely approxi-
mated by the dispersion relation of simple spin-
wave theory,

&f/4~@S= [(1+ .)'-~il'", (6)

where we identify the equivalent simple spin-wave-
theory parameters throughout with the subscript 8.
Z, and a, are obtained by equating Eqs. (2) and (6)
at the zone boundary and at k = 0, which yields

Z, (1+a, ) =Z(1+ a -R,)

Z, (2a, +a,)'j =J'(2a+a )'~ [1-Ro/(2+a)] . (8)

For a„ I R, i «1, these yield J', = Z(1 -R,) and a,
= a/(1 -R,).

The temperature-dependent renormalization term
-g»R&(T) acts to lower the magnon energies as the
temperature is raised. This term was found by
Low to bring about a markedly improved agree-
ment with sublattice magnetization data for MnPz.
The gap temperature T~(T)=E» 0/k& is dependent
on R~, as expressed by the general equation [Eq.
(2) with 0=0]

T (T) = (4
~
Z

~
S/ks }[(2a +a } ~

—[Ro+Rq(T)] a/(2a+ a») fg . (9)

It is usually found, however, that T~ decreases
much more rapidly with T than Eq. (9) would per-
mit by virtue of R, (T) alone. We have therefore
adopted the experimental variation of T~(T) with
temperature by allowing n to be temperature de-
pendent. In fact, we have set Eq. {9}equal to the
experimentally determined T~(T) in order to obtain
a(T)."

The average magnetization residing at any atomic
site is given by gps(S'), where

(S')=S-~,-rs(T) .
Here S is the spin multiplicity,

is the zero-point spin reduction (note that 60 is
weakly temperature dependent through the param-
eter a), and aS(T) is the temperature-dependent
part of (S') given by

1 . ~ 1+A &1) $8)~(T)= ~ ~[(1 )» g]xg» (n; +nf ) .

(12)

Computer evaluations of (S*) will be discussed
in the following sections. Here we only briefly
mention the way in which, given a(T) and IS!, the
calculation of (S') at a certain temperature was
implemented on the computer. First, Ro and 60
are calculated by the summations Eq. (4) and (11)
over the Brillouin zone. Subsequently, R1 is cal-
culated by iterating the self-consistent set of Eqs.
(2) and (5). Then, all constants in the dispersion
relation Eq. {2)are known, and the calculation is
completed by inserting the dispersion relation into
the Bose factors and evaluating Eq. (12). Evalua-
tion of the summations over the Brillouin zone is
in general quite involved in three dimensions. In
two dimensions, however, the summations can be
greatly facilitated when, on converting sums to in-
tegrals, use is made of the relation

Z S(y;)=(4/n') dz Z((1-z')'")S(z) .
(13)

Here K(~)=f~' dx[1-m sin x] ' is a complete
elliptic integral of the first kind, for which fast
computer subroutines are available.

Convenient low-temperature approximations to
r»S(T) have been discussed in earlier publica-
tions, ' especially in connection with the K»NiF4
data. We mention them here for completeness.
For kT «4I Zi S, one may integrate Eq. (12) in
closed form by taking y)= 1 ——,'0 g, yielding

S

In the case that second- and third-neighbor intra-
layer exchange interactions are important, the ex-
change constant 8, in Eq. (14) is modified to be-
come J& —2J'2, -4J3, in an obvious notation. This
is a long-wavelength approximation and should be
valid for the low-temperature studies conducted
here.

In the above development we have assumed a k-
independent anisotropy field such as would be ef-
fectively provided, for example, by a uniaxial
crystalline field. For the Mn '

QL compounds,
however, the major source of anisotropy is dipolar
interactions. We have examined in detail the ques-
tion of how this might affect the above treatment.
Exact diagonalizations of the dipolar anisotropy
case are available, and are discussed in Appendix
A. With these one can assess the accuracy of the
dispersion relation Eq. (2} as an approximation to
the dipolar case. The details are relegated to
Appendix A, with the general conclusions as fol-
lows. The dipolar interactions lift the degeneracy
of the two spin-wave branches and, in addition,
cause their average value to deviate from the form
of Eq. (2}. For a=0. 004 (i. e. , for K»MnF4 and
Rb»MnF4) the latter effect is of the order of 0. 1/o
or less throughout the first Brillouin zone, and is
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therefore negligible for our purposes. Moreover,
the mode splitting, which ranges up to 1% of Eg, is
expected to cancel to a high degree in the thermo-
dynamic averages. This splitting vanishes as
k 0; thus, there is no degenerate manifold of ex-
citations near k=0 as is found in three dimen-
sions. ~

Lastly, we consider the effect on our analysis
of possible three-dimensional effects, i.e. , inter-
actions with spins in nearby layers of the QL
structure. It was noted by Legrande and Plumier '
that the coupling between adjacent layers, about
7.A apart in these compounds, cancels at long
wavelengths because of the staggered registry of
the sublattices. In addition, neutron studies of the
c-axis magnon dispersion in KeNiF~ and EPR re-
sults for dilute K&MgF4. Mn ' show that these
nearest-neighbor interlayer couplings are below
1% of the primary exchange interactions. They
will not be considered further.

Of potentially greater importance, in spite of
their minuscule size, the couplings between sec-
ond-neighbor layers. Their effect on the magnon
dispersion relation is investigated in detail in Ap-
pendix B for both ferromagnetic and antiferromag-
netic ordering in the third dimension. Both such
phases have been observed experimentally. In a
model calculation assuming exchange coupling J,
between corresponding moments in second-neighbor
layers, a fractionally small modulation of the mag-
non energy is found under the assumption I J,/Jl

The effect on the sublattice magnetization is
found to be well approximated by a modified gap
temperature.

hyperfine field. That is, f(T)= A~9(S'), where A»
is the hyperfine coupling constant which results
from transferred hyperfine interaction with an ad-
ditional contribution (=2%) from dipolar origin.
The results are presented in Fig. 1 for KgliF~, 8

and in Fig. 2 for KMnF& and RbzMnF&. Data for
K~MnF~, presented by us previously, have been
carefully reexamined and partially repeated in the
temperature region below 20 K. The samples were
prepared in the way described earlier.

The NMR technique used consists of exciting the
nuclear precession by a rf pulse with duration of
about 2 p, sec, and observing the free-induction de-
cay following the pulse. The coil around the sam-
ple was used for both excitation and detection. The
detection system consisted of a broadband rf am-
plifier, with fast recovery after overload, followed
by a video detector. The frequencies were mea-
sured by beating the free-induction-decay signals
with a standard oscillator, which was phase locked
to the transmitter'and weakly coupled to the detec-
tion system.

Generally speaking, the free-induction-decay
times were of the order of 10 p, sec for all samples
at the lower temperatures, and decreased only

160,—

150—

N
Z
X

140—

Tc Tc [I+
~
+g~ S/(gu'BIf/)] p (15)

where it is noted that J, need only become compar-
able to H„ in order for its effects to be felt. The
present experiments are sensitive to J, values as
small as I J,/Jl = 10 because of the weak anisot-
ropy. In contrast, J, alters the k = 0 AFMR mode
only by amounts of order I J,/Jl; thus, it is the
discrepancy between T~ as measured by AFMR
and by fitting the sublattice magnetization which
reveals any appreciable c-axis coupling. In Secs.
IV and V the experimental results are used to es-
tablish upper limits for I J, l in the QL compounds
under investigation. The dipolar contribution to
J, is of order 10 '

g p&H& in the Mn ' compounds
and smaller in K~NiF4.

III. EXPERIMENTAL
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The temperature dependence of the sublattice
magnetization has been measured by monitoring
the nuclear-magnetic-resonance (NMR) frequency
f(T) of the out-of-layer "F nuclei located adjacent
to the Mn ions. The external field being zero,
these nuclei resonate exclusively in a transferred

FIG. 1. NMR frequency f(T) of the SF out-of-layer
nuclei in K2NiF4 vs temperature T at zero external field.
The spin-wave energy gap and the Noel temperature are
indicated by Tz(0) and TN, respectively. The solid curve
is calculated from renormalized spin-wave theory as de-
scribed in the text with the output values of the least-
squares fit up to 40 K.
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FIG. 2. Same as Fig. 1, but fox K2MnF4 and Rb2MnF4.
For the solid curves parameter values for the fits up to
18 K and 17 K, respectively, have been used.

slowly upon increasing the temperature. For
K~MnF~ at 1.5 K, the limit of pure Suhl-Nakamura
linewidth (- 30 kHE) was very nearly reached.
The RbMnF4 samples were unfortunately contam-
inated to the extent that about 1% of the Rb ions
were reylaced by K. This resulted in inhomoge-
'neous broadening of the NMR line of the order of
50-100 kHz at the higher temperatures, which is
the reason for the fact that the results for Rb&MnF4
are less accurate than for K~MnF4. For KaNiF4
at 1.5 K we observed the spin-lattice relaxation
time T~ to be of the order of 10 min; it dropped
rapidly to milliseconds as soon as temperatures
corresponding to the spin-wave gap were reached.
In KBMnF4 and Rb&MnF4 we observed T&= 10 sec at
l. 5 K, apparently impurity dominated.

Temperature control was done below 4. 2 K by
immersion in liquid helium, between 13.8 and 20. 3
K by immersion in liquid equilibrium hydrogen, and
in the remaining regions by cooling in a continuous
stream of boiled-off helium gas, the temperature
of which was servostabilized. For K~NiF4 a series
of data was also taken in the liquid-nitrogen region.
Temperatures were measured by monitoring the
pressure above the liquid coolants, with hydrostatic
cox rection when necessary, or with reference to a
standard platinum resistor and calibrated germa-
nium resistor ther mometers. All thermometers

were carefully checked at the boiling point of he-
lium, the triple and boiling points of equilibrium
hydrogen, and the triple and boiling points of ni-
trogen. The accuracy of the temperature mea-
surements is estimated to be 0. 5% or 0. 2 K,
whichever is less. In the region between 4. 2 and
13.8 K, however, the error limit is increased to
0.1 K. In the over-all errors of the data points,
which have been entered into the least-squares fits
(cf. Figs. 5, 8, and V, to be discussed below),
we have combined the estimated errors in frequency
and temperature measur ements.

A remark should be made on the temperature de-
pendence of the hyperfine constant A&9, which we
have taken to be constant throughout the tempera-
ture region of interest. In general, the transferred
hyperfine interaction will be sensitive to the
Mn '-F separation, and is therefore dependent on
lattice vibrations and thermal expansion. No study
of these effects has been made in the QL com-
pounds as yet, but a similar situation is encoun-
tered in the system of Mn~'-doped LiF, which has been
discussed by Shrivastava. The effect of harmonic
lattice vibrations is shown to be proportional to T
at low temperatures. The thermal dilatation will
follow the trend of the internal thermal energy,
which also wiB fall off with a T -type dependence.
From high-pressure data3~ Shrivastava estimated
thermal expansion to account for about one-half of the
decrement of A&9 with temperature, while the other
half was shown to have a fractional change given by
IC,T'with X,=l. &x10 ' K~. At say 25 K, the
highest temperatures used in the discussion of spin-
wave theory for K~MnF4 and Rb~MnF4, this implies
a fractional decrease of A~9 by 5x 10, or 0.08 ~
in the NMR frequencies. This estimate may be too
small by an order of magnitude or so because the
Debye temperature may be lower in the layer com-
pounds, but anyway the effect will be far below the
the experimental errors from other sources. For
Ke¹F4, spin-wave fits (Sec. IV} appear to be pos-
sible up to 40 K, where with allowance for differ-
ence in Debye temperature there results a correc-
tion of the order of 20 kHz. Another way of esti-
mating the effect in the case of KzNiF4 is from
comparison of A» as measured here at T = 0 K
(A&9/k = 18V MHz with b 0= 0. 18) with the value at
2&V K (A»/k = 1&3 MHE}. 3 Accounting for the
change in the dipolar part in going from the anti-
ferromagnetic to the paramagnetic state, a de-
crease of A, 9 by 2&% is found over 300 K, which
implies a change of 2x 10 ~ over the first 50 K,
corresponding to a correction of 30 kHz in the NMR .
frequency. For further discussion, see Sec. IV.

IV. K MF IN SPIN-WAVE REGION

A good deal of detailed information is available
regarding the magnetic interaction parameters in
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KaNiF4. We review these data briefly before dis-
cussing the sublattice magnetization analysis.

Neutron scattering measurements of the spin-
wave dispersion at low temperatures~~ give

[Jq, —(Jg, +2/44)]/ks = —112.3+0.3 K.

105

104—
K2NIF4

Data on the second- and third-neighbor couplings
have been reported ' ' for dilute K&MgF~: Ni ',
giving Jz/ks = —0. 6 K, with J4 an order of magni-
tude smaller. In view of the good agreement be-
tween J~ measured earlier for these systems and
the neutron value for K~¹iF~, we assume J~ and J3
are also correct for the concentrated antiferromag-
net. The value of the single exchange parameter
J, = JL, —2 (J2, + 2J4, ) relevant to the sublattice mag-
netization at low temperatures [see Eq. (14)] is
then taken to be —111.7+0.6 K. The correspond-
ing uncorrected exchange constant is J/ks = —103. 5
+0.6 K. Combining J and the measured 4. 2 K
AFMR splitting of 27. 48 K+ 1% with g= 2. 22, ~ we
find, using Eq. (9), u=0. 0021 and H„= 5.73 kG.
This is nearly an order of magnitude larger than
the dipolar field (= l. 3 kG) and is therefore due
primarily to single-ion and anisotropic exchange
effects. Yamaguchi finds (again, for K4MgF4. ¹

')
a single-ion anisotropy term X~„=DS, with
D/kc= —0.425 cm, giving H„„„„,=4. 1 kG. No

data are available on the nearest-neighbor aniso-
tropic exchange coefficient to compare with D. It
appears, however, that D is the primary source of
anisotropy in K4NiF4.

In analyzing the data we shall assume the spin-
wave energy gap to scale with the sublattice mag-
netization, To(T)~ (S'), as has been observed ex-
perimentally. There are then essentially three
parameters required to fit the ' F NMR frequency
data to

(16)

with (S') calculated from the renormalized spin-
wave theory in the way outlined in Sec. II. These
parameters are J, the zero-temperature spin-wave
energy gap To(0), and the zero-temperature fre-
quency f (0}. A series of least-squares fits was
carried out over temperature ranges extending
from 1.5 K up to a selection of upper limits. In
doing this the integrals over the Brillouin zone
were evaluated at the experimental temperatures of
the data points with estimates of J and To(0), while
further adjustment of aS(T) was carried out by
means of the approximate formula Eq. (14}. This
process was repeated to ensure self-consistency.

Results of the fitting for J and To(0) are plotted
in Fig. 3, where the closed circles represent
parameter values obtained in data fits including
all data up to the temperatures indicated. The
variation of corresponding output values off (0)
is well within the errors, and further, the output
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FIG. 3. Output values of the least-squares fits of the
NMR frequency f(T) in K2NiF4 to renormalized spin-wave
theory. The closed circles represent the output values
for the exchange integral J and the spin-wave gap tem-
perature Tt (0) obtained from fits to all data up to the
temperature indicated. Error ellipses of two standard
deviations are given for the fits up to 25 K and 40 K only.
The output values of the 40-K fit, projections of the 40-K
ellipse on the axes, are marked "this work. " The value
for J from neutron diffraction has been derived from Js
in Ref. 22, the AFMR value of T~(0) from Ref. 14.

values for f (0) appear to be only weakly correlated
with those for J and Tu(0). We therefore give f (0)
as a figure entry in Fig. 3, and do not consider it
further. The points in Fig. 3 are somewhat scat-

- tered but tend to lie along a straight line because
the errors in J and Tu(0) are highly correlated.
That this is so may be seen by plotting constant
error contours in the [J, Tu(0)] plane, with stan-
dard deviations and correlation parameters prop-
agated from the errors in the measured NMR
frequencies by the least-squares-fitting program.
The contour for an excursion of two standard de-
viations from the least-squares-fitted values of J
and Tu(0), which has a 98% probability of enclosing
the true values, is an ellipse given by

(5J +[5To(0)] —2o5J5Tg(0)]/(I-P' )=4, (17)

where 5J' and 5Tu(0) are the variations of J and
Tu(0) in units of their standard deviations, and o
is the correlation parameter. The ellipse for all
data up to 25 K (Fig. 3), i.e. , up to a temperature
comparable to the spin-wave gap, illustrates the
expansion of error limits in a case of extreme
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FIG. 4. Deviation of the experimental resonance frequency f(T) in K2NiF4 from the frequency calculated from renor-
malized spin-wave theory with the parameters obtained in the 40-K least-squares fit, showing a distinct breakdown of
the theory above this temperature. The estimated effects of a reduction of A~a with temperature are indicated by the
dotted line.

correlation (&= -0.99). On the other hand, the
minor axis coordinates of these ellipses are de-
termined with high precision. As one might ex-
pect, the parameter points are scattered along the
major axis of this ellipse at temperatures up to the
breakdown of the spin-wave fit, after which there
is a distinct trend to move downward to the right.
A second ellipse is plotted for all data up to 40 K,
and is thought to give the most precise determina-
tion of J and To(0) of the series. Here the corre-
lation is somewhat smaller (o= —0. 97) and the
errors considerably reduced. A plot of the devia-
tions of the experimental data from theory is given
for this fit in Fig. 4. The agreement with theory
is excellent up to 40 K, with a distinct breakaway
above that point. The least-squares program was
also able to fit the data to 45 K, but not beyond,
within the experimental errors. However, the
downward trend above 40 K is also clearly visible
in that case, giving a definite indication of the
breakdown of the spin-wave fit.

The spin-wave theory fitted to the KINiF4 data
included the Oguchi renormalization terms in line
with the discussion of K&MnF4 and Rb&MnF4 in Sec.
V following. It should however be noted that in
the case of K~NiF~, spin-wave theory without these
renormalization terms will do equally well. The
temperature-dependent renormalization is negli-
gibly small throughout the range of the spin-wave
fit (R~ ~ 0. 001). Although Ro= —0. 079 is quite
large, the resulting modification of the form of Eg
cannot be resolved within the accuracy of the data.

In Sec. III it was pointed out that at temperatures
of 50 K and higher, A&& may be reduced. In Fig. 4

the effects of such a reduction are indicated by the
dotted line, which represents the spin-wave fit,
but with the inclusion of an estimated fractionaldec-
rement of A»by K,T with K, =3.0~10 K . The
reduction of A» possibly could increase the fit to
spin-wave theory to slightly higher temperatures,
but, as in seen in Fig. 4, is unlikely to extend the
upper limit of the fit to beyond, say, 50 K.

It is interesting to compare the parameter deter-
mination of the 40-K fit with values determined by
other techniques. The latter values with error
limits are shown in the margins of Fig. 3. The
neutron value for J'„corrected using Eqs. (7)
and (8) to obtain J, gives I Jl /ks = 103.5 +0.6 K.
This is somewhat larger than the 40 K fitted value
102. 1+0.8 K. Although this discrepancy is only
marginally resolved, it may reflect a slightly
larger value of Ao than the spin-wave value (Ao
= 0. 177 for n = 0. 0031) taken in the calculation. We
recall that in the case of K~NiF„with a zone-
boundary spin-wave energy of 450 K, the k~ ap-
proximation leading to Eq. (14) is quite a good ap-
proximation. From inspection of Eqs. (14) and
(16) it follows that, if no is allowed to vary in the
fit, one can only determine the value of the product
J(S —bo). As in a previous publication, Z(S —Ao)
is combined with the neutron determination of J to
arrive at a value of b,o consistent with both experi-
ments, with the result no = 0. 193 —0.81(JI,+ 2', )/
Jq, + 0. 02 = 0. 19+0. 02. The zero-temperature gap
energy Tz(0) is found to be in marginal agreement
with the AFMR value 27. 48 K+1%. Thus there
may still be a c-axis exchange effect (see Appendix
B), but it is not well resolved. The observed dis-
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crepancy in gap energies leads to I J, /Zl -1.2x 10

V. Mn~+ COMPOUNDS IN SPIN-WAVE REGION

The application of spin-wave theory to the sub-
lattice magnetization data for these compounds was
carried out in a fashion similar to the K2NiF~ case.
There are, however, a number of differences in
detail. Use has been made of the AFMR measure-
ments for these compounds reported in the following
paper. ' These measurements have been interpreted
with a renormalization formalism which reduces to
that of Sec. II for zero applied field, and, given J,
yields the spin-wave energy gap as a function of
temperature. In order to allow for possible c-axis
exchange modification of To (see Appendix B), how-
ever, in the least-squares fitting only the relative
variation of the experimental T~ with the tempera-
ture has been retained, while the gap at zero tem-
perature To(0) has been taken as a parameter. As
in the case of KzNiF4, f (0) and J are also allowed
to vary in the least-squares fitting. Although the
energy gaps derived from the AFMR measurements
are only weakly dependent on the value of J, the
output values of the fitting to the NMR data have
been fed back to the analysis of the AFMR data for
the sake of consistency.

As for K2NiF4 a neutron scattering study of the
low-temperature magnon dispersion has been made
for K~MnF4. These measurements, reported in the
second following paper, ' yield J= 8.45+0. 1 K. Un-
fortunately, no such measurement has been reported
for RbzMnF4, nor are there any data on exchange
couplings with more distant neighbors. Data for
the closely related perovskites' suggest that J2 is
of order of 1/o or so. There is no evidence for
second-neighbor exchange in the presently reported
dispersion measurements. The zero-point spin
reduction 60 has been measured by use of a double-
resonance technique' to be 60 ——0.17+0.03 for both
K~MnF4 and Rb2MnF4. This in good accord with
the spin-wave theory, Eq. (11), which yields 60
= 0. 170 and 0. 167, respectively, for appropriate
values of n. We therefore henceforth adopt Eq.
(11), noting that uncertainty in S —Lo makes some
contribution to the absolute error in our determina-
tion of J.

A. K2MnF4

Values of J and To(0) obtained in a series of
least-squares fits to the NMR data up to the tem-
peratures shown are plotted in Fig. 5. As before
f (0) is given as a figure entry. The fully renor-
malized theory, Eqs. (2)-(5), is employed here.
Two error ellipses are plotted as described in Sec.
IV for an excursion of two standard deviations.
Again, we find using data up to the gap temperature
region [T~(0)='l. 40+0.05 K] large and highly cor-
related errors (&= —0. 9V) in the output values of J
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FIG. 5. Same as Fig. 3, but for K2MnF4. The most
precise fit is the one for all data up to 18 K. The neu-
tron value of J is derived from Ref. 8, and the AFMR
value of T~(0) is taken from Ref. 7.

and To(0). Considerable reduction of the errors
is obtained with the fit up to 18 K.

The least-squares value of J we find is seen to
be in excellent agreement with the neutron value
plotted, as well as with the value J= 8.4 +0. 1 K
derived from susceptibilities by Breed. This
agreement may be fortuitous because of the com-
bined uncertainty in the zero-point reduction 60
and second-neighbor exchange J2. These results
are consistent with the spin-wave value b,0=0. 170
and negligible J2. The fitted value of To(0) is -2%
larger than the AFMR value, a discrepancy which
is only barely resolved. This difference is indic-
ative of a c-axis exchange coupling, correspond-
ing to I J, /Jl - Sx 10 ' [Eq. (15)].

The deviations of the experimental data from the
fitted theoretical curve are given in Fig. 6 for the
18-K fit to the K&MnF4 NMR data. For the fully
renormalized theory (open circles) the fit is with-
in the errors of the data up to 18 K. With a distinct
downward trend thereafter. The "bump" between
5 and 13 K, within the experimental errors, we
attribute to thermometry errors. The most accu-
rate data are in the liquid-helium and hydrogen
temperature intervals, the parameters of the fit
being most stringently determined by the latter re-
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FIG. 6. The deviation of the ex-
perimental resonance frequency f(T)
in K2MnF4 from the frequency cal-
culated from renormalized spin-
wave theory (open circles) with the
parameters obtained in the 18-K
least-squares fit. A similar calcu-
lation for the unrenormalized theory
(closed circles) with J and at from
the 18-K renorInalized fit [adJusted
according to Eqs. P) and (8)] shows
that renormalization extends the
range of the fit by only 3 K.

gion.
One objective of the present work was to test the

role of the temperature-dependent renormalization
factor 8& in improving the agreement of spin-wave
theory with the sublattice magnetization data. To
this end an unrenormalized calculation of LS(T)
was carried out using the parameters from the
18-K fit above by omitting the effect of Bz. The
results are presented as the lower points (closed
circles} in Fig. 6. The difference between the two
calculations is negligible below 13 K. Thus, Fig.
6 illustrates the effects of temperature-dependent
renormalization in fitting the sublattice magnetiza-
tion data. The improvement is not substantial,
extending the range of fit by only -3 K, to a tem-
perature not yet one ha-lf the Neel temperature (T„
=48. I4 K}."

8. RbgMnpg

The x'esults fox' this compound ax'e Quite similar
to those for the yotassium isomorph. Parametex'
values obtained in a series of fits to the renormal-
ixed theory, Eqs. (2)-(5), are given in Fig. V.

Again, we plot two error ellipses, one for all data
up to a temperature near the m~on gap value
[Tu(0)= V. 88+0.05 K] and one for IV K, which we
consider to be the upper limit of the spin-wave fit.
These exhibit the same decreases of correlation
and output errors with increasing temperature as
found for the other compounds. The errors at 17 K
are slightly larger than for K~MnF4, reflecting
somewhat more scatter in the measured frequen-
cies. This, in turn, is attributed to the potassium
impurity problem mentioned in Sec. III. To(0)
is somewhat lax ger than the AFMR value, as in the
case of KMnF4, with a barely resolved discrepancy
which gives I Z,/J'I -4x l0"'. The fitted value of Z
is slightly larger than, but essentially consistent
with, those deduced from susceptibilities by
Breed.

A graph, analogous to Fig. 6, is given in Fig. 8
for the 17-K fit to Rbj,MnF4. The general charactex
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FIG. 7. Same as Fig. 3, but for B12MnF4. The most
precise fit is the one for all data up to 17 K. The AFMR
value of Tg(0) is taken from H,ef. 7.

of these plots is rather similar with somewhat in-
creased data scatter clearly evident for Rb3MnF4.
Again, the fit extends up to about —', Tz (T„=88.4 K}
and the withdrawal of renormalization is found to
diminish the range of the fit by a few degrees.

As expected, the two Mn ' isomorphs are seen to
behave in closely similar fashion, the main dif-
ference being a =15% smaller exchange coupling
for the Rb compound. There are two other results
which seem inconsistent with the ratio of exchange
constants found here. First, we may deduce val-
ues for the anisotropy fields in these materials
from the formula H„~ 4) Zl Sa/gee, where n is ob-
tained fx"om the AFMR studies and J' is taken from
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the results of this section. These may then be
compared with calculated dipolar values as set
forth in Appendix A. The results are listed in
Table I. The calculated dipolar values are based
on unit-cell dimensions reported by Loopstra et aL
The deduced anisotropy field is seen to be about
200 G smaller than the dipolar value for K~MnF4,
whereas it is found to be somewhat larger than the
dipolar value for Rb~MnF4. These small discrep-
ancies are attributed to uniaxial crystalline fields.
Although the latter are of reasonable magnitude as
indicated by electron-nuclear -double-resonance
(ENDOR) measurements~ on dilute K2MgF4: Mn ',
the reversal of sign is perhaps somewhat unexpect-
ed for two compounds so similar in other respects.

A second, perhaps more curious discrepancy is
found when we compare the ratio of exchange con-
stants with the corresponding ratio of Neel tempera-
tures. The Stanley-Kaplan estimate of transition.
temperatures gives a reasonably good account of
the T„values for these materials, as is shown in
Table I. However, one might expect that T„scales
with J for the two Mn compounds, which have only
slightly different anisotropy. Instead, the Stanley-
Kaplan estimate is 0. 5 K below the observed value
for K~MnF4 and 1.9 K below it for Rb~MnF4, a dis-
crepancy which is outside the suggested errors.

VI. CONCLUSIONS AND DISCUSSIONS

The spin-wave and NMR parameters obtained in
this and related studies of the QL compounds in-
vestigated here are summarized in Table I. For
a detailed discussion of these results we of course
refer the, reader to Sec".. IV and V. In general,
there is satisfactory agreement between the ex-
change parameters determined here by adjusting
spin-wave theory to fit the sublattice magnetization
(NMR) data and those obtained from neutron scat-
tering measurements. It is important to recall
that the "fitted" J values may be "adjusted" over a
range of one or two percent according to the pre-

scription J(S —LEO) = const without appreciably alter-
ing the quality of the fit. Thus, one may bring
our values of J into coincidence with the neutron
ones in exchange for 60's which are slightly larger
than, but within experimental error of, the as-
sumed spin-wave values.

The spin-wave gap energies reflected by these
data lie above the measured AFMR values, with
marginally resolved discrepancies in the direction
which suggests minute exchange couplings with
second-neighbor quadratic layers. Corresponding
values are given for the effective couplings (J,) be-
tween corresponding ions. A second magnetic
phase has recently been observed in K~MnF4 with
a considerably higher transition temperature. This
phase has been attributed to Ca&Mn04-like order-
ing (antiferromagnetic) along the c axis. In view
of the smallness of J„however, this would not ap-
pear to be an adequate explanation of the difference
1D TN S.

For the QL compounds spin-wave theory has been
found to give a good account of the magnon disper-
sion, zero-point reduction, low-temperature varia-
tion of sublattice magnetization, and spin-wave re-
normalization with temperature at all points in the
zone except near k= 0. The most surprising and
interesting result is that the spin-wave description
of the sublattice magnetization breaks down in all
three compounds at temperatures less than &T&
even with magnon energies throughout the entire
zone correctly renormalized with temperature.
The k = 0 mode is renormalized according to ex-
periment; nonzero k values are renormalized with
the corrections developed by Oguchi and confirmed
by experiment for KzNiF4 (Ref. 2) and K~MnF4.

It is also noteworthy that deviations in (S') from
the zero-temperature value are unusually small at
the point of spin-wave breakdown. For KzNiF4 the
deviation is already nearly 20% from the Noel-state
value ( S') = S at T= 0; at the point at which theory
fails (=40 K, see Fig. 4), (S') has only dropped
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Parameter

T~ (K)

Ter, s-x (K)

K2NiF4

97 1
92c

0.177
O. 19+ O. O2'

K2MnF4

42. 1b

41.6

0.170d
O. 1V + 0.03f

Rb2MnF4

38.4
36 sc

0.167d
O. 1V+ O. O3'

Rp

f(o) (MHz)

J/a, Qg

Jga, QQ

T~(0) ag

—0.0790' 0 0316c —0.0316~

155.423 + 0.002 150.477 + 0.003 143.996 + 0.004

—102.1 + 0.8
—103.5+ 0.6"

—110.1+ 0.8
111 7~0 6k

27. 86 + 0.16
2V. 48~ 1g'

-8.41+ 0.06
-8.45 + 0.1
—8.4 + 0.1j

-8.67+ 0.06
—8.72+ 0.1

7 54~ 0 07m

7.40+ 0.05'

—7.38 + 0.09

-7.3+ 0.1&

—7.62 + 0.09

7 45~0 09m

7 28+ 0 05o

Hg (kG)

0.0021P

S.73P

0.0038P

2.3SP

0.0047P

2.59P

H~(~) (kG) 1.28 2.57

/ JJJ1 ~3x 10~ ~ 5x ].0+~

'Reference 2.
Reference 8.
According to Stanley and Kaplan (Ref. 4) with this

paper's J values.
Spin-wave value, Eq. (11), assumed in the fitting

procedure.
Obtained by combining J(S-&ho) from this paper with

J from neutron dispersion.
Experimeatal value from a NMR-AFMR double reso-

nance experiment (Ref. 5).
Equation (4).

"From neutron dispersion measurements (Ref. 21),
after correction for next-nearest-neighbor exchange and
conversion from unrenormalized to renormalized spin-
wave theory.

From neutron dispersion (Ref. 8), after conversion to
renormalized spin-wave theory.

From perpendicular susceptibility at T =0 K (Ref. 1).
"From neutron dispersion (Ref. 21), after correction

for next-nearest-neighbor exchange.
From neutron dispersion (Ref. 8).
This work; includes effects of residual g-axis ex-

change coupling.
From AFMR (Ref. 14).

'From AFMR (Ref. 7).
~These values are derived from the AFMR results for

the gap energy combined with J as obtained from the
present work.

~The numbers quoted here are upper limits derived
from the error estimates shown in Figs. 3, 5, and 7.

2.48

8x10~&

TABLZ I. Sununary of various quantities for the QL
antiferromagnets K2NiF4, K2MnF4, and Rb2MnF4. Unless
indicated otherwise, the values refer to the present work.

not treated by spin-wave theory. It is the presence
of these other excitations, not the effects of spin-
wave interactions, which causes the spin-wave de-
scription of (S') to fail at relatively low tempera-
tures. Thus, no alternate formulation of spin-
wave renormalization to the one employed in this
paper could be expected to improve matters.
There is ample evidence for strong s-axis fluctua-
tions in the QL compounds. Neutron scattering ex-
periments on K2NiF4 reveal a large and unusual
diffusive peak attributable to X„at temperatures
ranging well above and below T„. In the Mn ' iso-
morphs, the AFMR linewidth becomes extraordi-
narily large at and above the temperature where

( S') deviates from the spin-wave description. '
Such line broadening is very likely due to z-axis
Quctuations. At the present time there is no the-
oretical formulation of these Quctuation modes with
which to calculate their contribution to (S').

A PENDIX A: DIPOLAR ANISOTROPY IN TWO-
DIMENSIONAL SPIN-WAVE THEORY

B(k)= -~dQ sin 8„e «+e» ~/R„

C(k) = —d Z (3cos 8„—1)/R„
n

&(k)=(&d) Z (3cos'8„—1)e"' ~/R„,
yl

E(k)= —zd Z sin 8„e "e n/R„

(A2)

The effects of dipolar interactions on the anti-
ferromagnetic spin-wave spectrum have been dis-
cussed by several authors, initially by Ziman,
who diagonalized that portion of the Hamiltonian
which is quadratic in the spin-wave operators in
the general case of an applied field with anisotropic
g factor. We have reobtained this result for the
case of nearest-neighbor exchange with zero ap-
plied field, giving for the eigenenergies

&I/41&. 1S=(' yf+(A+-C yD+~-)/21J, 1S

+ [EE*+4y ~ BB*—2y~(BE*+B*E)]' /218, 1S)

(Al)
where (in the notation of Harris)

A(k) = d P (3 cos g, —1) (1+~& e
'

~)/R„

an additional 4% of S. For the Mn" cases the
zero-point deviation is = 7% of S with an additional
7% at the point of breakdown. These are in sharp
contrast with MnF&, where renormalized spin-wave
theory accounts for a deviation of = 50% of S.

The above results suggest that at T= —,'T„and
above, ( S') for the QL compounds is partly deter-
mined by fluctuations in the z component of mag-
netization, i. e. , "critical fluctuations, " which are

In Eqs. (A2), d=g psS. Q and Q denote summa-
tions on lattice points in the same and opposite
sublattices, respectively. The polar angles H„and
y„are taken relative to the direction of magnetiza-
tion. The renormalization terms of Eq. (2) are
omitted for the sake of this discussion.

In Eq. (Al) only terms which are first order in
(J,S) have been retained, corresponding to the
neglect of n = 10 ' in Eq. (2). Allowing for cor-
rection of minor printing errors, Eg. (Al) agrees
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with the appropriate specialization of Ziman's re-
sult. It reduces to Oguchi's result40 in his ap-
proximation that B and E [Eq. (A2)] are real and

yields the dispersion relation given by Harris20

using his long-wavelength evaluation of A E.-In
terms of the lattice sums and combinations defined
in Table 0, Eg. (Al) may be rewritten for k in the

(x, y) plane

&l/41~. 1S=(I -)'f'+(g»/21+ S)

x[H„+ (Sd/2g]4B) (Z'4 ' —Z,' ')]

+(d/41~. 1»Z" (S«41~.IS)Z"8" (AS)

In addition to the anisotropy field contribution in the
square bracket, we find a slight modification of the
form of Eg as well as a splitting of the two spin-
wave branches as expressed by the Z' and Z" terms
in Eq. (AS), respectively. The splitting vanishes,
however, as k-5; thus, there is no degenerate
spin-wave manifold as is found in the 3D case.
Note that Eg. (AS) does not include any effect of
zero-point spin reduction on dipolar anisotropy.

The dipolar sums in Table I have been evaluated
at a selection of k values for the QL structure, with
the results presented in Table III. We apply these
results to the spin-wave dispersion in K&MnF4.
Taking a= 5. 871 A, we find for the dipolar anisot-
ropy field HA&n&

——(zgi4BS) (Z4 ' —Z'4')=2. 57 kG at
T = 0 K, in good agreement with the calculated val-
ue given by Breed. ' Further, the results of Table
III are used to compare E„[Eq. (A-S) with H„=0]
with the simple spin-wave dispersion

&20 = 41&.I
S[I )r'+ g]—BHA Ã)/21 4S]"',

i. e. , considering dipolar anisotropy as a single-
ion anisotropy. We take J,/ks = —8. 7 K.

Calculated values of Ez/Efc along with the param-
eters Z' and Z" [Eq. (AS)] are listed in Table IV
for the wave vectors given in Table III. The shift
in the dispersion is seen to be of the order of 0: 1%

TABLE G. Dipolar lattice sums in the quadratic layer.
Subscripts 1, 2, and 3 refer to sums over lattice points
on the same sublattice (excluding the origin); subscripts
4, 5, and 6 refer to sums over the opposite sublattice.
Superscripts (0) denote k=0.

Z4 4 ——g [(]C—3zg/R„]cosk~„cosk~„

Z2 4
= g I(z„-y„)/RQ]cosk~„cosk„y„

n

Zs, s = g (z„Ss/+) sink&„sink„X„

g(0) g +g(0)

[(~5 & g2)2+4(g8 ~g3)21k/2

TABLE III. Dipolar (k-dependent) lattice sums for QL
structure in units a, s»~~ed out to R„=20a, where a
is the magnetic lattice constant.

k~/7f k„(2/7].

0 0 8.72 0 16.20

kg 0.10
k2 0.20
ke 0.40

0.60
0.80

kg 1.00

k7 0.10
Rg 0.20

k]] 0.40
~to 0 ~ 60
k)1 0.80
%12 1.00

0.10
0.20
0.40
0.60
0.80
1.00

7.14
5.47
2.68
0.68

-0.53
—0.94

6.44
4.21
0.86

—1.23
—2.31
—2.64

—0.65
—1.23
—2.25
—3.04
-3.54
—3.71

—0.39
—0.64
—0.75
—0.50
—0.16

0

14.57
12.72
9.24
6.00
2.95
0

13.81
11.26
6.73
3.15
0.81
0

—0.59
—1.00
—1.37
—1.23
—0.71

0

—0.50
—1.09
-2.43
—3.80
-4.85
—5.25

E& = [(A; —1@1)(A;+
I Bf1 )]'~',

where

g]4BHA+ 2 (~Q +I +~Q ~ j) CTQ (B2}

(BS)

where Jf'=S g„J, e4 '
~~, etc. The superscripts

indicate that summations are to be taken over sites
on the same or opposite sublattice in an obvious
notation and k is here a v'ariable in the 3D recipro-
cal space rather than in 2D as in the rest of the
paper.

We distinguish two cases, one in which J, is
positive (ferromagnetic) in which it is reasonable
to assume the c-axis spin pairs are parallel and
another with J, negative, assuming antiferromag-
netic spin pair alignment. It is convenient to ex-
press the results in terms of exchange fields H~
= 4 I J, IS/g]4B and Hsc = 218,IS/g]4B. We find, then,
for the two cases,

&f=g]4BCH +(I+)'.)Hsc+(I+r )HB]

or smaller at the points sampled and to be roughly
independent of polar angle. The mode splitting is
seen to be considerably larger in the [11]direction
than in the [10], and ranges up to = 0. 5% in value.

I

APPENDIX B' RESIDUAL EFFECTS OF DISPERSION
ALONG THE AXIS

We analyze the effect on sublattice magnetization
behavior of a c-axis exchange coupling J, between
corresponding moments in second-neighbor quadrat-
ic layers in the approximation I J,/8, I «1. The
actual form of interlayer coupling is undoubtedly
very complex, since many exchange paths are pos-
sible. It is expected, however, that our simple
model will exhibit the qualitative features to be ex-
pected from interlayer coupling.

Following the analysis given by Keffer, the
magnon dispersion relation is given by
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x[H„+ (1 —y~)Hsc + (1 —y)Hs p
and

Ef= gPs {{H~+ (1 —y ) Hsc + (1 + y) Hs]

J,&0 (B4)

Ef/4
~

J
~

S = {1—y + 2 [H~ + (1 —y )Hsc]//Hs)

(B6)
and we find as expected a modified anisotropy field,
which, however, is k, dependent. Note that anisot-
ropy is increased regardless of the sign of J,

x [H„+(1 —y,)Hsc+ (1 —y)Hs [PI, J~ »& (B5)

where y, = cos(-,'k,c), —,'c being the separation of sec-
ond-neighbor planes. First we note that at k= 0
(y = y, = 1), Eo is modified by an amount = ,'Hsc/H—s
for J& & 0 and is unmodified for J,& 0. Hence,
there are only minuscule effects on the uniform
precession mode. The primary case of interest
is that of arbitrary k, with (k, + k~3)'I small, since
it is this region of k space that controls the low-
temperature properties. Thus, we keep'only first-
order terms in the corrections, putting y= 1 for
them. Equations (B4) and (B5) then both reduce to

The major conclusion to be drawn here is that
thermodynamic measurements, which presumably
average over-all allowed values of k will yield a
spin-wave gap energy different from AFMR values,
i. e. , larger by an amount = I J, l /gpsH„. To see
this in some detail we recall the approximation Eq.
(14) to the low-temperature deviation in sublattice
magnetization. This result can be obtained with
Sg from Eq. (B6}leaving the integration over k,
to the end, giving for both J,& 0 and J,& 0 the re-
sult

nS(T)= (1+ n)ks T
I d8v'I j, IS J

xln{l —exp [-Tc(l+2Hsc sin 8/H„) /T]) .
(B7}

To first order in Hsc/H„, sin 8 in Eq. (B7) maybe
replaced by its average value. Equation (B7) then
returns to the form of Eq. (14) with Tc- Tc
(1+Hsc/2H„). This "effective energy gap" ap-
proximation is very good for small H~~. Discus-
sion of possible c-axis coupling in the QL com-
pounds is found in Secs. IV ~a& V;
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Antiferromagnetic resonance has been observed in the quadratic-layer antiferromagnets K,MnF4 (T„
=42.1 K) and Rb,MnF4 (T„=38.4 K) at a frequency of 24 GHz as a function of the temperature
from 1.5 up to 38 and 34 K, respectively, with the static magnetic field parallel to the c axis. To
reduce these data to zero-field magnon energy gaps, the frequency renormalization method of Oguchi

including a static magnetic field was used. The resulting equations in frequencies and spin-wave

occupation numbers were solved self-consistently. The gaps as a function of the temperature appear to
scale approximately with the magnetization. By extrapolation, the gaps at T =0 K were found to be
7.40+0.05 K for K2MnF4, and 7.28+0.05 K for Rb,MnF4. The antiferromagnetic-resonance linewidths

increase steadily in approaching T„.

I. INTRODUCTION

Antiferromagnetism in tmo dimensions has re-
ceived a great deal of attention in the last fem

years. The best examples to date of nearly Heisen-
berg two-dimensional antif erromagnetism appear
to be the family of the quadratic-layer (QL) struc-
tures, the principal members of which are KINiF4,
KeMnF4, and RQMnF~. Neutron-diffraction studies
have shown that there is a negligible dispersion of
spin waves in these systems along the tetragonal
axis, ' while precision measurements of the tem-
perature dependence of the sublattice rnagnetiza-
tion show that two-dimensional spin-wave theory is
applicable at least in the lower half of the ordered
region. Further, it has been established recently
by a double-resonance experiment, ' that the zero-
point spin reduction is in accord with the spin-wave
result for the quadratic layer.

An important quantity in spin-wave theory is the
k =0 magnon energy, which usually enters into the
analysis of a thermodynamic quantity in terms of
spin-wave theory as an independent variable. It is
the purpose of the present paper to determine ex-

perimentally the magnon energy gap, and its tem-
perature dependence, for KBMnF~ (T„=42.1 K) and
Rb~MnF4 (T„=38. 4 K), compounds in which the
anisotropy results dominantly from magnetic di-
pole-dipole interactions (H'„= 2700 G). Unfortunate-
ly, a direct precision measurement of the gap in
zero external magnetic field is not readily feasible
(E,~/hs =7 K).' Instead, we have observed antifer-
romagnetic resonance (AFMR) of the lower spin-
wave branch close to the spin-flop field (» 55 kG) in
a microwave experiment (hv/h =1.4 K), and derived
the zero-field gaps by use of spin-wave theory. To
carry out this reduction the frequency renormaliza-
tion method of Oguchi~ was first generalized to in-
clude a static magnetic field, and the resulting
equations mere then solved self-consistently. Fi-
nally, data on the AFMH linemidth are presented.

II. EXPERIMENTAL

The experiments mere carried out with a super-
heterodyne EPB spectrometer of standard design,
operating at 24 6Hz and equipped with phase-sensi-
tive detection of the intermediate frequency. The
spectrometer mas tuned to the absorption mode.


