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Kane's wave functions for InSb are used with second-order perturbation theory to obtain an accurate
expression for the two-photon transition rate. The statistics of the crystal electrons are included in the
general expression. A simplified expression is obtained under assumptions that fit our experimental
conditions well, namely, the valence-band states and the conduction-band states involved in the
transitions are completely filled and completely empty, respectively. The transition rate per unit volume
at 77'K is 0.3& and 0.0645' sec ' cm ' with irradiation wavelengths X = 9.6 and 10.6 p,m,
respectively, and at 2'K the rate is 0.255' sec ' cm ' with X = 9.6 p,m, for irradiation intensity 8 in
erg sec ' cm '. The rate for T = 77'K and A, = 10.6 p,m previously reported by Danishevskii is one
order of magnitude larger than the present result. This discrepancy in the calculated values is
ratiort~b~ed. Measurements of the transition rates are described and the obtained values are given for
the two temperatures and two wavelengths mentioned above. The agreement between our measured and
theoretical values is within the experimental accuracy.

I. INTRODUCTION

Two-photon interband transitions in InSb have
been observed recently in several laboratories. '
Danishevskii and co-workers measured the transi-
tion rate in n- InSb at the 10.6- p, m wavelength
radiation from a Q-switched CO& laser. Their
result is in agreement with a theoretical estimate
they obtained from an expression for the transition
rate given by Basov and co-workers. The other
laboratories that have reported work on two-photon
excjtation in InSb did not give enough information
to enable obtaining a value for the transition
rate. " Danishesvkii's measurement and theo-
retical estimate do not agree with experimental
values for the two-photon transition rate obtained
in our laboratory. Furthermore, our calculations
show that Danishevskii's theoretical estimate is
one order of magnitude too large.

We have obtained a detailed expression for the
two-photon transition rate in InSb by using the
wave functions calculated by Kane. The momen-
tum matrix elements between the conduction and
valence bands are written for any k vector close
to the center of the Brillouin zone. The two-photon
transition rate is calculated from these matrix
elements with second-order time-dependent per-
turbation theory. Although this method is the sim-
plest and most successful, as evidenced by the
variety of materials to which it has been applied, '
a detailed calculation for InSb, taking advantage
of Kane's wave functions, does not appear to have
been published previously. The rates obtained
(Sec. II) at both the 10.6- and 9.6- pm excitation
wavelengths are in agreement with our experimen-
tal results at these wavelengths (Sec. III).

The perturbation theory is subjected to the sec-

ond-quantization formalism in this paper, since
the statistics of the electrons are a natural part of
this formalism. A direct result is that terms in
the final expression for the transition rate that in-
clude matrix elements involving any intermediate
states In), different from either the initial or final
states, will be multiplied by a factor (1 f„). The-
distribution function f„gives the occupation prob-
ability for the state I n ). Since f„ is very close to
1 for both the heavy- and light-hole bands in InSb
for the excess carrier densities considered here,
the terms that are multiplied by (1-f„)are negli-
gible. By this procedure a simple expression for
the two-photon transition rate in InSb is obtained
in the last part of Sec. II. The final result has
four adjustable parameters, namely, four material
constants. These are the optical band-gap energy,
the spin-orbit splitting of the valence band, and
the effective masses of the heavy-hole band and
the conduction band. The effective masses of the
heavy-hole band and the conduction band are avail-
able from low-temperature Faraday- rotation mea-
surements. The optical band gap and the spin-
orbit splitting are known from magnetoref lection,
magnetoabsorption, and Faraday- rotation mea-
surements. ' The theoretical and the experimen-
tal results are discussed in Sec. IV.

Our calculations are intended for the tempera-
ture range 2-77'K; however, they can easily be
extended up to room temperature by using the
technique outlined by Ehrenreich. " Since we use
the parabolic-energy-band approximation, the
upper limit of S~ for which the nonparabolicity
causes an error - 10% is h&u= —', E,+ 0.015 eV,
corresponding to an excitation wavelength down to
approximately 9.6 p, m at 77 'K and 9. 3 p. m at
2 'K. The band-gap energy E» for InSb is 0. 2357-
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0. 228 eV in the temperature range 4-77 K. '
The value E~= 0. 2357 eV is also used for 2 'K in
the present work.

II. CALCULATION OF TRANSITION RATE

A. General Description

For the calculations in this section it is as-
sumed that the conduction band and the two valence
bands in InSb have spherical energy surfaces with
the extrema in the center of the Brillouin zone and
that the band energies have a parabolic dependence
on the wave vector k. These assumptions are
justified since the electrons involved in the transi-
tions have a wave vector ) k ) - 10 cm '. By corn-
parison, the boundary of the first zone in the (100)
directions is located approximately at k =10 cm '.
In our worst case, 4'= 10 cm ', the parabolic ap-
proximation gives a conduction-band energy re-
ferred to the bottom of the band that is approxi-
mately 10% higher than the nonparabolic value ob-
tained by Kane.

The Hamiltonian operator for the system includ-
ing the conduction- and valence-band Bloch states,
the photon modes, and the interaction between elec-
trons and photons is

H =Hp+Hg,

where

H, = Z btfb, fE, (k)+ Z K~(a „a;„+,)--
i, jf, Osau

(2)

and

/2M PE g (p' Q)( g
1 I(LS ~6 ~l/a

&s)g
~s~e fM

x (a;„+a„„)b~fb-qf (3).

Here (p a)& &
is the matrix element of the a com-

ponent of the momentum operator between the Bloch
states I i) and I j), and a is the polarization direc-
tion of the photon. The summation indices i and j
are combined band and spinindices and are summed
over the six electron states (each of the bands has
twofold spin degeneracy) for each value of k in the
first Brillouin zone. The energy of an electron in
the state I ik) is E, (k), I is Planck's constant di-
vided by 2m, e is the charge of an electron, m is
the free-electron mass, and a is the dielectric
constant. The operators bt, b, at, and a are the
creation and annihilation operators for the elec-
trons and photons, respectively; for example, the
term a-„b&pb&p causes an electron transition from
state j to i, with energy S~ supplied by a photon.

The photon states of frequency ~ are taken to be
normal modes in a cavity of volume L'. Their
wave vector is neglected compared with the elec-
tron wave vector k. Conservation of momentum
therefore requires that the k vector be the same

for both states i and j in Eg. (3).
The quantized interaction Hamiltonian H, is ob-

tained from the interaction energy (2m) '
x[ —2(e/c)p A+(e/c) I A I ], where c is the speed
of light in a vacuum and A is the magnetic vector
potential. The interaction term proportional to

I X I' vanishes when the photon momentum is ne-
glected, because of the orthogonality of all the
electron states.

B. Evaluation of Matrix Elements

To evaluate the momentum matrix elements in
Eq. (3) we use the wave functions Kane obtained
by diagonalizing the mutual interaction between
the conduction and valence bands. These wave
functions and their corresponding eigenenergies
describe the central part of the Brillouin zone quite
accurately for all the relevant bands except the
heavy-hole band. The accuracy of Kane's model
is probably best illustrated by the good fit be-
tween absorption edge measurements and theo-
retical absorption calculations obtained by using
Kane's wave functions. "

Kane improves the heavy-hole band description
by including the perturbation caused by other bands.
His second-order correction is not included in the
present calculation since the description of the
heavy-hole band does not affect our results sig-
nificantly. Its description enters our result in two
ways: (i) directly through the value of m„, and (ii)
indirectly through matrix elements involving heavy-
hole band Bloch states. Here m& is the effective
mass for the band i with i = c, v 1, and v2, the elec-
tron, heavy-hole, and light-hole bands, respec-
tively. In connection with (i), our expression for
the transition rate contains (m,„,)' as a factor,
where m, is the reduced electron-hole mass.
Since m, «m„, , m,„,=m, independent of the value of
m„, . The importance of (ii) is determined by mak-
ing a very rough estimate of the admixture of high-
er band wave functions to the heavy-hole band wave
functions. According to Kane's Eq. (12), the heavy-
hole band has the same curvature as a free-elec-
tron band. In this estimate we require the second-
order correction from the first higher band with
j. » symmetry through the second-order k p per-
turbation term to turn the curvature of the v1 band
down until m„~= 0. 18m in the (110) directions.
(I',2 is referred to as 1', in Kane's paper. ) Then,
assuming this I'» band to be located at least 3 eV
above the valence band, only 5% or less of the I',2

wave functions need to be mixed into the v1 wave
functions to obtain m„&= 0. 18m. Thus the higher-
order correction to the band structure is unimpor-
tant for the calculations in this paper.

Dresselhaus uses group theory to show that in
the center of the Brillouin zone the cell-periodic
part of the electron wave function corresponding to
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the conduction band has the symmetry properties
of the atomic s state under the operations of the
tetrahedral group. ' The two degenerate states
are therefore designated by S0 (spin-up) and St
(spin-down). Similarly, the valence-band wave
functions at k= 0 have the symmetry properties of
the atomic P state and are designated by X0, Y0,
Z4, X4, Y0, and Z0, all independent of k, to re-
flect the symmetry of the P state. For nonvanishing
values of k, the cell-periodic part of the electron
wave functions are given by Kane as a linear com-
bination of the eight k-independent states just men-
tioned. The results are given by Eqs. (6)-(6),
(14), and (15) in his paper.

The polarization direction of the laser beam is
taken to be in the z direction, a=z. Therefore
we need only the matrix elements of the z corn-
ponent of the momentum operator in Eq. (3). Be-
cause of symmetry, (Sf IP, IZN&, (S 0 IP, IZt&,
and their complex conjugates are the only nonzero
matrix elements of the z component of the electron
momentum operator taken between these eight
states. Using this selction rule together with Kansas
wave functions, we have calculated the matrix ele-
ments of P,. The results are given in Table I. In
this table k is given by its spherical coordinates
(k, 9, |P). The spin parts of the two degenerate wave
functions in each band are now labeled separately
by a and P. The constants A, B and Q are defined
as follows.

A= (a,c~+c,a„~), B=(a,b„~-b,a~),
and

(5)

Here

a, = Q(hk/m) (E,'+-', &)/ll(,

b&=(~»/3)(Ef -E,)/ll&,

c
&

= (@-Eg) (E(+ 3 &) /ll& i

where 0& is a normalizing factor equal to the square
root of the sum of the squares of the numerators.
For the parabolic energy-band approximation the

C. Transition Rate

We now use Eqs. (1)-(6) to calculate the transi-
tion rate for transitions between the two valence
bands and the conduction band. The transition
probability per unit time so& & for the system de-
scribed by Egs. (1)-(3)to go from an initial state

I i & of energy S, to a final state If) of energy gz
is given by Fermi's golden rule

w, z= (2v/K)(M, , &
i'5(gz- g, ), (6)

where

(9)

Here g includes the energy of the photons. In Eq.
(9) it is assumed that the photon energy K&o is less
than the band-gap energy E~. The first-order term
(f I H, I i ) can therefore be neglected. Considering
the transitions betwee~ the heavy-hole band v1 and
the conduction band c for a particular value of k,
we see that the net transition probability per unit
time from v1 to c consists of eight ~ terms:

Vi" C sifts, C~+ Vip, CO+ iplfg, Cg + ~fiig, CQ

wee, ole wcayv1s wcB, via wcg, vlf (10)

Each of these eight terms contains a summation
over six intermediate states [see Eq. (9)]. These
states are the four valence-band states and the two
conduction-band states.

Higher and lower bands should also have been in-
cluded among the intermediate states; however,
with one exception, they are located so far away in
energy space from the three considered bands that
the denominator in Eq. (9) is sufficiently large to
make their contribution negligible. The exception

definition of E& is

E', =E, K—k /2m =Ei+(Kak /2m)(m/m, —1),
E'„& E„,———Sk /2m= (K-k /2m)(m/m„, +1),
and 4 is the spin-orbit-splitting energy. Equation
(6) is the same as Kane's Eg. (15), except that he
uses the constant P = Qii/m instead of our Q.

TABLE I. Matrix elements of the z component of the momentum operator. The matrix is symmetric about the diag-
onal, so only one-half of the off-diagonal terms are given. For definition of A, B, and Q see Eqs. (4)-{7). The angle
between the wave vector of the light and the z axis is denoted by 8.

(%km/m ) cos8 0
(Skm/m~) cos8

vie

0
—a~@ sin8/E2

(Akm/m~) cos8

vlP

-a Q sin8/42
0
0

(hkm/m„&) cos8

AQ cos8
—BQ sin8/g2

0
-a»Q sin8/v 2

{@hm/m„2) cos8

v2P

Bg sin8/W2

AQcos8
—a„,q sin8/&2

0
0

(sam/m„, ) cos8

Bloch
states

CG

cp
V10
vlP
V2G

v2P
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is the third valence band, the "spin-orbit split-off"
band; however, it cannot contribute as an inter-
mediate state, since it is filled.

The evaluation of the terms in Eq. (10) is great-
ly simplified by grouping equal terms and using the
selection rules contained in Table I. Also, since
the number of photons in the incident laser beam
N„ is a large number, further simplification may
be obtained by setting N„+ 2=N„+ 1=N„. In the
expression for the transition rate, the spontaneous
emission term and a term that depends linearly on
the radiation intensity thus vanish. These two
terms are discussed by Chang and Ancker- Johnson

for a two-band model. '
Once the vanishing matrix elements are elimi-

nated from Eq. (10), the electron occupation num-
bers N, occur only in combinations like (N„, —N, )
and (N» a N-ca)(1 Na-a), whereN, can take only the
value1 or0. Thus the N, may be replaced bythedis-
tribution functions f, to obtain average values. The
distribution function does not contain the spin label,
since the occupation probability is the same for
two degenerate states.

The net two-photon transition rate from the
heavy-hole to the conduction band W„,-, = gaac„,:,
is

3 2 2 2 (P 2 2
ca, ca Pv1$.via ) (Pca.v1$ ) (1 fol"c gm 44& g ~ oi c +2 v2

Similarly,

2 P P 2
cacv2S v2S .via ca.v2a v2a. vlS 2 &~ ca.ca PvfS .vlS J ca.vlS ca.o2aPv2a. vlB

,'jg g~l CO (d G7
c o 1I ~

(11)

g (g z )
( ca.cn vaa. vaa) [( c .va ) + ( c .vac) ]

Smcoc 5e 402

2
ca ~ via v1$.vaa 2

'L ca.ca vaa. vaal ca.van c v1a$ v1 vaaa 5(g g
(d (d c o2I ~ (12)

P... is the matrix element of the z component of
the momentum operator given in Table I. The
radiation intensity is given by e = ff&uN„c/(L ge).
In the denominators

I

5(g, —g„,) = [m, /(5 k)] 6(k —k, ), i = 1, 2.
Here

k,„,—= (I/O ) [2m, (2)i&a —Ec}]'~a. (15)

and

~' -=~+ [E„,(k}—E„a(k)]/EI The integration using Eqs. (11)-(15), Table I,
f»=f„a= 1, and f, = 0 gives

Z-, f l f s es siseaee, ' (13)

and an expression between the Dirac 5 functions,

~"=- ~- [E„,(k) —E„a(k)]/ti .
The quantities P, &, ru', ur", and f& are all depen-
dent on k.

Equations (ll) and (12) show that an intermediate
band, either v1 or v2, plays an important part in
the transition rate unless it is filled. However,
for the excess carrier densities characteristic of
our experiments it is a good approximation to set
f.g =f.a= 1 and f,= 0. Fermi-Dirac statistics then
yield the following values at 77 'K for the k value
corresponding to 10.6-)am irradiation: f„,= 0. 9988,
f,= 0. 1, and f„a &f» . At 2 'K with 9.6- pm irradia-
tion, and for a heavy-hole band average effective
mass of 0. 39m, f,=O and f„,=0. 96.

The final evaluation of Eqs. (11}and (12) needed
to interpret our measurements (f„,=f„a= 1 and

f,= 0) require the following relations:

Cf=a2 (17)

Ca=34'+B =3(ea,cva+ccava) +(ucbva bcava) . (18)-
The total transition rate per unit volume is W/V
= (W„,-,+ W„a-,)/V. Equation(17) is equivalent to
the first of Kane's Eqs. (12). Numerical values
for W/V are listed in Table II for T= 2 and 77'K,
together with our measured values. The numeri-
cal values are obtained by taking 4= 0. 9 eV,
m, = 0. 0145m, m„,= 0. 39m, and m„2= 0. 016m. '

Discussion of these results is contained in Sec.
IV. Next the measurements are described.

1 16/2 v e (C,Q)
V "'"' l5 e Elc I &em

&((m )
~a (2)I(gp B )a~ e (16)

where

Q = [ a mEc(m/m, —1)(Ec+ n)/(3Ec+ 2A)] ~ ~a,
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TABLE II. Theoretical and experimental values for the two-photon excita-
tio»ate in InSb. K2 =—W/(VS') =(8'„f g+ ~„2-,)/(VS').

T
x

w„,„-,/(va')
w„,-„,/(vs')
K2 Theor.
K2 Expt.

(K)
(pm)

(cm sec/erg )
(cm sec/erg2)
(cm sec/erg2)
(cm sec/erg2)

2
9.6
0.10
0.15
0.25

0.46-0. 9

2
10.6
0
0
0
0

77
9.6
0.14
0.22
0.36

0.56-0.69

77
10.6
0.024
0.040
0.064

0.032-0.064

~ gp
~~
tel

~~ cn

L L
Q) ~~

JD
gg L
w c(

ax

E
m

4

lA

CD
Ch

2
CD

~~
L
L

o '
t/l

0
0 0.5

Time [V5eC]
1.0

FIG. 1. Irradiation intensity and excess carrier den-
sity as a function of time.

III. MEASUREMENTS OF TRANSITION RATE

A. Experimental Method

A Q-switched CO2 laser is used to excite n-type
InSb single-crystalline samples. The laser is
tunable to either 9. 6 or 10.6 p, m radiation wave-
length. To further ensure that only one of these
wavelengths is present, dielectric bandpass fil-
ters are used.

For the transition rate experiments the laser
beam is unfocused. The peak power density in the
center of the beam, 8 ~, is determined from mea-
surements of the average total power, the time de-
pendence of the laser, and the intensity distribu-
tion over the cross section of the beam. The laser
is monitored by ahigh-speed gold-doped germanium
detector. The time dependence of the laser pulse
is shown in Fig. 1. The intensity distribution
across the beam is measured by scanning with the
same detector. The half-power diameter is 2. 2

mm and its radial distribution is close to Gaussian.
The size of the sample surface facing the laser

radiation is usually 1x 1 mm. This dimension,
compared with the half-power diameter of the
laser, shows that the peak radiation intensity close
to one of the edges is 15% lower than in the center
of the sample, assuming perfect alignment. This
deviation from uniformity means the measured
transition rate is smaller than the actual rate by
an estimated 10-21@. We obtain this estimate by
an approximate numerical integration of & over the
1-min surface and comparison with (s ) x1 mm.

The InSb sample is immersed in either liquid N2

or He. In the latter case, to eliminate He boiling
and the consequent laser-beam scattering, the tem-
perature is reduced below the X point.

The excess density is determined by measuring
the conductivity of the samples. The choice of
n-type InSb is dictated by the fact that more nearly
Ohmic contacts can be made on n-type material
than on P type for a large range of excess carrier
densities. ' The contact material used is indium
containing 1-wt. % tellurium which is alloyed onto
the samples using Divco No. 300 rosen flux. The
current-voltage relations of the samples at 7V K
show Ohmic behavior. At liquid- He temperatures,
the relation becomes Ohmic when the applied elec-
tric field exceeds 0. 1-0.2 V/cm. This current-
voltage relation agrees qualitatively with earlier
measurements and is ascribed to hot electron ef-
fects. ' We are not able to correct for this devia-
tion from Ohmic behavior; the resulting error in
the excess conductivity may be as high as 50%. '

At Vv oK the average mobility for a boule is used
to calculate the excess carrier density in a partic-
ular sample from the boule. The average value
is taken since the size of the samples is too small
to apply extra contacts for Hall measurements. At
liquid-He temperatures the estimated value of the
mobility is 1x 10' cm /V sec. " The contribution
to the conductivity from the excess holes can be
neglected because of the large electron-to-hole
mobility ratio in InSb.

B. Results

The excess carrier density in the sample can be
described by the following rate equation':



TWO-PHOTON EXCITATION RATE IN INDIUM ANTIMONIDE 2847

(19)

Here n is the excess carrier density in the sample;
no is the equilibrium carrier density in the
conduction band; K, is the coefficient of linear
generation of excess carriers, a quantity caused
by single-photon excitation due to defect or impur-
ity levels; K2 is the proportionality factor between
total transition rate per unit volume and the square
of the laser intensity; Kz& = W/V; v is the mono-
molecular recombination time constant, and r is
the bimolecular recombination coefficient. Equa-
tion (19) shows that for low laser intensities the
excess carrier density is linearly proportional to
the laser radiation intensity. As the intensity is
increased, the term K2 exceeds the term K&
and a quadratic dependence between n and & results
until m becomes appreciable compared with
n(l/r+ ma). This general behavior of n as a func-
tion of ~ is what we measure.

In this work we are concerned primarily with
the value of K2, therefore only the quadratic region
is of interest. In this region we may neglect the
first and the last term on the right-hand side of
Eq. (19). The term n/r may be neglected at
liquid-N2 temperatures because the measured time
constant 7 for the sample used is 730 nsec, ' and
the half-power full width of the laser pulse & is
much shorter, 75 to 150 nsec. At liquid-He tem-
peratures, neglecting n/r is even more justifiable,
since the excess carriers have a longer lifetime
at these temperatures than at 77 K. Figure 1
shows that neglecting the recombination terms is
a good approximation, since the excess carrier
density does not start to decrease until almost the
entire laser pulse has passed. Thus Eq. (19) be-
comes simply

(20)

Under these circumstances it is trivial to inte-
grate Eq. (20) over the laser pulse. To get an
analytical expression we approximate the time
dependence of the laser intensity with a Gaussian
curve, so

Kz= (8/v}'~ (1n2}'~'n +[Sf(s ) (1—R) ]. (21)

Here n is the maximum value of the excess car-
rier density and R is the ref lectivity of InSb.

The experimental accuracy is primarily limited
by the determination of the peak laser intensity,
which is mainly determined by the accuracy of the
average power measurement. The accuracy is
estimated to be no better than within a factor
l. 5(- 33%, + 50%). Since the experimental deter-
mination of K2 depends quadratically upon the mea-
sured value of &, the experimental value of K2
has an accuracy of approximately —5I@, + 100%.

At 77 oK this large inaccuracy in the determination
of + ~ is the dominant source of error. Two other
important error sources stem from the slightly
inhomogeneous illumination of the sample and the
neglect of the multiple reflections within the sam-
ple. Neither of these will change the —50%, + 100%
error significantly. At 2 K the hot electron ef-
fects and the uncertainty in the value of the elec-
tron mobility may increase the error significant-
ly ]8

Since the data reduction is rather time consum-
ing, only ten sets of data have been analyzed to
yield a value for K2. The analyzed data are for
n-type boules at two temperatures and for two laser
wavelengths. The lowest and highest values ob-
tained from the analyzed data for each experimen-
tal condition are listed in Table II.

IV. DISCUSSION

A. Comparison between Calculated Transition Rates

Basov's expression W, a „given in his Eq. (5)
for the two-photon transition rate between the ith
valence band and the conduction band is used by
Danishevskii to obtain a theoretical estimate of
the rate in InSb. We therefore compare W~, &

with Eq. (16) in the present paper. To make this
comparison, W& ~, first has to be reduced by a
factor of 3x16. The factor 16 arises because
Basov apparently employs the peak value of the
vector potential, instead of half of this value, and
the factor 3 results from averaging the vector
product (k u) over all directions ink space.

After this correction is made, we compare
Basov's and our results for the transition rate by
dividing the two expressions by each other:

W. . ./W„, =,= 5[ I ( ~ )... I'/(C, Q)'].

The factor of 5 results from Basov's assumption
that the matrix element (p o.'),,„, is independent of
the angle between k and e. Table I shows the angu-
lar dependence of the matrix elements P&,„. The
average of (k n) over all directions in k space
multiplied by the maximum value of the matrix
element squared is five times greater than the
average of the product (k a) I P~,„I'. The value

I (p a), „, I used by Basov is slightly more than
two times the value of (C,Q} . The corrected ex-
pression for W&,~, is therefore one order of mag-
nitude larger than W„&,-,

A factor 2 is apparently missing in front of the
constant k2 in Eq. (1) in Danishevskii's paper, and
I(x} in his Eq. (3) should read f(x) . The relation
between Danishevskii's "two-photon cross- section"
W, hereafter designated by W~, and the two-photon
creation rate coefficient Ka defined by Eq. (19), is
obtained from the continuity equation
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Wn= (c/ge) (Kur) K2,

or, since K2 5 = g, W„,- /p',

(22)

W~= (c/ge) (tu&/s) Q W„,:,/V. (23)
i

Danishevskii apparently used the following proce-
dure to obtain his expression for W'~: Basov's
equation for 8'&,~, is divided by 16 to correct
for Basov's use of the peak value of the vector po-
tential. Then )P, „,/m I =E,/(2m, ) is used instead
of three times this value to correct for Basov's
failure to average (k a) over all directions in k

space. Finally, Danishevskii apparently multi-
plied by 2 to account for the two valence bands and
used the relation given by Eq. (23). His Eq. (13)
then reads

29&2ve~m&+E (21I(g) @ )~~

()I(o) e'~ cm

From this expression Danishevskii calculated
%~=1.5&&10 ' cma for 7=80 K and 10.6-p, m
laser irradiation. With E,= 0. 228 eV, W~= 1.5
x 10 ' cm corresponds to %~=0.57 cm sec/erg .
This K& is one order of magnitude larger than the
value calculated in Sec. II for the same tempera-
ture and laser wavelength (see Table Ii).

B. Experimental Transition Rates

The calculated and measured values for the
transition rate obtained in the present work are
given in Table II for two different temperatures
and two irradiation wavelengths. The agreement
between our theoretical and experimental values
is within the accuracy of the experiment at VV K.
One of the measured values at 2 'K is larger than
expected, however, as pointed out in Sec. III, at

this temperature there are large possible sources
of error in the measurements. Table II shows that
the small change in photon energy caused by chang-
ing the laser wavelength from 9.6 to 10.6 pm has
a large effect on the two-photon creation rate co-
efficient K,. From the measured values of K& at
these two wavelengths, we see that this effect is
also clearly demonstrated experimentally.

At 2 'K a region with quadratic dependence be-
tween excess carrier density and incident 10.6- pm
laser irradiation could not be obtained. ' This in-
dicates that the quadratic creation term in Eq. (19)
is absent, i.e. , E&= 0. The theoretical value is
also zero, as shown in Table II, because the band-

gap energy at 2 'K is sufficiently large so that the
10.6- p, m laser irradiation is below cutoff for the
two-photon transition.

Danishevskii reports a measured value for S'~ at
80 K with 10.6- p, m irradiation wavelength, name-
ly, W~= (8+2)x10 cm . Thiscorrespondsto K2
= (0.3+ 0. 08) cm sec/erg . Danishevskii's result does
not agree with our measurements, since we obtain

Kz= (0.032-0. 064) cm sec/erg at 77'K and with
10.6- p, m laser irradiation. We have no explana-
tion for this discrepancy. At the present time
these appear to be the only results available for
the two-photon transition rate in InSb.
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