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almost identical lattice constants, Pro, Y2 9ScFe40~a
and Pr, YaFe,O&, have ~/Pr at 77 'Kequalto l. 67
&&10' and 3. 75&103 Oe, respectively.

To discuss the linewidth narrowing for other
rare-earth (RE) ions, the narrowing factor is de-
fined as the ratio of ddf/RE obtained by extrapola-
ting Seiden's low-concentration measurements to
RE,Fe,O,a to the measured 4FI/RE for
(RE),Sc„Fes,O,a. At 77 'K and y = I, the narrowing
factor is 21 for Pr as the RE, 9 for Nd, and 3 for
Sm and Ho. (At 77 'K these RE garnets all have

essentially the same M, and consequently the rela-
tion between 4H and the damping constant is the
same in all cases. ~'a) These results indicate that
the linewidth per ion of Pr and Nd depends substan-
tially more on the host lattice than do the linewidths
due to the other RE ions. From the limited data
available, it thus appears that Kz and 4H are
strongly influenced by the host lattice only for Pr
and Nd ions.

We should like to thank M. D. Sturge for a num-
ber of helpful discussions.
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Recent calculations on ferromagnets with n-component spins and with long-range forces (the
interaction between spin decays as 1/r +, where d is the dimensionality of the system and a&0)
have given exponents which are apparently discontinuous at can=2, i.e., when the transition to
short-range interactions is made. By solving Wilson's exact recursion relations to order a2(c=2cr —d)
we show that the exponents 7', y, and p are continuous functions of o. and that there exists a region
of long-range potentials defined by 2&cr&2 —qs„where the exponents assume their short-range values.

I. INTRODUCTION

Soon after the discovery of the & expansion for
critical exponents of Heisenberg systems with
short-range (SR) interactions, Fisher, Ma, and
Nickel calculated q and y for an analogous system
in which the exchange parameters decay according
to a power law x "', where d is the dimensionality
of the system and o &0.' They find, in agreement
with a previous calculation by Joyce~ on the spheri-
cal model, that for o &2 the exponents have their
SR values but become o dependent for v &2. In par-
ticular the long-range (LR) value of g provided by
the & expansion is g= 2 —cr with no corrections to
orders e and E (at least) If valid .uniformly in a
and o' 2 this would imply that for a sufficiently
close to 2, g would be less than its SR value g~ and
there would be a discontinuity at the transition, cr

= 2, between LR and SR forces. It was suggested

by Stell, on the contrary, that in this situation p
will actually be the greater of the two values 2 —0
and g~.

In this paper, starting from the exact recursion
relations' we show that, indeed, g does not as-
sume values below qaR and that there exists a region
of weakly LR potentials (2 —o & qaa) for which g = qaa.
This removes the discontinuity in p at o = 2. The
susceptibility exponent y and the crossover expo-
nent~ y are also continuous. The LR & expansion,
when evaluated for o = 2 —q~ gives values of z and

p which agree with the SR values of these exponents
as calculated by Wilson. Therefore, there is no
discontinuity to order & but this may well be true
to all orders in E,.

II. RECURSION RELATIONS

We shall discuss a classical generalized n-com-
ponent Heisenberg model~'6' of dimensionality d
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which is described by the Hamiltonian
n

=-3C[o((q)]= sQ s (aq +bq'+r)Sg(q)S)(-q)
v

+A dqs d qs
(2v)s (2v) (2v)

xS&(qs)S&(qs)S&(qs)S&(-4 -qs -qs) (1)

a and b are positive. A cutoff q = ) q ) & 1 is under-
stood in all momentum-space integrations. The
variable S,(q) is a Fourier component of the mag-
netization field, the two-spin interactions aq and
bq' correspond to the SR and LR (decaying as
r u"' in coordinate space) interactions, respec-
tively. The renormalization operation is defined
in the following way ': Put

X'[S[(q')]=In Tr e (2)

where Tr stands for functional integral over all
Fourier components S&(q) with s &q & 1. The result
of such a partial integration is a functional of S&(q)
with q & &. To bring the new Hamiltonian X' to a
form as close as possible to the original one the
momenta and spins are rescaled.

q'=2q, S&(q')=t' S&Iq), q & s (3)
where the factor f is left arbitrary for a moment.

Explicit equations for $C' can be obtained by ex-
panding the exponential in (2) with respect to the
parameter u, which is assumed small. ' The re-
sulting integrals are then easily performed. The
new Hamiltonian K' is written again in the form of
(1) with some new constants a', b', r', u'. For
the two-spin part we obtain

d p 1
(2v) ap +bp'+r

1 1

ap, ~ bpt+r a(-', |T+p+p~P ~ 5~ —,'q+p+p, f' ~ r )

( 2
a'qs+b'q'+r'= f 2

~

a—+b —,+r+4(n+2)u
4 2'

y"p "
d"p, 1

32(n+ 2)u
(2 )s (2 )s s b y

u =L 2
~

u —4(n+8)u

(5)
At the critical temperature the Hamiltonian will,

after many renormalization operations, approach
the fixed point of the recursion relations (4) and (5).
In order to arrive at a fixed point, however, the
spin rescaling factor f must be given an appropri-
ate value. Then the value of p can be deduced by
comparing the scaling properties of the spin-spin
correlation function expressed in terms of g and f,
respectively, namely,

G(k; T~) -=-, = 2 G(2k; T,) . (6)5(k+ k'

On the other hand, since G(k; T, ) has dimensions of
length to the power d multiplied by spin squared,
we get

G(k; T,)=t's2 G(2k; T,)

Equations (6) and (7) imply '

g2 2 4+2m (8)

The problem thus reduces to finding the value of f
associated with the most stable fixed point of the

where f denotes integration over the domain
1& )p ( &-,'. In the quartic term of the new Hamilto-
nian the coefficient is

recursion relations (4) and (5).
Wilson and Fisher showed that in the case of SR

forces and for the dimensionality d close to 4 the
fixed-point values r* and u* are of order &=4 —d,
a* is a fixed positive constant and b*= 0. Similar
results hold for the model with LR forces where
the role of dimension 4 is taken over by 2c (c
= 2o —d). At the fixed point one has r*=O(s), u*
=O(t), b*= constant, and a*=0 to order t We.
shall see below that a* is not zero to order e2.
That is the reason why we put the SR forces explic-
itly into the Hamiltonian (1). Even if we start with
a = 0, SR forces appear after the first renormaliza-
tion operation and will compete with the LR part of
the interaction in determining the critical behavior.
If the LR decay is slow so that 2 —0 is not small,
the LR term wins and the exponents are the same
as if the SR term is ignored. However, the situa-
tion is different when & and 2 —o are of the same
order of magnitude, or if 2 —0 is much smaller than

This is just the relevant region when we study
the limit o-2.

III. FIXED POINTS

In evaluating (5) to order c we can neglect r in
the denominator of the propagator because, at the
fixed point, r is of order c and by neglecting it we
introduce an error of order c in a term which is al-
ready of order E . Furthermore, 2 —o will also



RECURSION RELATIONS AND FIXED POINTS FOR ~ ~ ~ 283

a'=a —(2 —a)a ln2+ z
a~ (a+b) ln2,

2 n+3'
(10)

The fixed point is

68R
2 —o'- 8sa

where b* is arbitrary positive and fixed, and

6+ 2
18R =

2( 3)2 (12)

Let us examine two cases. First let 2 —o &gsR.
Then it follows from (10) that la'-a*I & la —a*(,
which means that the Hamiltonian approaches the
fixed point, which, in this case, is stable. Second,
if 2 -o & &SR, then a* is negative for b* positive. On
the other hand, starting with a positive a, Eq. (10)
implies a' &a, so that the new Harniltonian diverges
from the fixed point. Thus we conclude, that our
choice of f was good for 2 —o &gsR, but fails for 2
—o &g~. Then we must redefine g as

g2 2d+2~~ (13)

This corresponds to g= &SR. Now the fixed point is

2m
b~=0, u+= & a*

n+8 (14)

where a* is arbitrary positive, but fixed. Thus we
recover the familiar fixed point of the Heisenberg
model with SR interactions. Indeed, ps', is identi-
cal to p as found previously. '

The results are summarized schematically in Fig.
1: There exists a region of LR potentials defined
by 2 —o & p~ in which the Heisenberg model has the
critical behavior of the SR system. The disconti-
nuity of p is removed.

be assumed to be of order & or smaller, so that
we can replace P'=P [1+(o-2)inp+ ~ ~ .] by p
since P does not become small in the integration
region. The fixed point value of u is thus seen to
be

272
u+ = e(a*+ b+)

n+8

To obtain the values of a~ and b* from (4) we must
evaluate the coefficients of q2 and q' in the second
integral. (The first integral is q independent and
serves only to renormalize the critical tempera-
ture. ) Let us assume for a moment that the LR in-
teractions are going to determine the exponents so
that f must be chosen to keep b constant, namely,
f2= 2"", which corresponds to g= 2 —o. Now we
will find the fixed point corresponding to this choice
of g and examine its properties.

Using the result (A5) of the Appendix, the recur-
sion relation (4) becomes

dJ&
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SR e expansion
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FIG. 1. Domains of LR and SR exponents.

I thank M. E. Fisher for drawing my attention to
this problem, for stimulating discussions and for
critical reading of the manuscript. I also thank P.
Pfeuty and K. G. Wilson for helpful discussions.

APPENDIX

Let us conpider the integral

(2v) „(2w)' aPf+bp~ ap +bP'

I
«l &+ p +p)'+ b

I i ~+pi+ pI' (Al)

for q «1. We are interested in the contributions to

For 2 —o & &SR there is no LR contribution to the
spin-spin interaction at the fixed point, b*=0, so
that all exponents assume their SR values. On the
other hand, when we evaluate the LR expressions2'9
for the susceptibility exponent p and the crossover
exponent y at o = 2 —p» by expanding around the
point o = 2 we find that they are identical with the
SR expressions of Wilson to order e .

The LR & expansion is valid all the way to the
transition line 2 —o= gsR. However, the a expan-
sion works only if one knows beforehand what are
the thermodynamically relevant variables of the sys-
tem. On the LR side of the transition line a is ir-
relevant but on the SR side it becomes relevant and
the E expansion must be reorganized. Even though
the graph expansion does not tell which variables
are relevant, a wrong choice will produce certain
warnings. For example, in the expansion of the
self-energy of the spin-spin correlation function
terms of the form k'(1-k ')/(o —2) appear. For 2
—o = 0(c~) and a ink «1 (expansion parameter must
be small) the above expression is indistinguishable
from k' ink. In this situation we cannot assert with
confidence that there are no corrections to g and
have to go back to the more fundamental recursion
relations to check the stability of the fixed point.

ACKNOWLEDGMENTS
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this integral which are proportional to q2 and q'.
First we show that there is no contribution of the

form q'. In the region I p1+pI &q the integrand can
be expanded in a Taylor series in q; the region
which is important for the possible contribution q'
is a narrow strip Ip+p1)& q which is schematically
shown in Fig. 2. Since q may be arbitrarily small,
we may assume aqs «bq' and it will be sufficient to
consider the case a=0. Now, if we extend the inte-
gration region of p to the whole space it does not af-
fect the contribution q' because for p & 2 and for p
&1 the integrand can again be expanded in q, except
in the corner regions such as T (see Fig. 2), whose
effect is, however, negligible. In other words, the
possible term q' is not changed on removing the re-
striction 2 &p & 1 because the portions of the strip
I p+ p1 l &q contained in the new region are the same
as in the original one. (The constant in the value
of the integral is, of course, changed. } We thus
can consider

„i„„(»)'pt
2 1 "all syace

&P1& 1

d p 1 1
(2s}' p' ~k~+pi+P'

(A2)

Since q «1 the integrand can be expanded and,
clearly, there will be no term q' in the value of the
integral. The only term which is of interest to us
is c(o)qs.

This establishes the fact which is crucial for the
subsequent calculation, namely, that the dependence
of the integral (Al) on o is contained only in the co
sfficients of the expansion in integral powers of q.
This means that for 2 —o= 0(t) we may replace the
exponent a in the integrand by 2, introducing an er-
ror of the order & in the coefficient of q which can
be neglected. The problem thus reduces to the cal-

r ~~ ~~ ~

eg
re

FIG. 3. Integration region for I3.

culation of the integral (d= 4)

16s4 „16s~ ~p~ ~p (2q+p~+p)3

Introducing k= 2 q+ p1, and integrating over the an-
gle between k and p we get

[hs+ s ~h' '~](2s}4 p'" 1/2

= I1+I2+I3

where I1, I2, and I~ are contributions from the re-
gions where & & k & 1, k & &, and k & 1, respectively.

A straightforward calculation gives

1 1
I, = csotn—— +, q ln2+O(q ) (A4)

1
32m' pg -P„

p, 02»)
4p dp

Now let us discuss I3. The integration region is
shown in Fig. 3. Since q«1, k=1, p=1 and we get

qCI i(p
I

r r ~ ~ ~ r r ~
~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ r ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~

\ r r r \ r ~ ~ r r r r ~ I 0 \ r 0 r r \
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~, ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ & ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ' ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ' ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
'Il ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

r ~ r ~ r r ~ r ~~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ r ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ r ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~r ~ ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ I
~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ 1
~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ I
~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ I
~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ I
~ ~ ~ ~ ~ ~

r ~ ~ ~ r
~ ~ ~ ~ ~ r I

~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ I

~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ r I

~ ~ ~ ~ r r
~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ I

~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ I

~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ I

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~

FIG. 2. Integration regions in the momentum space.

Similar result holds for I2. We see that the contri-
bution from near the boundaries of momentum
shells depends nonanalytically on q2. This is a con-
sequence of the sharp boundaries assumed for the
momentum shells. Since q2 terms do not arise
from the integrals I2 and I, these may be ignored for
our purposes. However, a term proportional to lq I

in the two-spin interaction is a nuisance, because
it is thermodynamically relevant and will destabi. -
lize the fixed point. Such interfering nonanalytic
terms can be removed more systematically in sev-
eral ways. " For example, one can put similar
terms in the original Hamiltonian and require that
their coefficient remains bounded. Alternatively



RECURSION RELATIONS AND FIXED POINTS FOR ~ ~ ~ 285

one might start with a Hamiltonian with an analytic
cut off and preintegrate it over the region 1 &k &~.
We shall not go further into this problem here.

The final result for (Al) is thus

1 1 1 4

4 ( 5) (16')a q ln2+ O(q )

+O(2 —o)+terms(q, q~, etc. ) . (A5)
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In this and the following two papers, low-temperature spin-wave properties of quadratic-layer

antiferromagnets having the K,NiF4 structure are reported and analyzed in detail. Here we present the

results of a least-squares adjustment of spin-wave theory to the temperature variation of the sublattice

magnetization in the compounds K,NiF4, K,MnF4, and Rb,MnF4, as reflected by
' F NMR frequency

measurements in zero field. Lowest-order temperature-dependent and temperature-independent corrections

to simple spin-wave theory, as formulated by Oguchi, are included in the analysis. The free parameters

of the fits are taken to be the exchange coupling, the zero-temperature spin-wave gap energy, and the

zero-temperature ' F NMR frequency. Our conclusions are as follows. Spin-wave theory accounts for

the sublattice magnetization of these compounds up to somewhat lessthanone-half the Neel temperature,
with the temperature-dependent corrections yielding less than 20% improvement in the range of fit for

the Mn'+ compounds and a negligible improvement for K,NiF4. The breakdown of spin-wave theory is

clearly not ascribable to spin-wave interaction effects and is apparently caused by excitations of a

fundamentally different nature. Exchange values obtained are in excellent agreement with data from

neutron and susceptibility measurements. The "effective" spin-wave-energy-gap values obtained give some

evidence for interplanar exchange coupling between second-neighbor planes, yielding upper limits for
such coupling of a few parts in 104 of the primary exchange. Earlier conclusions regarding the large

zero-point spin reduction in K,NiF4 are refined here, giving a result slightly larger than but within

error limits of the spin-wave-theory value (17.7%).

I. INTRODUCTION

The isomorphic compounds K~NiF4, K2MnF4 and

Rb2MnF~, whose magnetic properties were exten-
sively investigated by Breed and co-workers, ~ ap-
pear to be almost ideal two-dimensional (2D) anti-
ferromagnets. The large separation between the

planes, in which the magnetic ioas form a quadrat-
ic lattice, and the symmetry relations between
these planes of ions combine to make interplanar
interactions between the magnetic ions extremely
weak. In sharp contrast to a material such as
CrBr3, where the ratio of intraplanar to interpla-
nar exchange is quite large, but of order 10, it is,


