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The dependence on laser frequency of the scattering cross section for allowed and forbidden first-order

Ra~~n scattering and for second-order scattering is presented. The measurements were performed in the

vicinity of the Eo and Eo+ gaps. It is shown that the I » components of the Raman tensor

exhibit a sharp resonance at Eo while I i components resonate both at Eo and Eo+ 60. The results

are interpreted in terms of a theory which assumes parabolic bands extending to infinity. The
second-order scattering is produced mainly by electron-two-phonon interaction vertices, except for the

strongly resonant sharp peaks which correspond to the creation of two LO phonons with R 0 (I,)
and one LO plus one TO phonon with k = 0 (I',~). From these measurements, values for the

electron-two-phonon deformation potentials are obtained.

I. INTRODUCTION

First-order Raman scattering measurements
give only information about phonon states with k = 0.
This severe limitation can be overcome by using
the second-order Raman spectra: Two phonons with

k, + k2 = 0 are then produced and the complete pho-
non spectrum becomes accessible. The various
irreducible components of the second-order Raman
spectra are related to combined densities of two-
phonon states multiplied by the appropriate scatter-
ing probabilities, i.e. , the corresponding squared
matrix elements of the polarizability tensor. It is,
therefore, in general very difficult to extract from
the observed spectra information about individual
phonons. Thus, the inverse path is usuallyfollowed:
The various components of the Raman tensor are
calculated from the phonon spectra obtained with
neutron scattering by the use of lattice dynamical
models (shell model) which include nonlinear inter-
actions. This procedure has been successfully used
for the alkali halides' and for MgO.

In contrast to the rocksalt-structure materials, "
the second-order Raman spectra of the tetrahedral
semiconductors appear to be quite simple. The
completely symmetric (I', ) component of these
spectra is produced mainly by phonon overtones
(two phonons of the same frequency and opposite k)
and gives a rather undistorted picture of the corre-
sponding density of one-phonon states (with the fre-
quency scale expanded by a factor of 2) since the
scattering probability varies gradually through it.
The I',5 component, smaller in intensity than the
I"„represents mainly combination scattering (two
phonons belonging to different branches). The I',2

component is nearly negligible. In this paper we
present the variation of the cross section for the I',
and I',5 components of the two-phonon Raman spec-
tra of Gap as a function of the frequency of the scat-
tering radiation in the region around the direct band

gap (Eo= 2. 7S eV at room temperature). This ma-

terial was chosen instead of Ge, the family proto-
type, because its Eo gap is accessible to available
lasers (other possible choices, such as ZnTe,
Znse, and A1Sb will be the object of future work. )
It is shown that most of the GaP spectrum resonates
when approaching Eo in a manner similar to the al-
lowed one-phonon scattering. From this fact, and
from theoretical considerations, we reach the con-
clusion that the second-order process is produced
mainly by the electron-two-phonon interaction in
first order with the electron-two-phonon vertex re-
normalized so as to include most of the electron-
one-phonon processes taken in second order. Val-
ues of the corresponding electron-two-phonon de-
formation potentials D, and D,5 are obtained.

Very little work on the photon energy dependence
of the second-order Raman cross section has so far
appeared. This is due to the fact that most materi-
als studied (alkali halides, ' alkaline earth chalco-
genides ) have very large band gape, not accessible
to available lasers. Some indication of resonant
behavior in the second-order Raman spectrum has
been reported for TlBr. In the case of semicon-
ductors, with accessible gaps, work of a qualitative
nature has been performed for the overtones of the
k = 0 phonons which appear near resonance'0 (up to
9 overtones have been observed for CdS"). By
varying the temperature, a procedure that, because
of the temperature dependence of the energy gap, is
equivalent to varying the laser frequency, these
various multiple-phonon processes can be swept
through resonance, as in Ref. 10.

A peak corresponding to two LO phonons at k=0
(f point) has been observed to emerge at the top of
the two-phonon spectrum under excitation very
close to resonance in Gap. "' We have studied in
detail the resonance of this feature observed in the
I'& spectrum and shown to be similar to that of the
one-LO-phonon line in a forbidden-polarization con-
figuration. We thus conclude that the two-LQ-pho-
non (k = 0) line is due to the modulation of the elec-
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tronic states through the Frohlich interaction. This
process, forbidden for one phonon if spatial disper-
sion is neglected, becomes all~wed for two LO pho-
nons. We have also observed in the I'&5 spectrum a
similar resonance which corresponds to a TQ-plus-
LQ phonon pair at I'. This resonance, one order of
magnitude weaker than that of the two LO phonons,
must be attributed to a "forbidden"-deformation-po-
tential (TO)-Frohlich-interaction (LO) process,
which becomes allowed because the k& of the aver-
age intervening phonon is now much larger than that
of the radiation.

II. THEORY

The theory of first- and second-order Raman
scattering in solids has been discussed by Ganguly
and Birman. " We shall simplify this theory by ne-
glecting exciton interaction, an approximation which
usually holds for group-IV and -III-V semiconduc-
tors (the exciton interaction may, however, in-
crease the strength of the Raman resonances with-
out greatly altering their shape'4). The first-order
scattering probability is obtained in third-order
time-dependent perturbation theory with the inci-
dent photon, the scattered photon, and the phonon
as the perturbations. The basic diagram of this
process is shown in Fig. j., where the interaction
vertices must be permuted so as to obtain five oth-
er similar terms (only Stokes processes are con-
sidered). Because of crystal-momentum conserva-
tion only phonons with k = 0 are excited in the first-
order process, while in the second-order process
k, = —k2. The contributions to the Raman tensor in
the first-order process and in the second-order
processes of type (a) have two energy denominators
(notice that the structure of these processes is the
same except that the electron-one-phonon interac-
tion vertex is replaced, in the second-order pro-
cesses, by an electron-two-phonon vertex). These
processes fall into two categories, depending on

whether the two virtual electronic excitations in-
volved have the same (two-band terms) or different
energies (three-band terms). Since the phonon en-
ergy is usually small, the two-band terms have two

nearly equal energy denominators and thus resonate
more strongly than the three-band contributions.
The processes of type (b) have three energy denom-
inators and therefore, when all electronic excitation
energies are the same, they resonate more strongly
than those of type (a). The processes of type (c)
are like two consecutive first-order processes ex-
cept that the photon connecting them can be virtual.
Four energy denominators appear and thus stronger
resonances than in all other cases are possible.
These processes involve, however, six interaction
vertices and thus are expected to be weaker than
processes (a) and (b), which involve only three and

four, respectively. The ratio of a process of type

First Order
ohonon

+ 5 other terms

+ S II
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I
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+ 23 other terms
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FIG. 1. Diagrams of processes contributing to first-
and second-order Raman scattering.

(c) to a process of type (b), involving only one elec-
tronic excitation of energy coo, has the form

e4

Ir, 5 m oI, (ILI —&de) Ve

where +, is the photon frequency which corresponds
to the momentum of each of the excited phonons, P
the matrix element of linear momentum, and Vo the
volume of the unit cell. Because of density-of-
states considerations q is near the edge of the Bril-
louin zone and thus co, is very large. For typical
values of P (0.4 a.u. ) and Ve one obtains

I, /I&=2X10 e(&u —&de)
' (with co in eV) . (2)

Thus, the processes of type (c) are negligible with

respect to those of type (b).
The theory just described can be considerably

simplified if the phonon energies 0 can be neglected
in the resonant denominators of the expressions for
the Raman tensor. ' ' This quasistatic" approxi-
mation is justified whenever the following condition
holds:

0 &&
~

&d —o& e+ iF
~

where ~o is a relevant energy gap for electronic ex-
citations and I; is the width of the corresponding
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electronic states. Under these conditions the fre-
quency-dependent electric susceptibility of the crys-
tal deformed by the presence of one pho»on can be
calculated using standard dielectric constant theo-
ry. ' We can thus write, to first order in the pho-
non displacement t,

X(f((d)= X(f (()&)+
d

— 5 ~
(0& dx(f ((d)

(4)

where e& is the polarization vector of the scattering
phonon at atom l, N the number of unit cells, M& the
mass of atom l, and n~ is the Bose-Einstein factor.
For a germanium-type semiconductor, with two
equivalent atoms per unit cell, I e& I = —,

' and the in-
dex l can be dropped in Eq. (6). In this work we
discuss results for QaP, which ha, s two atoms with
different masses in the unit cell. In order to sim-
plify our treatment we assume, however, that these
masses are the same. The error introduced in this
manner will be a factor of the order of 2. We be-
lieve, however, that this error is largely compen-
sated by using in Eq. (6) twice the reduced mass
for the optical phonons and the mass of Ga for the
TA branches. First-order scattering is produced
by phonons of I'00. symmetry in Ge and I',0 in zinc
blende.

According to Eq. (5) the scattered radiation aris-

The phonon displacement $ has two components of
temporal dependence e""' and e "', corresponding
to the creation and the annihilation of a phonon, re-
spectively. Thus, upon application of an electro-
magnetic wave of frequency +, one finds, according
to Eq. (4), a polarization of frequency (d —0 (Stokes
process) and (0+ 0 (anti-Stokes process): This po-
larization generates the scattered radiation. Crys-
tal-momentum conservation allows only phonons
with k ~ 0 to contribute to the first-order scattering
process.

We shall concentrate on the Stokes process. The
radiation emitted per unit time by the oscillating
dipole (polarization) is, per unit area of irradiated
material

4 &2
((& dX&)/((d) 4& ()$0) LEg 3 3 nQ

dg
nj t

where L is the depth of the radiating region of the
material (approximately the inverse of the absorp-
tion coefficient for strongly absorbing samples), E
the magnitude of the applied field, and n " and n '
the unit vectors along the polarization directions of
the incident and scattered fields. Thus, dX(&((d)/dt'
is, to within a numerical constant, the Raman ten-
sor. '8 If we take for $ the displacement of a certain
atom l of the unit cell from the equilibrium position,
(t'0&) is given by'0

~ (4 ~~) f&*a) -( '
) f)~n ) ), (7)

where +p is the frequency of the Ep gap, &p the
spin-orbit splitting, »0= 0)/p)p «0, = 0)/((L)p+ 40), and
Cp' is a constant related to parameters of the mate-
rial and with values of the order of 1 in atomic
units. x The functions f (») and g(«) are defined by

g(«) =» [2- (I+») ' 0 —(I -») ]
(6)

f («) =«-'[2 —(I+«)'"—(I -»)'"] .
It is sometimes necessary to add to Eq. (7) a real
constant, to take into account all other scattering
mechanisms under the assumption that they are
nearly nondispersive around Ep and Ep+ &p.

The second-order scattering can be also treated
in the quasistatic approximation, although in this
case we must use in Eq. (3) 0, + Ap instead of A.
The quasistatic condition may therefore be more

es from the modulation in I X(f I, Eq. (4), produced
by the phonon displacement in a way similar to that
of the external perturbations of modulation spectros-
copy. '0 Two types of contributions to dX(f(p&)/d$
appear in the microscopic theory: those associated
with a phonon-induced shift in the electronic ener-
gies and those related to phonon-induced changes in
the dipole matrix elements. Energy-shift contribu-
tions correspond to the two-band processes of the
general theory. Matrix-element contributions re-
sult from phonon-induced mixing of wave functions
and thus correspond to the three-band processes.

In this paper, we occupy ourselves with reso-
nances in the Raman scattering near the Ep —Ep+ +p
gaps of QaP, which occur at the center of the Bril-
louin zone between the I',0 spin-orbit-split (I'0 I'7)
valence states and the 1, conduction state. The
phonon of ~» symmetry does not shift the energy of
the I', state, and other states of 1» symmetry are
sufficiently far to make contributions of 1", to ma-
trix-element changes negligible. Thus, the first-
order Raman tensor arises mainly from phonon-in-
duced perturbations of the 1"» valence bands: The
phonon splits the ~8 doublet (energy-shift contribu-
tion) while it mixes its (—,', 0) component with the
spin-orbit-split (0, 0) component of I'~. Under the
assumption of a phonon-independent spin-orbit in-
teraction the matrix elements for these two pro-
cesses are not independent and only one electron-
phonon coupling constant appears. '~' We repre-
sent this coupling constant or deformation potential
by the splitting of the I'8 bands 5"'~

p produced by a
phonon displacement f = 1. The contribution of the
Ep —Ep+ &p gaps to the first-order Raman tensor
can thus be written (for i 0j)'4'"

(1)
(P((& X(f 0 5 (dp (» )»~~p
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difficult to fulfill. The second-order Raman tensor
is then related to the second derivative of g ~ &

with
respect to the phonon displacements. Two different
types of processes arise: those involving first de-
rivatives of y&& with respect to electronic energies
(or matrix elements) multiplied by the energy
shifts (matrix-element shifts) bifinear in phonon
displacements [i.e. , processes of type (a) in Fig.
1], and those produced by second derivatives of )((,
with respect to energies multiplied by energy shifts
linear in phonon displacements [processes of type
(b) in Fig. 1]. We shall consider here mainly the
first type of processes since, as we shall see, they
seem to dominate in our experimental work after a
renormalization to take into account processes of
type (b).

In a zinc-blende-type material, the second-order
Raman tensor will have the three irreducible com-
ponents I'„ I',5, and I'», (I„ I'25. , and I'» in ger-
manium). For the Eo and Eo+ 45 resonances the
I'» and 1"&2 components can only act on the I'» va-
lence bands in a manner similar to that of the I'&5

first-order component. The I"& component can act
on both 1"& and I',5 electronic states. We would
therefore expect, in the latter case, strongly dis-
persive energy-shift components both at E0 and at
E0+ ~0, in contrast to the I'» and 1"» cases, for
which the strongly dispersive component should on-
ly occur at E0. The I'» component of the second-
order Raman tensor (p(/'15' is then given by Eq. (7)
with 5 z0 replaced by 5&5'&0, the energy splitting
of I'8 produced by a symmetrized combination of
two phonons of opposite q and unit displacements $.
The scattering intensity for each pair of phonons is
then given by

i(p 2, 5 ~2(t. )(to)IE2 (9)

If we assume (P &'
' independent of k (or if we use

the appropriate average), the spectral distribution
of the intensity scattered by all possible pairs of
phonons from two given branches is obtained by
multiplying Eq. (9) by the appropriate combined
density of states. In order to obtain the total scat-
tered intensity we must multiply Eq. (9) by N/2, the
total number of phonon pairs, and a degeneracy fac-
tor g, which can be larger than 1 if transverse pho-
nons contribute; we then obtain

,",, (~ s';, (5&~2)(&2) (to) «2N(n/2) (10)

We shall usually assume that (p~&'
' is independent

of the k& = —k2 of the individual phonons, an as-
sumption justified by the fact that the obtained
spectra reproduce rather well the features of the
combined density of states. Under these conditions

(
i

(p&2, 15 i2)
i
(p 2, 15

i
12 )1=XX+ YY —2ZZ,

~12)2=)) 3 (XX—YY) .
(12)

The I'» component of the Raman tensor is charac-
terized by its (P,&' component, which is given by an
expression similar to Eq. (7) with 6 1'&oo replaced
by 5,'2'o&o [the energy splitting of the I"5 valence
state produced by the two-phonon states of Eq. (12)
with phonon displacements of unit amplitude].
Using Loudon's notation for the Raman tensor, '

d(1) (p(1) (t.2)l/2» 0

5&2) (p(2, 12& ()2)1/2 (t2)1/2N())/2)
(13)

We can express the ratio of the strengths of the I'»
component of the second-order spectrum to that of
the first-order spectrum as

12 +0 (t )(~ )
( /2) (14)

Thus, within our approximations the shape of the
resonance in the 1"» two-phonon spectrum should
also be the same as that of the I'» one-phonon scat-
tering.

We consider now the 1|component of the two-
phonon spectrum for which, as we have already
mentioned, a different situation arises. We as-
sume, for simplicity, that the two-phonon combina-
tion of I& symmetry,

2 (XX+YY+ZZ), (15)

acts only on the j'& conduction state; we shall see
later that the effect of this mode on the I'» states is
usually negligible. The ratio of the I'& scattering
strength to that of the first-order spectrum per
phonon branch is given by&5 (in London's notation)

Z(xo)+ 3f (xo)+ 2 [/t'(xo, )+ 3f (xone)] —(-
g(x(&) + (4(do/45) [f(xo) ((do/(do ) f (xo))] 2

(16)
where 5(

'
&go is the energy shift of the F1 conduction

The ratio of the first- to second-order scattered
intensities is given by

I(2, 15) 6(2) ~ 2 (t2) (]2)N
1&1&

— 5(1) ~ (t.2) ())/2) .

Thus, by calculating ($12) with Eq. (6) we can obtain
from the observed ratio of scattered intensities the
ratio of the second- to the first-order coupling con-
stants.

We consider next the I"» component of the Raman
tensor. If we designate by X, Y, S the phonons
polarized along the crystal axes, the two-phonon
states of I'» symmetry are
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state produced by Eq. (15) with phonons of unit am-
plitude. We have included the real constant C in
the numerator of Eq. (16) in order to take into ac-
count a possible dispersionless background. The
consideration of this background is particularly
important in connection with ~j scattering. The
function g(xo) + 3f (xp) tends to zero for xo - 0, thus
revealing any possible background far from the gap.
A similar effect does not take place for ~» and I'»
scattering.

In the limit 4p «(do —(d «4)p Eq. (16) reduces to

(17)

We proceed now to the microscopic calculation of
6 g5 and 5 i~ . For the sake of simplicity we

shall assume that the two atoms per unit cell have
the same mass (group-IV materials). In the case
of the III-V compounds this approximation would be
satisfactory for GaAs, although it should lead to
some error for Gap. The microscopic theory of
5 '

coo has been discussed by Cerdeira and Car-
dona. ' These authors find

5 "(o = (2/ao)do (18)

with ao equal to the lattice constant and do= 33 eV
for germanium.

The electron-two-phonon interaction Hamiltonian
is22'23

&m' =
2
~ 5i (R) '

(&% &it V) ' 4 (R'), (19)ss'
where V is the crystal potential, R the position vec-
tor of an arbitrary atom, and $ (R) the correspond-
ing phonon displacement. In the rigid-ion approxi-
mation only diagonal terms in 8 and 8' survive
and Eq. (19) becomes

(2o)

The contributions of each of the two basis atoms to
Eq. (20) have the same sign if we deal with two pho-
nons of the same kind (acoustical-acoustical, opti-
cal-optical). If we deal with combinations of one
acoustical and one optical phonon, both contribu-
tions have opposite sign and they cancel: Thus, only
weak acoustical-optical combination scattering is
expected, a fact which is confirmed by experi-
ment. ' We also notice that the two-phonon inter-
action for a pair of optical phonons is equal to that
for a pair of acoustical phonons, a fact which
agrees well with second-order Raman scattering in
Si, 7 but not so well for Ge and GaP. The expecta-
tion value of Eq. (20) for an electronic state of pe-
riodic Bloch function X is

=&xi&.",'ix)= f,,x'x(( v')(5, vv)d
(21)

where $ gives the amplitude and the direction of the
phonon-induced displacement of an atom, and Vo is
the volume of the unit cell. Replacing the symme-
trized combination of Eq. (15) into Eq. (21) we find

5 P' &op =
& f» X* XVPV dr = (4/3aop) D, , (22)

where D& is the constant defined in Ref. 23. The
degeneracy factor») of Eq. (16) equals I for two-I 0
and 2 for two-TO scattering,

Because of the strong divergence in the crystal
potential near the atomic core, the main contribu-
tion to Eq. (22) is produced in this region, If we
approximate V by the sum of the Coulomb potentials
—Ze /r at the atomic sites we find from Eq. (22)

D, =2oaooZeo ~X(0) ~P . (23)

Thus, within the range of validity of this approxi-
mation the deformation potential" D& vanishes un-
less the wave function g has an s-like component.
We therefore conclude that D& vanishes for the I f$
valence states while it has a finite value for the ~&

conduction band. The deformation potential D& can
be estimated from Eq. (23) by replacing x(0) with
its value for the isolated atom. Using the tables of
Herman and Skillman we find for germanium
Dy = 3x 106 eV, an extremely large value. Using
orthogonalized-plane-wave (OPW) wave functions
and the complete crystal potential, Lin-Chung and
Ngai ' obtained D, =3 x10' eV.

At this point it is interesting to reflect that if one
moves adiabatically the core of an isolated atom the
energies of its various levels do not change: The
wave functions deform so as to adapt themselves to
the new shifted potential without energy change.
Thus, the effect of the perturbation represented by
V' V and taken to first order must be compensated
by terms of the form VV taken to second order
through all possible intermediate states. In the
solid, the wave functions are Bloch waves and they
cannot completely follow the core deformations (if
they did D, would be zero). This argument, which
seems to have been overlooked in Ref. 23, is simi-
lar to that presented by Herring. In order to
avoid the sum of second-order terms over all pos-
sible intermediate states we make the reasonable
assumption that in the OPW formulation the core
contributions to the wave function deform with the
potential while the plane-wave parts do not. Using
for I'& the plane waves given in Ref. 14 we find
D, =1.8x104 eV.

As discussed earlier, the contribution to the sec-
ond-order Raman scattering by first- and second-
order terms in the electron-phonon interaction
must be treated separately [(b) and (a) diagrams of
Fig. 1, respectively]. In a two-band model of res-
onant scattering, however, one can sum all possible
first-order type-(b) terms which connect the two
bands with other bands far away from the resonant
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D„=— -a riR(r)i „—dr.gdV
15 &o

(25)

In this case the spin-orbit splitting of the valence
band is

4m~c2 r B(x
d

dr .S~ ~dV

0

gap. This sum has a behavior similar to that of the
type-(a) terms of Fig. 1. We can therefore elimi-
nate the first-order interaction and calculate only
terms of the type (a) with an electron-two-phonon
interaction vertex renormalized so as to include the
electron-one-phonon interaction via intermediate
states. This renormalization is analogous to the
cancellation of D, just described: The first-order
electron-two-phonon terms are partly canceled by
second-order terms from the electron-one-phonon
interaction. Thus, the 5' '

ep which appear in Eqs.
(11), (14), and (16), and the corresponding elec-
tron-two-phonon deformation potentials D, should
be renormalized as described. We should empha-
size the fact that this renormalization assumes that
all additional intermediate states in the terms of
type (b) are far from resonance. Otherwise one
would obtain terms of type (b) which resonate more
strongly than those of type (a), and thus must be in-
cluded explicitly when approaching the resonance.
We shall see that because of the near degeneracy
of the j. , L, X, and W conduction-band points in
GaP such terms seem to appear but only very near
the resonance,

Ngai and Johnson ~ found for InSb, from an analy-
sis of two-phonon-aided cyclotron resonance,
D, = (5.6x104/p'ia) eV, where p is a weighting fac-
tor of the order of but smaller than 1. This result
should also include the renormalization just men-
tioned, and thus is in qualitative agreement with
the result of our calculation for Ge(1. 8x104 eV).
Because of the larger atomic number of InSb we
would expect [see Eq. (23)] for the Di of this mate-
rial a value somewhat larger than that of germani-
um. Such value is obtained from the experiment of
Ref. 23, since, as already mentioned, p&1.

We shall now discuss the microscopic theory of
6&5'cop. We define this energy as the splitting of the
~8 level obtained for phonons of unit displacement
polarized along [111]. We find from Eq. (21)

5» +D= 2 XxXp S
dr=~ D» . (24)

yo
" " exey ap

Equation (24) defines the deformation potential D».
The degeneracy factor g equals 2 for LO-TO scat-
tering.

Under the assumption of pure atomic p wave func-
tions the functions X„and X„have the form X, = sR(r)
and X„=yR(r). If we additionally assume a Cou-
lomb potential, Eq. (24) can be transformed into

W'e thus find the following relationship between D&5

and &p.'

4m~c~a~
Dis = — - +0 = —5. 5x 10~ Ao.15m (27)

Equation (27) yields for Ge, with +=0.3 eV, D»
= 1.7 x 3.0 eV. We would also expect the renormal-
ization discussed above to apply in this case, and
hence this value of D&5 should be an upper limit:
The correct value should be about two orders of
magnitude smaller.

Because of the isotropy built into the present
model, it is not necessary to calculate explicitly
D~. We would simply expect 5&5' coo= 5&' coo.

The theory of the forbidden one-LO-phonon scat-
tering has been discussed by a number of au-
thors. Forbidden scattering is much weaker
for the TO phonon and is negligible in nonpolar ma-
terials such as germanium. Therefore the mecha-
nism responsible for the violation of the selection
rule must be related to a specific property of the
longitudinal phonons, namely, to the electric field
which accompanies them. This electric field can
produce intraband scattering of electrons (Frohlich
interaction). Thus, a scattering mechanism differ-
ent from the deformation potential theory discussed
so far arises: the intraband scattering of electrons
by phonons via Frohlich interaction. A detailed
calculation~~~9 shows that this mechanism is only
effective when the direction of polarization of the
incident radiation is parallel to that of the scattered
radiation. The corresponding Raman tensor turns
out to be proportional to the magnitude of the scat-
tering wave vector q and vanishes for q=0: The se-
lection rule is lifted because of the finite magnitude
of q."

Strong electric fields are often present at the sur-
face of semiconductors. These electric fields can
alsc produce a breakdown in selection rules and al-
low the forbidden LO scattering. The scattering
probability is proportional to ~

i-.'[(m'. -ma„)/ma]q-I f Si', (28)

where 8 is the magnitude of the applied field, m,
and m& the electron and hole masses, and M
= m, + m&. Evidence of both types of LO-forbidden
scattering mechanisms, q induceds and surface
field induced, s has been presented in the literature.
As a forbidden process, the LO-forbidden scatter-
ing is expected to resonate more sharply near Ep
than the corresponding allowed processes. Detailed
calculations of the shape of this resonance have ap-
peared, in particular, a recent one which covers
the energy range below and above Ep. If exciton
interaction is neglected (an approximation probably
valid for Gap, but not for II-VI compoundsaa) we ex-
pect the leading term in the Raman tensor of the q-
induced process to be proportional to the derivative
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of the corresponding term in the allowed Raman
tensor [ (&o —&oo)

' ]. We thus conclude that the
forbidden scattering intensity should have (u —ua)
as its leading term near Eo.

In our experiments we observe a strong reso-
nance of the structure which corresponds to emis-
sion of two LO-phonons with k =0. Equation (28)
provides a simple scattering mechanism for this
process: The "forbidden" scattering by one of the
two phonons is being induced by the electric field
which accompanies the other LO-phonon. One
could view this process heuristically in the sense
of Eq. (28): One phonon provides the q, which now

is kz and not the scattering q vector, and the other
provides the electric field. Thus, the two-LO (&)
process becomes allowed (it is independent of the
scattering q vector) and is expected to have a reso-
nance shape analogous to that of the forbidden one-
LO scattering. We must, however, provide a cut-
off mechanism to limit the k, —ka of the emitted
phonons to a region near k= 0. This mechanism is
provided by the fact that as k& increases one of the
energy denominators becomes nonresonant, since
the intermediate state moves away from k= 0. In
the case of an exciton-enhanced process, the cutoff
is provided by the fact that the phonon wavelength
2v/k, must be larger than the Bohr radius of the.
exciton. '

III. EXPERIMENT

The GaP sample was an undoped single crystal
(n = 10'5 cm '). It was oriented by conventional x-
ray techniques to ~1', mechanically polished, and
well etched in a dilute solution of bromine in metha-
nol. The backscattering configuration was used
throughout, the scattering surface being usually
(110). For the resonance measurements the inci-
dent and scattered light was polarized in the plane
of the sample with the electric field parallel to the
[111]direction. The allowed symmetry composition
of the measured cross section for this configuration
is I', +fF,a (aa+ fd in the notation of Loudon).
The first-order TO (I') phonon is allowed and oc-
curs at 365. 5 cm ' in the I'«component. The first-
order LO (I') phonon, however, is always forbidden
for backscattering from a (110)plane.

We also performed some measurements for dif-
ferent polarization configurations of the incident and
scattered light at exciting frequencies of 4579 A

(Ar ion) and 4416 A (He-Cd) so as to sort out at
frequencies close to the resonant gay which of the
observed features belong to I «, I'», and I",. The
results for 45'79 A in the two-optical-phonon region
are shown in Fig. 2. The second-order Raman
spectrum of this material has been previously
studied in detail far below the Eo gap (5145-A excit-
ing frequency), and a complete decomposition of the
spectrum into the irreducible components of the
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FIG. 2. Three irreducible components of the Raman
tensor of GaP in the region of scattering by two optical

0
phonons. Recorded at room temperature with 4579-A
exciting light,

Raman tensor (1'„l,a, I'„, for a zinc-blende-type
material) has been performed. It was found, for the
most part, that the I'«component does not inter-
fere with the ~j component, the corresponding
structure being mutually exclusive owing to the
combination nature of the former and the overtone
nature of the latter. For example, in the optical
region the structure between the strong I', scatter-
ing due to TO overtones (660-735 cm ') and that
due to LO overtones (770-810 cm ~) is of I',s sym-
metry (refer to Fig. 2), being composed of TO plus
LO combination states. The symmetry mixture
I', +/I'„was chosen because it exhibits all of the
major features of the spectrum, and emphasizes
the I'&5 component which is otherwise small com-
pared to I'&. We felt that the I'» component was too
small for a, meaningful study of resonance effects.
The tensor symmetry of the various structures
does not depend on exciting frequency. This fact
was established by separating the irreducible com-
ponents of the Raman tensor at 4579 and 4416 A.

At room temperature the Eo exciton gap in GaP
occurs at 2.78 eV and the corresponding Ep+ ~o gap
at 2. 86 eV. 3~' Since the exciton binding energy is
rather small (0.01 eV), we shall therefore make no
distinction between exciton gap and band edge. The
available lasers appropriate for the study of reso-
nance effects in the region of the Eo, Eo+ ~p gaps of
GaP are the Argon-ion and He-Cd lasers, the for-
mer providing several lines in the region 2.41 eV
(5145 A) to 2.708 eV (4579 A), and the latter having
a line at 2. 808 eV (4416 A). In order to thoroughly
study the resonant region the Raman spectrum was
recorded at room temperature with 5145-, 4880-,
4765-, and 4579-A (Argon-ion) exciting light, and
at several temperatures with 4416-A (He-Cd) excit-
ing light. By varying the temperature between 77
and 670 'K it was possible to tune the Eo gay from
2. 865 eV to 2. 592 eV, ' through the He-Cd laser
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line (2. 808 eV). Except for some increase in the
lifetime broadening as the temperature is raised,
the effect of changing the temperature is equivalent
to changing the photon energy of the laser by an
amount equal in magnitude and of opposite sign to
the corresponding change in the gap. Thus it was
possible to measure the Raman spectrum for a fine
mesh of scattering photon energies (or their tem-
perature-tuned equivalent} covering the region from

coL, —coo= —0.367 eV to 0=+0.216 eV.

All measurements were performed with the sam-
ple glued (GE 7081 varnish) to the copper finger of
an optical Dewar designed to cover the tempera-
ture range of interest. Cooling was accomplished
with dry ice, dry ice in acetone, and liquid N~.
Heating was performed with a ceramic resistor
mechanically attached to the copper finger. The
temperature was measured with a calibrated iron-
constantan thermocouple, also mechanically
clamped to the finger near the crystal. During the
measurements the sample was kept in a vacuum of- 10 torr.

A Spex triple monochromator system was em-
ployed with detection by photon counting. The
Stokes spectrum was recorded as a function of scat-
tered frequency in the 1024 channels of a multi-
channel analyzer and then plotted and printed to
give both a graphic and a tabulated result. The
spectrometer slits were chosen to yield a resolution
of 6 cm . At this resolution no significant broad-
ening of any of the observed phonon lines is seen
with increasing temperature, and thus the height of
the peaks gives a measure of their strength. In or-
der to avoid appreciable heating of the scattering
portion of the sample we kept the laser power low
(50-100 mW) and focused the laser light with a cy-
lindrical lens. We checked the absence of heating
by measuring the absolute wave number of the first-
order lines and showing that it was independent of
laser power in this range.

Two sets of measurements were performed. In
the first set the resonant behavior of the TO (I') and
the forbidden-LO (I') peaks was carefully measured,
Particular attention was paid to the alignment and
focus of the optics so as to reproduce the experi-
mental conditions for each exciting laser line and
temperature. The laser power was recorded be-
fore and after each run, and the spectrometer re-
sponse was carefully calibrated by measuring the
Raman scattering from a CaFz crystal for the same
exciting lines. This material, with a gap of about
11 eV, should yield a scattering cross section pro-
portional to col, , without any dispersion due to ener-

gy denominators. The ratios of the TO (I') and for-
bidden-LO (I') one-phonon lines to the correspond-
ing CaF2 intensity are then automatically corrected
for spectrometer response, and the co& frequency

factor in the scattering cross section is eliminated.
In the second set of measurements we were con-

cerned more with the second-order than with the
first-order spectrum. Qnce the resonant behavior
of the first-order TO (I'} peak is well known it is
not necessary to measure as carefully the absolute
resonant behavior of the second-order spectrum,
It suffices to measure its change in intensity with
respect to the first-order TO (I') peak. Therefore,
for these measurements the scattered intensity was
always divided by the TO (I') peak intensity recorded
during the same run. The resulting ratio is auto-
matically corrected for spectrometer response, in-
cident laser power, the &I, factor in the scattering
cross section, and even any changes in the optical
alignment which might occur in going from one ex-
citing laser line or temperature to the next. We
found that this procedure yields accurate and re-
producible results.

For both the first- and second-order measure-
ments the data taken at different temperatures were
corrected for statistical factors by multiplying the
experimental cross section by the ratio of the ap-
propriate Bose factors at 300 'K to the factors at
the temperature of the measurement. Thus, all
data presented here are referred to room tempera-
ture. In passing through the direct gap the absorp-
tion changes rapidly, and it is necessary to correct
the data for the change in penetration depth of the
light by multiplying the cross section by the sum of
the incident and scattered absorption constants. ~'

Using the data of Refs. 32 and 33 we have corrected
our measurements for absorption as a function of
the scattered frequency taking account of the shift
and broadening of the gap and exciton peaks as the
temperature is increased. When performing rela-
tive measurements with respect to the first-order
spectrum, the absorption correction is mostly
eliminated, but not completely because of slightdif-
ferences in the scattered frequencies. We per-
formed the absorption correction also in these
cases by using the data of Refs. 32 and 33.

IV. RESULTS

Figure 3 shows the resonant behavior of the al-
lowed first-order TO (I'} mode of I'&5 symmetry in
the region of the Eo and Eo+ &0 gaps. These data
give the results of the careful first-order measure-
ments previously described in Sec. III. The pres-
ent measurements (crosses) and the measurements
of Scott et al. ~ (squares) are both plotted The.
agreement between these two sets of data is good
below the Eo gap; the region above the Eo gap has
not been previously explored. The solid and dashed
lines are computer plots of the theoretical expres-
sions for the square of the first-order Raman ten-
sor developed in Sec. II, Eqs. (7) and (8). They
are fitted to the experimental point at ui, —coo
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using a pulsed-nitrogen-dye-laser system are pres-
ently being performed in our laboratory in order to
try to resolve the minimum in the calculated curve
of Fig. 3.

In Fig. 4, we display the second-order Raman
spectrum of GaP between 100 and 860 cm ' mea-
sured for four different values of td& —~0 (exciting
light of wavelength 5145 A, at room temperature,
and 4416 A at 78, 356, and 625 'K). These spectra
have been normalized to the intensity of the first-
order TO (I') peak, as explained in Sec. III.
Therefore, in this figure the TO (&) peak always
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FIG. 3. Raman cross section as a function of incident
photon energy for the first-order allowed TO (I') phonon.
The room-temperature Eo gap is the zero of the horizon-
tal scale. The data of Ref. 12 (squares) have been ad-
justed to correspond to our data (crosses) at cdI, (dp

=-0.367 eV. The functions (P&5 [Eq. (7)] and g [Eq. (8)]
have also been adjusted to fit the same data points with
a multiplicative constant. As explained in the text, the
data have been corrected for absorption, spectrometer
response, statistical factors, etc.

0)f

= —0. 367 eV (5145-A exciting line) by adjusting a
multiplicative constant (vertical shift in the log plot
of this figure). We replace the singular gap p)p in
Eqs. (7) and (8) by &p = (dp+ Qp/2, where fop is the
TO (&) phonon frequency, since we do not expect to
resolve the separate resonances due to the incident
and scattered photon energies. In this manner, the
theoretical curves are forced to peak at ufo. The
dashed line in Fig. 3 is Ig(xp)l of Eq. (8). It fits
the experimental points very well below the Eo gap,
where the contribution of the f function to the Raman
tensor in Eq. (7) is small, but is too large above
the gap. Effects of the spin-orbit split Eo+ &0 gap
are not included in Ig (xp)l . The solid line, IIP2p I

is a plot of the square of the function in brackets in
Eq. (7). This function is the contribution to the
Raman tensor of the effect of a deformation of ~,5

symmetry on the valence bands; it includes the ef-
fect of the spin-orbit-split gap. As previously dis-
cussed, the main resonance occurs at the Eo gap
[g function, singular behavior ~ (Ip —Idp)

' ~P] with a
secondary weaker peak [ffunction, singular behav-
ior ~ (&d —&up

—4p) ) j at Ep+ Iip. Between these two
peaks I6'&5 I shows a minimum which is not resolved
in the experiment (we should emphasize that the
measurements in this region were taken at high
temperatures). This function provides an excellent
fit to the data below the gap and also above the gap
if we slightly broaden the minimum and subsequent
maximum at Eo+ &0. Low-temperature experiments

SO 200 XO 4 500 0 7 8
2 TA(X-Kl TO LO

J
1.
0t

I

pNI

2UXX) -~g
270(L) i

~~ - ~0 ~-p3$7 ep

ao1 . Q01

U
~

002 .

C a01

0
E
g

0

O

V4
ON. -

a
O

ONl

10 080

10 .450

2Lpr)

TO+LO{l )

~t-u0 =-Q057 eY
ao1

0

2LO(r)

7o Lo)r)-

fp~

~,-~, - O.OSS eY

2TOtl)

2TA tX-K)

~~-~ * 0.1N eY

2LO(r)
l

I

4 6
Q (cm')

FIG. 4. Raman spectrum of GaP between 100 and 860
cm ~ normalized to the first-order TO (I') intensity. The
four spectra were recorded (from top to bottom) with
5145-A exciting light at 300'K and with 4416-A. exciting
light at 78, 356, and 625'K, respectively. The spectra
have been corrected for absorption and statistical fac-
tors. (They are referred to 300'K. )



2804 B. A. WEINSTEIN AND M. CARDONA

Qp

I Qp+dp 10-

—-+ -+-+—2 TO(L)

2TO (L)/TO(l )

Qp
I Qpdp

103

LL
Q

hC
t

OK
10-

L
O

hC
1

10
2

I

~C4

0

~ 10-

CV

10'

L.
O

- 10 0

10 I

-1.0 -0.8 -0.6 -Ol -G2 0 G2

0(1L —fA)0(eV)

FIG. 5. Resonance of the two-TA (X-K) Raman peak
in the region of the Ep, Ep+ gaps of GaP as a function
of incident laser frequency. The Ep gap occurs at the
zero of the horizontal scale. The dots are the ratios
o the peak intensity to the height of TO (I'). ThT e cros-

isp ay the absolute resonant behavior of bvo-TA
(X-K); they are the results of multiplying this ratio by
the separate TO (I') intensities obtained from Fi . 3.

e a have been corrected for absorption, statistical
actors (referred to 300'K), etc. The constant C in the

function I 6'~ I [numerator of Kq. (16)]has been chosen
to be 2. 5 so as to give the best fit to the experimental
points. The circle and square are points from Ref. 39.

has a maximum height of 1, The spectra have been
corrected for absorption and statistical factors in
the manner described in Sec. III. It is evident that
two effects are taking place: The over-all intensity
of the spectrum is changing with exciting frequenc
in a manner similar but not exactly the same a th
0 ( ) peak. At the same time two additional sharp

peaks appear when the laser frequency (or its tem-
perature-shifted equivalent) is near the gap (He-Cd
laser, 356 'K) and disappear again above the gap
(same laser, 625 'K). Thus, these two peaks reso-
nate much more strongly than TO (I'). The strong-
est of these peaks occurs at a wave number which
corresponds to the excitation of two LO phonons at
I' (overtone), while the other, somewhat weaker one
seems due to the simultaneous excitation of one TO
and one LO phonon near I' [TO-plus-LO (I') combi-
nation].

%'e shall deal first with the over-all spectrum,
which can be divided into its irreducible compo tponen s
o & and I'&5 symmetry (neglecting, as we have al-
ready mentioned, the small I'~~ component). As
representative of the 1", spectrum we have plotted
in Figs. 5-7 the resonant behavior of the strongest
overtone peaks [two TA (X-K), two TO (L), and
two LO (Z), respectively, see Ref. 6]. In these
figures the points with the dashed-dotted line run-
ning through are the directly measured ratios of the
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FIG. 6. Resonant behavior of the two-TO (L) peak in
the region of the Ep, Ep+4p gaps. See caption of Fig. 5
for details (C has also been taken to be 2. 5).
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FIG. 7. Resonant behavior of the tvvo-LO (Z) mode in
the re ion of the Ee Ep, Ep+ 4p gaps. See caption of Fig. 5
for details (C has also been taken to be 2.5).

height of the peak under consideration to that of the
TO (I') peak. The crosses with the dashed line run-
ning through give the absolute resonant behavior of
the mode. They are the result of multiplying the
ratios of the dashed-dotted curves by the TO (I') in-
tensity of Fig. 3. The solid doubly peaked curves

II n
represent the theoretical expression found

'
Sun zn ec.

[numerator of Eq. (16)] for the contribution to the
second-order Raman scattering of I"& symmetry,
the function

&g =g (xp)+ 3f (xp) + z [g (xo, )+ 3f (xo, )] —C

describing the effect of a hydrostatic deformation
on either the I'& conduction or the I'&5 valence states.
In this equation xo= &u/wo, with uo taken to be the
frequency at which the main peak in the experimen-
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tal Raman resonance occurs. ~0 agrees with the
theoretical value &so+ (Q+ 0 ) /2 in Fig. 5, but is
0.025 eV lower in Figs. 6 and 7. Resonant fre-
quencies similarly lower than the theoretical ones
also appear in other Raman work. The real con-
stant C has been subtracted to take into account a
possible background. [Note that 3f (xo}+g (xo)
tends to zero for xo 0, Thus a background is
bound to become important at sufficiently low fre-
quencies. ] 15'& I shows two resonances, at the Eo
and Eo+ 40 gaps, with the Eo resonance twice as
strong because of the double degeneracy of this va-
lence band. The best fit to our data was obtainedby
varying the background constant C. The same val-
ue of C = 2. 5 was used for I 6'& I in all three figures.

The two-TA(X-K) mode, Fig. 5, clearly shows
a double resonance with two peaks occurring at Eo
and Eo+ 60 In this respect the agreement with the-
ory is quite satisfactory although the theoretical
curve predicts a stronger resonance (see Sec. V}.

The resonant behavior of the two-TO (L) and two-
LO (Z) modes (Figs. 8 and 7, respectively) is very
similar. Good agreement with the theoretical curve
is obtained again, especially if one takes into ac-
count lifetime broadening in the experiment (the da-
ta around Ep+ 40 were obtained at high tempera-
tures). The spin-orbit-split resonance, however,
is somewhat less well defined than in the two-TA
(X-K) case. This may be the result of the break-
down of the quasistatic model, which assumes pho-
non frequencies much less than the spin-orbit split-
ting. The energy of these modes is about 0. 1 eV,
whereas the spin-orbit splitting is 0. 082 eV. In
contrast, the two-TA(X-K) energy is approximate-
ly 0.025 eV.

In Fig. 8 we display the resonant behavior of the
major peak occuring at 755 cm ' in the I'» compo-
nent of the optical spectrum. We have chosen to
study the resonant behavior of this peak in detail as
a typical example of the I'» Raman component.
Again the points with dashed-dotted line are the ra-
tios of the peak intensity to TO (I'), and the crosses
with dashed line are those ratios multiplied by the
separate TO (I") measurements of Fig. 3. The the-
oretical curve (solid line), I(P&sl, is the solid line
in Fig. 3 [Eq. (7)], fitted to the experimental point
at +I. —roo= —0.367 eV by adjusting a multiplicative
constant (vertical shift on the log plot of Fig. 8) and
with the singularity at the appropriate wo. From
the good fit of the data to this curve and the near
constancy of the ratios to TO (I'), it is clear that this
peak in the I'» component of the second-order spec-
trum is resonating just like the first-order allowed
TO (I') phonon below the gap, in agreement with Eq.
(7). If some background is present, other than the
explicit Eo, So+60 contributions of Eq. (7}, it must
be the same for both the TO (I") and the two-phonon
combination processes. From the good fit of the
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FIG. 8. Resonance of the TO-plus-LO combination
peak at 755 cm ' in the I'&& component of the Raman spec-
trum in the region of the Eo, Eo+ gaps. The dots and
crosses are described in Fig. 5. The solid line I N&5 I

is the same as the solid line of Fig. 3, except for a ver-
tical shift which corresponds to a multiplicative constant.

theoretical curves in Figs. 3 and 8 we conclude that
any possible background term is very small.

Unfortunately, we were not able to obtain any
points for Fig. 8 above the Eo gap because the cor-
responding structure becomes obscured by the
strongly resonating TO-plus-LO (I') peak (see Fig.
4). It is evident from our data that the behavior of
other structure in the I » component of the scatter-
ing [with the exception of the TO-plus-LO (I') peak]
is similar and can be equally well explained by Eq.
(7) as a modulation of the valence bands by a defor-
mation of I'&5 symmetry.

The forbidden first-order LO (I') peak, the TO-
plus-LO (I') combination occurring in the I'q~ com-
ponent, and the two-LO (I') overtone occurring in

r, all resonate much more strongly than the allowed
TO (I') phonon. This becomes evident in Fig. 4
where the ratio of these peaks to TO (I') changes
drastically as the gap is traversed. Figures 9-11
display the resonant behavior of the forbidden LO
(I'), TO-plus-LO (I'), and two-LO (I') peaks, re-
spectively. The crosses are our experimental
points; again they are obtained by multiplying the
ratio of the mode intensity to TO (I') by the separate
first-order measurements of TO (I') (Fig. 3) and
are corrected for temperature and absorption as
discussed in Sec. GI. The solid line is a theoreti-
cal calculation of the Raman cross section for the
forbidden LO scattering performed by Zeyher
et al. ~' (see Sec. V).

In Fig. 9 we see that the agreement of the calcu-
lation with our measurements for the forbidden
first-order LO (I'} is good only near the gap. Away
from the gap the calculated curve drops off much
more sharply than the experimental points. This
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FIG. 9. Resonant behavior of the forbidden first-
order LO (I.") mode in the region of the Ep, Ep+ gaps
of GaP. The Ep gap occurs at the zero of the horizontal
scale. The data are referred to 300'K, corrected for
absorption, spectrometer response, etc. (see text).
The theoretical calculation of Zeyher et al. (Ref. 29,
solid line) was fitted to our experimental points (crosses)
by means of a multiplicative constant (vertical shift).

be produced by admixture of allowed and forbidden
scattering, dominated by the forbidden component
near the resonant gap.

Figure 10 shows the resonance of the combination
excitation consisting of TO-plus-LO (I') phonons oc-
curring in the 1 i6 component of the scattering. The
tensor symmetry of this peak was determined from
separate measurements for various polarization
configurations at room temperature with 4416-A ex-
citing light. The TQ-plus-LO (I") peak is not pres-
ent for exciting photon energies away from the gap,
but first emerges from the background approxi-
mately at ~z —0= —0. 07 eV and then undergoes an
enhancement of two orders of magnitude. Above
the gap the peak quickly decreases and disappears
into the background. The agreement between the
experiment and the forbidden-LO curve of Zeyher
et a/. is very good, thus suggesting some rela-
tionship between these two processes.

The two-LO (I') overtone mode shown in Fig. 11
undergoes a resonance enhancement of nearly four
orders of magnitude. It emerges from the shoulder
at the high-frequency cutoff of the second-order
spectrum, where the density of states is approach-
ing zero. The same theoretical curve for forbidden
LO scattering also represents very well the two-LO
(I') measurements for reasons which will be dis-

disagreement can be interpreted as due to the pres-
ence of residual allowed LO (F) scattering which
could arise from small errors in crystal and polar-
izer orientation, and from etch pits and unevenness
at the surface. Because of the strength of the al-
lowed scattering, an allowed component of only a
few percent would be appreciable away from the
gap. Thus, the first-order LQ (I') peak seems to
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FIG. 10. Resonance of the TO-plus-LO (&) peak which

appears in the immediate vicinity of the Ep gap. The
data were corrected and the theoretical curve of Ref. 29
fitted to our data as in Fig. 9.
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FIG. 11. Resonance of the two-LO (I') mode in GaP

in the region of the Ep Ep+Lhp gaps. The data were cor-
rected as in Figs. 9 and 10. The square represents a
data point from Ref. 39. The theoretical curve of Ref.
29 was fitted to the data as in Figs. 9 and 10.
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cussed in Sec. V. The slight discrepancy away
from the gap can again be attributed to a back-
ground.

V. DISCUSSION

The various features observed in the Raman
spectra of GaP exhibit well-defined selection rules:
For instance, the I'& spectrum is dominated by
overtones while the I'» spectrum exhibits mainly
combinations, the strongest being the LO-TO struc-
ture. These selection rules follow from the rigid-
ion model of Eq. (20) under the assumption of two
equal atoms per unit cell (germanium). Apparently
GaP is sufficiently similar to a group-IV material
that the selection rules hold (the electronic struc-
ture of GaP is indeed very close to the average of
germanium and silicon; nevertheless, the vibronic
structure is quite different because of the different
atomic masses of Ga and P). According to Eq. (24),
however, scattering by two TO phonons with orthog-
onal polarizations should also appear in the I'»
spectrum with a strength similar to that of the
LO-TO spectrum. This conclusion does not agree
with our experimental observation: The 1"q5 spec-
trum of Fig. 2 shows negligible TO-TO scattering.

The one-phonon TO (I') spectrum has I'„sym-
metry, as expected: The signal observed for the
1, and I'u components (I', +4I'„experimental con-
figuration) is very small (z$ of the allowed I'» sig-
nal) and can be dismissed as residual owing to mis-
orientations and surface conditions. The forbidden
LO scattering, on the contrary, becomes near res-
onance almost as strong as the allowed TO (see
Fig. 9) provided we observe it with parallel polar-
izer and analyzer. With crossed polarizers the
forbidden LO signal becomes 50 times smaller.
This result agrees with any of the theoretical cal-
culations of Frohlich-interaction-induced forbidden
LO scattering. The strongly resonant two-LO
(- I') scattering has I', symmetry; it is thus also
only seen for the parallel-parallel polarization con-
figuration, in agreement with the mechanism pro-
posed in Sec. II. As discussed in that section, the
two-LO (I') scattering is due to the Frohlich inter-
action of each of the participating phonons with the
electronic states. The agreement between the ob-
served line shape and the calculation of Zeyher
et al. ~ (Fig. 11) confirms this assignment. Devia-
tions from the theoretical curve away from the gap
are to be attributed either to a nondispersive back-
ground in the Raman tensor or to the large experi-
mental error when the resonant two-LO (I') struc-
ture nearly disappears under the general two-pho-
non scattering. Similar background, this time lar-
ger because of the relatively strong residual al-
lowed component, also appears for the one-LO-pho-
non scattering in Fig. 9.

The TO-plus-LO (I') scattering of Fig. 10 only

appears in the l &5 component. We are, at present,
not able to understand in detail the nature of this
scattering mechanism. It may be Frohlich-inter-
action-induced LO and deformation-potential TO
scattering. Such a process would not be forbidden
since the Frohlich part is proportional to k„ in-
stead of q' like in Eq. (28). The other alternative
is a double first-order deformation-potential pro-
cess which, if of the form of Fig. 1(b), would have
the observed resonance behavior, (&u —&uo) '. One

may rule out such a process since a similar TO-TO
process is not observed. It is, however, interest-
ing to point out that the TO-TO processes with pho-
nons at general points of the Brillouin zone are not
observed in the 1"» spectrum either, a fact that
casts some doubt on the argument given above.

All of the mechanisms just described for the pro-
cesses involving two phonons near l require a cut-
off mechanism to limit the k of the phonons to
points near l . In the case of the exciton-Frohlich
interaction, the phonon wavelength must be larger
than twice the Bohr radius of the exciton. For GaP
this Bohr radius is 56 A, ' and thus k is limited to
values of the order of 0.03 a.u. , corresponding to
~ of the "radius" of the Brillouin zone. We also
find another cutoff mechanism in the fact that as k
increases one of the three resonant energy denomi-
nators of process (b) becomes nonresonant since
the intermediate state moves away from the zone
edge. Taking the resonance width from Figs. 9-11
as -0.1 eV, a reasonable cutoff would take place
for an energy denominator -1 eV (resonance down

by a factor of 10). For a mass of -0.2m035 we find
a cutoff for k =0. 1 a.u. , still sufficiently smaller
than the radius of the Brillouin zone.

We notice that Figs. 5-7 show the theoretically
predicted spin-orbit structure. The structure at
0+6 clear for the TA scattering of Fig. 5, only
appears as a shoulder in Figs. 6 and 7, a fact at-
tributable in part to the lifetime broadening that re-
sults from having measured these points at high
temperature. [The &uo- no+ no structure is particu-
larly clear in the l(2TO(1.))/l(T (OF)) ratio. j We
should keep in mind, however, that the quasistatic
approximation (0, + Qz —-0) holds well for Fig. 5 but
runs into problems in the cases of Figs. 6 and 7
(0, + Q2 =no).

Also, the two-TA data (Fig. 5) reach at the

Eo —E~+ 40 peaks values considerably lower than
the theoretical ones (this fact is not as serious in
Figs. 5 and 7). One can speculate that a strongly
resonant component of the Raman tensor, of type
(b) (Fig. 1) and of opposite sign to the type-(a) com-
ponent given by the solid line of Fig. 5, reduces the
strength of the resonance near the peaks. The
two-TA (X-K) phonon peak is particularly apt to
show such type-(b) resonance with three equal ener-
gy denominators: The conduction bands of GaP have
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an X minimum below the I'& minimum and a K point
nearly degenerate with 1'&. 3 ' The X and Kpho-
nons connect the l

& point of the conduction band
with points at the edge of the zone of nearly the
same energy. Thus, strongly resonant type-(b)
processes are expected to take place.

These processes may be particularly important
for the two-TA scattering because the correspond-
ing type-(a) processes are rather weak. Figure 5
seems to indicate a scattering strength of the same
order as Figs. 6 and 7. We must, however, keep
in mind that these figures have been refered to
room temperature, at which the Bose-Einstein ex-
citation factors for the TO phonons are approxi-
mately 1, but the factors for the TA phonons are
much larger (-2.5). Also, the factor of 1/0 in
Eq. (6) makes two-TA stronger than two-TO scat-
tering. Thus, everything else (i.e. , the deforma-
tion potentials) being equal the two-TA scattering
should be much stronger than the two-TO. Figures
5-7 show that thi;s is not the case. This fact can be
seen more clearly in the values of the two-phonon
deformation potentials D, and D» obtained from the
ratios of the integrated intensities of the two-TA,
two-TO, two-LO, and LO-plus-TO spectra to that
of the one-TO peak. These ratios and the corre-
sponding deformation potentials found with Eqs. (6),
(11), (16), (18), (22), and (24) are listed in Table I.
The deformation potentials D, and D» are two or-
ders of magnitude smaller than those calculated

Mode two TA boo TO two LO TO plus LO

I(mode)
I(TO(I'))

g|2)~
g(1) (g

~ss &p
6&

fs) (1) (g

0.160 0.050 0.035

1.5X10 3.8&&10 5.0x10

0.015

5.4 x108

D& (eV)

Dgg (eV)

390 965 1260

450

with pseudo-wave-functions in Sec. II.
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TABLE I. Experimental ratios of areas under second-
order Raman features to area under first-order TO peak
(I(mode)/1(TO(f'))). Also, corresponding ratios of pho-
non-induced energy shifts (g ~~ (dp/6 cop) and electron-
two-phonon deformation potentials (D). An uncertainty
of about 30% is expected for these numbers.
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